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Topics

• Reachability with zones.

More:

The slides in the following pages are taken from the material of the course “Advanced Model Checking”

held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.
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Advanced model checking

TCTL model checking

• Model checking timed automata against TCTL is decidable
– example TCTL-formula: ∀✸!10goal

• Key ingredient for decidability: finite quotient wrt. a bisimulation
– bisimulation = equivalence on clock valuations
– equivalence classes are called regions

• Region automaton is highly impractical for tool implementation
– the number of regions lies in Θ(|C|!·

∏
x∈C

cx)

• In practice, coarser abstractions than regions are used
– this lecture considers time-bounded reachability using zones
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Advanced model checking

Reachability analysis

• Forward analysis:
– starting from some initial configuration
– determine configurations that are reachable within 1, 2, 3, . . . steps
– until either the goal configuration is reached, or the computation terminates

• Backward analysis:
– starting from the goal configuration
– determine configurations that can reach the goal within 1, 2, 3, . . . steps
– until either the initial configuration is reached, or the computation terminates

how can these approaches be realized for timed automata?
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Advanced model checking

Symbolic reachability analysis

• Use a symbolic representation of timed automata configurations
– needed as there are infinitely many configurations
– example: state regions ⟨ℓ, [η]⟩

• For set z of clock valuations and edge e = ℓ
g:α,D
↪→ ℓ′ let:

Poste(z) = { η′ ∈ Rn
"0 | ∃η ∈ z, d ∈ R"0. η+d |= g ∧ η′ = resetD in (η+d) }

Pree(z) = { η ∈ Rn
"0 | ∃η′ ∈ z, d ∈ R"0. η+d |= g ∧ η′ = resetD in (η+d) }

• Intuition:
– η′ ∈ Poste(z) if for some η ∈ z and delay d, (ℓ, η) d−→ . . . e−→ (ℓ′, η′)

– η ∈ Pree(z) if for some η′ ∈ z and delay d, (ℓ, η) d−→ . . . e−→ (ℓ′, η′)
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Advanced model checking

Zones

• Clock constraints are conjunctions of constraints of the form:
– x ≺ c and x−y ≺ c for ≺ ∈ {<,!,=,", > }, and c ∈ Z

• A zone is a set of clock valuations satisfying a clock constraint
– a clock zone for g is the set of clock valuations satisfying g

• Clock zone of g: [[ g ]] = { η ∈ Eval(C) | η |= g }

• The state zone of s = ⟨ℓ, η⟩ is ⟨ℓ, z⟩ with η ∈ z

• For zone z and edge e, Poste(z) and Pree(z) are zones

state zones will be used as symbolic representations for configurations
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Advanced model checking

Operations on zones
• Future of z:
– −→z = { η+d | η ∈ z ∧ d ∈ R"0 }

• Past of z:
– ←−z = { η−d | η ∈ z ∧ d ∈ R"0 }

• Intersection of two zones:
– z ∩ z′ = { η | η ∈ z ∧ η ∈ z′ }

• Clock reset in a zone:
– resetD in z = { resetD in η | η ∈ z }

• Inverse clock reset of a zone:
– reset−1 D in z = { η | resetD in η ∈ z }
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Advanced model checking

Symbolic successors and predecessors

Recall that for edge e = ℓ
g:α,D
↪→ ℓ′ we have:

Poste(z) = { η′ ∈ Rn
"0 | ∃η ∈ z, d ∈ R"0. η+d |= g ∧ η′ = resetD in (η+d) }

Pree(z) = { η ∈ Rn
"0 | ∃η′ ∈ z, d ∈ R"0. η+d |= g ∧ η′ = resetD in (η+d) }

This can also be expressed symbolically using operations on zones:
Poste(z) = reset D in (−→z ∩ [[ g ]])

and

Pree(z) =
←−−−−−−−−−−−−−−−−−−−−−−−−−−
reset−1 D in (z ∩ [[D = 0 ]]) ∩ [[ g ]]
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Advanced model checking

Zone successor: example
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Advanced model checking

Zone predecessor: example
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Advanced model checking

Backward symbolic transition system (1)
Backward symbolic transition system of TA with |C| = n is inductively defined by:

e = ℓ
g:α,D
↪→ ℓ′ z = Pree(z′)

(ℓ′, z′)⇐ (ℓ, z)

Iterative backward reachability analysis computation schemata:

T0 = { (ℓ,Rn
"0) | ℓ is a goal location }

T1 = T0 ∪ { (ℓ, z) | ∃(ℓ′, z′) ∈ T0 such that (ℓ′, z′)⇐ (ℓ, z) }

. . . . . .

Tk+1 = Tk ∪ { (ℓ, z) | ∃(ℓ′, z′) ∈ Tk such that (ℓ′, z′)⇐ (ℓ, z) }

. . . . . .

until either the computation stabilizes or reaches an initial configuration (ℓ0, z0)
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Advanced model checking

Backward symbolic transition system (2)
Backward symbolic transition system of TA is inductively defined by:

e = ℓ
g:α,D
↪→ ℓ′ z = Pree(z′)

(ℓ′, z′)⇐ (ℓ, z)

Iterative backward reachability analysis computation schemata:

T0 = { (ℓ,Rn
"0) | ℓ is a goal location }

T1 = T0 ∪ { (ℓ, z) | ∃(ℓ′, z′) ∈ T0. (ℓ
′, z′)⇐ (ℓ, z) and ℓ′ = ℓ implies z ̸⊆ z′ }

. . . . . .

Tk+1 = Tk ∪ { (ℓ, z) | ∃(ℓ′, z′) ∈ Tk. (ℓ
′, z′)⇐ (ℓ, z) and ℓ′ = ℓ implies z ̸⊆ z′ }

. . . . . .

until either the computation stabilizes or reaches an initial configuration (ℓ0, z0)
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Advanced model checking

Termination and correctness [Henzinger et al., 1994]

The backward computation terminates and is correct wrt. reachability properties

Because of the bisimulation property, it holds:
Every set of valuations which is computed along the backward computation is a finite union of regions
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Advanced model checking

Forward reachability analysis (1)
Forward symbolic transition system of TA is inductively defined by:

e = ℓ
g:α,D
↪→ ℓ′ z′ = Poste(z)

(ℓ, z)⇒ (ℓ′, z′)

Iterative forward reachability analysis computation schemata:

T0 = { (ℓ0, z0) | ∀x ∈ C. z0(x) = 0 }

T1 = T0 ∪ { (ℓ′, z′) | ∃(ℓ, z) ∈ T0 such that (ℓ, z)⇒ (ℓ′, z′) }

. . . . . .

Tk+1 = Tk ∪ { (ℓ′, z′) | ∃(ℓ, z) ∈ Tk such that (ℓ, z)⇒ (ℓ′, z′) }

. . . . . .

until either the computation stabilizes or reaches a symbolic state containing a goal configuration
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Advanced model checking

Forward reachability analysis (2)
Forward symbolic transition system of TA is inductively defined by:

e = ℓ
g:α,D
↪→ ℓ′ z′ = Poste(z)

(ℓ, z)⇒ (ℓ′, z′)

Iterative forward reachability analysis computation schemata:

T0 = { (ℓ0, z0) | ∀x ∈ C. z0(x) = 0 }

T1 = T0 ∪ { (ℓ′, z′) | ∃(ℓ, z) ∈ T0. (ℓ, z)⇒ (ℓ′, z′) and ℓ = ℓ′ implies z ̸⊆ z′ }

. . . . . .

Tk+1 = Tk ∪ { (ℓ′, z′) | ∃(ℓ, z) ∈ Tk. (ℓ, z)⇒ (ℓ′, z′) and ℓ = ℓ′ implies z ̸⊆ z′ }

. . . . . .

until either the computation stabilizes or reaches a symbolic state containing a goal
configuration
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Advanced model checking

Forward reachability analysis: intuition
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Advanced model checking

Possible non-termination

The forward analysis is correct but may not terminate:

c⃝ JPK 17



Advanced model checking

Solution: abstract forward reachability
Let γ associate sets of valuations to sets of valuations

Abstract forward symbolic transition system of TA is defined by:

(ℓ, z)⇒ (ℓ′, z′) z = γ(z)

(ℓ, z)⇒ γ (ℓ′, γ(z′))

Iterative forward reachability analysis computation schemata:

T0 = { (ℓ0, γ(z0)) | ∀x ∈ C. z0(x) = 0 }

T1 = T0 ∪ { (ℓ′, z′) | ∃(ℓ, z) ∈ T0 such that (ℓ, z)⇒ γ (ℓ′, z′) }

. . . . . .

Tk+1 = Tk ∪ { (ℓ′, z′) | ∃(ℓ, z) ∈ Tk such that (ℓ, z)⇒ γ (ℓ′, z′) }

. . . . . .

with inclusion check and termination criteria as before
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Advanced model checking

Soundness and correctness

• Soundness:

⟨ℓ0, γ(z0)⟩ ⇒∗γ ⟨ℓ, z⟩︸ ︷︷ ︸
abstract symbolic reachability

implies ∃ ⟨ℓ0, η0⟩ →∗ ⟨ℓ, η⟩︸ ︷︷ ︸
reachability in TS(TA)

with η ∈ z

• Completeness:

⟨ℓ0, η0⟩ →∗ ⟨ℓ, η⟩︸ ︷︷ ︸
reachability in TS(TA)

implies ∃ ⟨ℓ0, γ({ η0 })⟩ ⇒∗γ ⟨ℓ, z⟩︸ ︷︷ ︸
abstract symbolic reachability

for some z with η ∈ z

for any choice of γ, soundness and completeness are desirable
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Advanced model checking

Criteria on the abstraction operator

• Finiteness: { γ(z) | γ defined on z } is finite

• Correctness: γ is sound wrt. reachability

• Completeness: γ is complete wrt. reachability

• Effectiveness: γ is defined on zones, and γ(z) is a zone
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Advanced model checking

Normalization: intuition
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symbolic semantics has infinitely many zones:

normalization yields a finite zone graph:
x " 20
{x, y }

x = 10
{ x }

{ x, y }

x ! 10
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Advanced model checking

k-Normalization [Daws & Yovine, 1998]

Let k ∈ N.

• A k-bounded zone is described by a k-bounded clock constraint
– e.g., zone z = (x " 3)∧ (y ! 5)∧ (x− y ! 4) is not 2-bounded
– but zone z′ = (x " 2)∧ (y − x ! 2) is 2-bounded
– note that: z ⊆ z′

• Let normk(z) be the smallest k-bounded zone containing zone z
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Advanced model checking

Example of k-normalization
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Advanced model checking

Facts about k-normalization [Bouyer, 2003]

• Finiteness: normk(·) is a finite abstraction operator

• Correctness: normk(·) is sound wrt. reachability
provided k is the maximal constant appearing in the constraints of TA

• Completeness: normk(·) is complete wrt. reachability
since z ⊆ normk(z), so normk(·) is an over-approximation

• Effectiveness: normk(z) is a zone
this will be made clear in the sequel when considering zone representations
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