Semantics and Verification 2007

Lecture 5

- Hennessy-Milner logic
- syntax and semantics
- correspondence with strong bisimilarity
- examples in CWB

Verifying Correctness of Reactive Systems

Let *Impl* be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

$Impl \equiv Spec$

- ullet is an abstract equivalence, e.g. \sim or pprox
- Spec is often expressed in the same language as Impl
- Spec provides the full specification of the intended behaviour

Model Checking Approach

$Impl \models Property$

- |= is the satisfaction relation
- Property is a particular feature, often expressed via a logic
- Property is a partial specification of the intended behaviour

Verifying Correctness of Reactive Systems

Let *Impl* be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

$Impl \equiv Spec$

- ullet is an abstract equivalence, e.g. \sim or pprox
- Spec is often expressed in the same language as Impl
- Spec provides the full specification of the intended behaviour

Model Checking Approach

$Impl \models Property$

- is the satisfaction relation
- Property is a particular feature, often expressed via a logic
- Property is a partial specification of the intended behaviour

Model Checking of Reactive Systems

Our Aim

Develop a logic in which we can express interesting properties of reactive systems.

Logical Properties of Reactive Systems

Modal Properties - what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Temporal Properties – behaviour in time

- never drinks any alcohol (safety property: nothing bad can happen)
- eventually will have a glass of wine (liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

Logical Properties of Reactive Systems

Modal Properties - what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Temporal Properties – behaviour in time

- never drinks any alcohol (safety property: nothing bad can happen)
- eventually will have a glass of wine (liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

Logical Properties of Reactive Systems

Modal Properties - what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Temporal Properties – behaviour in time

- never drinks any alcohol (safety property: nothing bad can happen)
- eventually will have a glass of wine (liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

Hennessy-Milner Logic – Syntax

Syntax of the Formulae ($a \in Act$)

$$F,G ::= tt \mid ff \mid F \wedge G \mid F \vee G \mid \langle a \rangle F \mid [a]F$$

Intuition

tt all processes satisfy this property

ff no process satisfies this property

 \land , \lor usual logical AND and OR

 $\langle a \rangle F$ there is at least one a-successor that satisfies F

[a]F all a-successors have to satisfy F

Remark

Temporal properties like *always/never in the future* or *eventually* are not included.

Hennessy-Milner Logic – Syntax

Syntax of the Formulae ($a \in Act$)

$$F,G ::= tt \mid ff \mid F \wedge G \mid F \vee G \mid \langle a \rangle F \mid [a]F$$

Intuition:

- tt all processes satisfy this property
- f no process satisfies this property
- \land , \lor usual logical AND and OR
- $\langle a \rangle F$ there is at least one a-successor that satisfies F
- [a]F all a-successors have to satisfy F

Remark

Temporal properties like *always/never in the future* or *eventually* are not included.

Hennessy-Milner Logic – Syntax

Syntax of the Formulae ($a \in Act$)

$$F,G ::= tt \mid ff \mid F \wedge G \mid F \vee G \mid \langle a \rangle F \mid [a]F$$

Intuition:

- tt all processes satisfy this property
- ff no process satisfies this property
- \wedge , \vee usual logical AND and OR
- $\langle a \rangle F$ there is at least one a-successor that satisfies F
- [a] F all a-successors have to satisfy F

Remark

Temporal properties like *always/never in the future* or *eventually* are not included.

Hennessy-Milner Logic – Semantics

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Validity of the logical triple $p \models F \ (p \in Proc, F \text{ a HM formula})$

$$p \models tt$$
 for each $p \in Proc$
 $p \models ff$ for no p (we also write $p \not\models ff$)
 $p \models F \land G$ iff $p \models F$ and $p \models G$
 $p \models F \lor G$ iff $p \models F$ or $p \models G$
 $p \models \langle a \rangle F$ iff $p \stackrel{a}{\longrightarrow} p'$ for some $p' \in Proc$ such that $p' \models F$
 $p \models [a]F$ iff $p' \models F$, for all $p' \in Proc$ such that $p \stackrel{a}{\longrightarrow} p'$

We write $p \not\models F$ whenever p does not satisfy F.

What about Negation?

For every formula F we define the formula F^c as follows:

- $tt^c = ft$
- $f^c = t$
- $(F \wedge G)^c = F^c \vee G^c$
- $(F \vee G)^c = F^c \wedge G^c$
- $(\langle a \rangle F)^c = [a]F^c$
- $([a]F)^c = \langle a \rangle F^c$

What about Negation?

For every formula F we define the formula F^c as follows:

- $tt^c = ff$
- $f^c = tt$
- $(F \wedge G)^c = F^c \vee G^c$
- $(F \vee G)^c = F^c \wedge G^c$
- $(\langle a \rangle F)^c = [a]F^c$
- $([a]F)^c = \langle a \rangle F^c$

Theorem (F^c is equivalent to the negation of F)

For any $p \in Proc$ and any HM formula F

- $p \not\models F \Longrightarrow p \models F^c$

For a formula F let $\llbracket F \rrbracket \subseteq Proc$ contain all states that satisfy F.

Denotational Semantics: $\llbracket _ \rrbracket$: Formulae $\rightarrow 2^{Proc}$

- [[tt]] = *Proc*
- [#] = Ø
- $[F \lor G] = [F] \cup [G]$
- $[F \land G] = [F] \cap [G]$
- $\bullet \ \llbracket \langle a \rangle F \rrbracket = \langle \cdot a \cdot \rangle \llbracket F \rrbracket$
- $[[a]F] = [\cdot a \cdot][F]$

where
$$\langle \cdot a \cdot \rangle, [\cdot a \cdot] : 2^{(Proc)} \to 2^{(Proc)}$$
 are defined by

$$\langle \cdot a \cdot \rangle S = \{ p \in Proc \mid \exists p'. \ p \stackrel{a}{\longrightarrow} p' \text{ and } p' \in S \}$$

$$[\cdot a \cdot] S = \{ p \in Proc \mid \forall p'. \ p \stackrel{a}{\longrightarrow} p' \implies p' \in S \}.$$

The Correspondence Theorem

Theorem

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS, $p \in Proc$ and F a formula of Hennessy-Milner logic. Then

$$p \models F$$
 if and only if $p \in \llbracket F \rrbracket$.

Proof: by structural induction on the structure of the formula F.

The Correspondence Theorem

Theorem

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS, $p \in Proc$ and F a formula of Hennessy-Milner logic. Then

$$p \models F$$
 if and only if $p \in \llbracket F \rrbracket$.

Proof: by structural induction on the structure of the formula F.

Image-Finite Labelled Transition System

Image-Finite System

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS. We call it image-finite iff for every $p \in Proc$ and every $a \in Act$ the set

$$\{p' \in Proc \mid p \stackrel{a}{\longrightarrow} p'\}$$

is finite.

Relationship between HM Logic and Strong Bisimilarity

Theorem (Hennessy-Milner)

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an image-finite LTS and $p, q \in Proc$. Then

$$p \sim q$$

if and only if

for every HM formula $F: (p \models F \iff q \models F)$.

CWB Session

hm.cwb

```
agent S = a.S1;
agent S1 = b.0 + c.0;
agent T = a.T1 + a.T2;
agent T1 = b.0;
agent T2 = c.0;
```

borg\$ /pack/FS/CWB/cwb

```
> input "hm.cwb";
> print;
> help logic;
> checkprop(S,<a>(<b>T & <c>T));
true
> checkprop(T,<a>(<b>T & <c>T));
false
> help dfstrong;
> dfstrong(S,T);
 [a] < b > T
> exit;
```