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Time in discrete-time Markov chains

The advance of time in DTMCs

» Time in a DTMC proceeds in discrete steps
» Two possible interpretations:
1. accurate model of (discrete) time units
> e.g., clock ticks in model of an embedded device
2. time-abstract

» no information assumed about the time transitions take

> State residence time is geometrically distributed

Continuous-time Markov chains

> dense model of time
> transitions can occur at any (real-valued) time instant

> state residence time is (negative) exponentially distributed
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Continuous random variables

» X is a random variable (r.v., for short)

» on a sample space with probability measure Pr
» assume the set of possible values that X may take is dense

» X is continuously distributed if there exists a function f(x) such that:

d
F(d) = PH{X <d} = / f(x) dx for each real number d

—00

where f satisfies: f(x) >0 forall x and / f(x)dx=1

» Fx(d) is the (cumulative) probability distribution function
» f(x) is the probability density function

Continuous-Time Markov Chains Negative exponential distribution

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R+ is:
fy(x) = Ae ™ forx >0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € Ry is:
d
Fr(d) = [ de dx = e M8 = 1- e
0

The rate A € R-g uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A € R-g. Then:
> Expectation E[Y] = [(°x-A-e M dx = 1
» Variance Var[Y] = [§°(x — E[X])*Xe™*  dx = &
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Exponential pdf and cdf
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The higher A, the faster the cdf approaches 1.
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Why exponential distributions?

v

Are adequate for many real-life phenomena

» the time until a radioactive particle decays
> the time between successive car accidents
> inter-arrival times of jobs, telephone calls in a fixed interval

Are the continuous counterpart of the geometric distribution
Heavily used in physics, performance, and reliability analysis

Can approximate general distributions arbitrarily closely

vV v.v Yy

Yield a maximal entropy if only the mean is known

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Continuous-Time Markov Chains Negative exponential distribution Continuous-Time Markov Chains Negative exponential distribution

Memoryless property Closure under minimum

1. For any exponentially distributed random variable X:

HpCo e ) = A d e s

For independent, exponentially distributed random variables X and Y with

2. Any cdf which is memoryless is a negative exponential one. rates \, u € R, the r.v. min(X, Y) is exponentially distributed with rate
A, ie.:
Proof:

- _ ()t
Proof of 1. : Let X\ be the rate of X's distribution. Then we derive: Pr{mln(X, Y) < t} 1—e for all t € R>0'

PriX >t+d N X >t}  Pr{X > t+d}
Pr{X > t}  PrX >t}

Pr{X>t+d|X>t} =

o=\ (t+d)

= — = e = Pr{X>d}.

Proof of 2. : By contraposition, using the total law of probability.
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Proof Closure under minimum

Let A\ () be the rate of X's (Y's) distribution. Then we derive:

Minimum closure theorem for several exponentially distributed r.v.'s

Pr{min(X,Y) <t} =P , R? in(x,y)<t . . . .
Amin(X, ¥) <t} = Pryi(xy) € R3o [ min(x. ) < t} For independent, exponentially distributed random variables Xi, X5, ..., X,
_ / (/ lingeyy<e(%, ¥) - Ne= . pehY dy) dx with rates A1, A2, ..., Ay € Ryg the r.v. min(Xy, Xa, ..., X,) is
0 o exponentially distributed with rate > o_;<, A, i.e.:

t [e ] t [e 9]
= )\€7AX . /‘Leiﬂy dy dX +/ / )\eka . 'uleip‘y dX dy _ N
/o /x 0 Jy Pr{min(X1, X2,..., Xp) <t} = 1—e LocienN forall t € R>o.

t t
= / e M. e X dx +/ eV . ue W dy
0 0

t t
= [ e O Fmx gy +/ e~y ¢ . e
/0 0 K Y Generalization of the proof for the case of two exponential distributions.

t
= / (M) - e~z gy = 1 — e~ (Wt
0
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Winning the race with two competitors Proof

Let A\ () be the rate of X's (Y's) distribution. Then we derive:

PrX < Y} = Prcy{(xy) € B2y | x <y}

The minimum of two exponential distributions S Yo
:/ pe H /)\e “dx | dy
For independent, exponentially distributed random variables X and Y with 0 0
rates A, u € R, it holds: - / pe ™ (1—e) dy
0
)\ o0 o0
P{X < Y} = . :1_/ e .e=N dy = 1_/ e~ (VY gy
H 0 0
_ K * —(u+2)
=1- . N)e (b)Y ¢
Y /0 (ntA)e y
=1
A
TS pAA
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Winning the race with many competitors Overview

The minimum of several exponentially distributed r.v.'s

For independent, exponentially distributed random variables X3, X5, ..., X,
with rates A1, Ao, ..., Ay € Ryg it holds:

) @ Continuous-time Markov chains
i

Pr{X; = min(X1,..., Xp)} = —<—.
j=1 )\j

Generalization of the proof for the case of two exponential distributions.
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Continuous-time Markov chain Example

Continuous-time Markov chain
A CTMC is a tuple (S, P, r, i, AP, L) where
» (S,P, Ly, AP, L) is a DTMC, and

» r: S — Ry, the exit-rate function

Interpretation

> residence time in state s is exponentially distributed with rate r(s).

» phrased alternatively, the average residence time of state s is %

» thus, the higher the rate r(s), the shorter the average residence time r(s) =25, r(t) =4, r(u) =2 and r(v) = 100
in s.
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Example: a classical perspective CTMC semantics by example

CTMC semantics

> Transition s — s’ := r.v. X; o with rate R(s, ")

> Probability to go from state s to, say, state s, is:

Pr{Xss, < Xsoss N Xspoo < Xsps

R(s0,51) @ -
/ R(so, 52) R(so, 52)

/R S0, S -
@ R(So, 51) a4 R(So, 52) =+ R(50v 53) r(So)

R(s,53) \-@ > Probability of staying at most t time in sp is:

r(s) =25, r(t) =4, r(u) =2 and r(v) = 100
The transition rate R(s, s’) = P(s, s’)-r(s) Pr{min(Xs s, X5, Xs0,55) < t}

1— e—(R(Su,Sl)+R(So,52)+R(So,S3))~t - 1 e—r(so)~t

We use (S, P, r, timie, AP, L) and (S, R, L5, AP, L) interchangeably.
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Continuous-Time Markov Chains

CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e~

R(s,s")-t

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

t
r(s)-e )X dx = 1— e "ot
0

CTMC semantics

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

RS'S/ —r(s)t
(r(s)).<1_e (s) )

On the blackboard.
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CTMC semantics

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:
t

r(s)~e*r(5)'x dx = 1—e "t
0

Proof:
On the blackboard.
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Enzyme-catalysed substrate conversion

Kinetics [edit]

Main article: Enzyme kinetics

B Enzyme kinetics is the ir igation of how y bind and turn them into
Catalytic step i it
products. The rate data used in kinetic analyses are commonly obtained from enzyme assays,
-1
where since the 90s, the dynamics of many enzymes are studied on the level of individual
E +S = ES — E +P molecules.
In 1902 Victor Henril5”! proposed a quantitative theory of enzyme kinetics, but his experimental
data were not useful because the significance of the hydrogen ion concentration was not yet

e
Substrete binding

appreciated. After Peter Lauritz Sorensen had defined the ithmic pH-scale and i
Mechanism for a single substrate enzyme catalyzed & . 58] 3 N N N
reaction. The enzyme (E) binds a substrate (S) and the concept of buffering in 1909"°°/ the German chemist Leonor Michaelis and his Canadian
produces a product (P). postdoc Maud Leonora Menten repeated Henri's experiments and confirmed his equation which

is referred to as Henri-Michaelis-Menten kinetics (termed also Michaelis-Menten KIneQICS),[SQI

Their work was further developed by G. E. Briggs and J. B. S. Haldane, who derived kinetic
equations that are still widely considered today a starting point in solving enzymatic activity. 6}
The major contribution of Henri was to think of enzyme reactions in two stages. In the first, the substrate binds reversibly to the enzyme, forming the
enzyme-substrate complex. This is sometimes called the Michaelis complex. The enzyme then catalyzes the chemical step in the reaction and
releases the product. Note that the simple Michaelis Menten mechanism for the enzymatic activity is considered today a basic idea, where many
examples show that the enzymatic activity involves structural dynamics. This is incorporated in the enzymatic mechanism while introducing several
Michaelis Menten pathways that are connected with ing rates FHERIERL there is a ical relation ing the behavior
obtained from the basic Michaelis Menten mechanism (that was indeed proved correct in many i ) with the i is Menten
mechanisms involving dynamics and activity; 161] this means that the measured activity of enzymes on the level of many enzymes may be explained
with the simple Michaelis-Menten equation, yet, the actual activity of enzymes is richer and involves structural dynamics.

Source: wikipedia (June 2011)
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Stochastic chemical kinetics

» Types of reaction described by stochiometric equations:

kl k3
E+S—ES - E+P

2

» N different types of molecules that randomly collide
where state X(t) = (xi, ..., xy) with x; = # molecules of sort i

» Reaction probability within infinitesimal interval [t, t+A):
am(X)- A = Pr{reaction min [t, t+A) | X(t) = X} where

am(X) = km - # possible combinations of reactant molecules in X
» This process is a continuous-time Markov chain.
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Enzyme-catalyzed substrate conversion as a CTMC

States: init  goal
enzymes 2 2
substrates 4 0
complex 0 0
products 0 4

Transitions:

1
E—i—S?C 0.001 E+P

0.001-2
eg. (zg, zs, 70, zp) —— (zg + 1,z5,z¢c — Lzp + 1) forz¢c > 0
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Continuous-Time Markov Chains Continuous-time Markov chains

CTMCs are omnipresent!

» Markovian queueing networks (Kleinrock 1975)
» Stochastic Petri nets (Molloy 1977)
» Stochastic activity networks (Meyer & Sanders 1985)
» Stochastic process algebra (Herzog et al., Hillston 1993)
» Probabilistic input/output automata (Smolka et al. 1994)
» Calculi for biological systems (Priami et al., Cardelli 2002)

CTM(Cs are one of the most prominent models in performance analysis
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© Transient
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Transient distribution of a CTMC Transient distribution theorem

Transient state probability

Let X(t) denote the state of a CTMC at time t € R>g. The probability to

be in state s at time ¢ is defined by: Theorem: transient distribution as linear differential equation
The transient probability vector p(t) = (ps, (t), ..., ps, (t)) satisfies:
b6 — PHX() -5} probability vector p(t) = (s (1), - s (1))
— S PAX(0) =5} PX(t)=s| X(0) =5} p'(t) = p(t)-(R—r) given p(0)
s’'eS

where r is the diagonal matrix of vector r.

Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = t),..., t)) satisfies:
P Y p(8) = (Pa(t). - Psu(t) On the blackboard.

p'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.
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Overview Summary

» Exponential distributions are closed under minimum.

» The probability to win a race amongst several exponential
distributions only depends on their rates.

» A CTMC is a DTMC where state residence times are exponentially
distributed.

» CTMC semantics distinguishes between enabledness and taking a
transition.

» Transient distribution are obtained by solving a system of linear
Q@ Summary . , .
differential equations.

» CTMCs are frequently used as semantical model for high-level
formalisms.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems



	Negative exponential distribution
	Continuous-time Markov chains
	Transient distribution
	Summary

