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Markov decision process (MDP)

Markov decision processes

I In MDPs, both nondeterministic and probabilistic choices coexist.
I MDPs are transition systems in which in any state a nondeterministic

choice between probability distributions exists.
I Once a probability distribution has been chosen nondeterministically,

the next state is selected probabilistically—as in DTMCs.
I Any MC is thus an MDP in which in any state the probability

distribution is uniquely determined.

Randomized distributed algorithms are typically appropriately modeled by MDPs,
as probabilities a�ect just a small part of the algorithm and nondeterminism is
used to model concurrency between processes by means of interleaving.
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Markov decision process (MDP)
Markov decision process
An MDPM is a tuple (S, Act, P, ÿinit, AP, L) where

I
S is a countable set of states with initial distribution ÿinit : S æ [0, 1]

I
Act is a finite set of actions

I P : S ◊ Act◊ S æ [0, 1], transition probability function such that:

for all s œ S and – œ Act :
ÿ

sÕœS
P(s,–, s

Õ) œ { 0, 1 }

I
AP is a set of atomic propositions and labeling L : S æ 2AP.
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Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S, Act, P, ÿinit, AP, L) where

I
S, ÿinit : S æ [0, 1], AP and L are as before, i.e., as for DTMCs, and

I
Act is a finite set of actions

I P : S ◊ Act◊ S æ [0, 1], transition probability function such that:

for all s œ S and – œ Act :
ÿ

sÕœS
P(s,–, s

Õ) œ { 0, 1 }

Enabled actions
Let Act(s) = {– œ Act | ÷s Õ œ S.P(s,–, s

Õ) > 0 } be the set of enabled
actions in state s. We require Act(s) ”= ? for any state s.
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An example MDP

I Initial distribution: ÿinit(s) = 1 and ÿinit(t) = ÿinit(u) = ÿinit(u) = 0
I Set of enabled actions in state s is Act(s) = {–,— } where

I P(s,–, s) = 1
2 , P(s,–, t) = 0 and P(s,–, u) = P(s,–, v) = 1

4
I P(s,—, s) = P(s,—, v) = 0, and P(s,—, t) = P(s,—, u) = 1

2

I
Act(t) = {– } with P(t,–, s) = P(t,–, u) = 1

2 and 0 otherwise
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Paths in an MDP

State graph
The state graph of MDPM is a digraph G = (V , E ) with V are the
states of M, and (s, s

Õ) œ E i� P(s,–, s

Õ) > 0 for some – œ Act.

Paths
An infinite path in an MDPM = (S, Act, P, ÿinit, AP, L) is an infinite
sequence s0 –1 s1 –2 s2 –3 . . . œ (S ◊ Act)Ê, written as

fi = s0
–1≠æ s1

–2≠æ s2
–3≠æ . . . ,

such that P(si ,–i+1, si+1) > 0 for all i > 0. Any finite prefix of fi that
ends in a state is a finite path.
Let Paths(M) denote the set of paths inM, and Paths

ú(M) the set of
finite prefixes thereof.
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Pre- and post
Direct successors and predecessors of a state
For s œ S, – œ Act and T ™ S, let P(s,–, T ) denote the probability of moving to
a state in T via –, i.e.,

P(s,–, T ) =
ÿ

tœT
P(s,–, t).

Post(s,–) denotes the set of –-successors of s:

Post(s,–) = { t œ S | P(s,–, t) > 0 }.

Note: Post(s,–) = ? if and only if – /œ Act(s).
Pre(t) denotes the set of pairs (s,–) with s œ S and – œ Act(s) such that
t œ Post(s,–), i.e.,

Pre(t) = { (s,–) œ S ◊ Act | P(s,–, t) > 0 }.

Pre(G) =
t

sœG
Pre(s) and Pre

ú(G) is the reflexive and transitive closure of Pre(G).
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Policies

Policy
LetM = (S, Act, P, ÿinit, AP, L) be an MDP. A policy forM is a function
S : S

+ æ Act such that S(s0 s1 . . . sn) œ Act(sn) for all s0 s1 . . . sn œ S

+.
The path

fi = s0
–1≠æ s1

–2≠æ s2
–3≠æ . . .

is called a S-path if –i = S(s0 . . . si≠1) for all i > 0.

For any policy, the actions are omitted from the history s0 s1 . . . sn. This is not a
restriction as for any sequence s0 s1 . . . sn the relevant actions –i are given by
–i+1 = S(s0 s1 . . . si). Hence, the scheduled action sequence can be constructed
from prefixes of the path at hand.
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Induced DTMC of an MDP by a policy
DTMC of an MDP induced by a policy
LetM = (S, Act, P, ÿinit, AP, L) be an MDP and S a policy onM. The
DTMC induced by S, denotedMS, is given by

MS = (S+, PS, ÿinit, AP, L

Õ)

where for ‡ = s0s1 . . . sn: PS
!
‡, ‡ sn+1

"
= P

!
sn, S(‡), sn+1

"
and

L

Õ(‡) = L(sn).

MS is infinite, even if the MDPM is finite. Intuitively, state s0 s1 . . . sn of
DTMCMS represents the configuration where the MDPM is in state sn and
s0 s1 . . . sn≠1 stands for the history. Since policy S might select di�erent actions
for finite paths that end in the same state s, a policy as defined above is also
referred to as history-dependent.
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Example MDP

Consider a policy that alternates between selecting red and green, starting
with red.
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Reachability Probabilities in Markov Decision Processes Policies

Example induced DTMC

Induced DTMC for a policy that alternates between selecting red and green.
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Reachability Probabilities in Markov Decision Processes Policies

Probability measure on MDP

Probability measure on MDP
Let Pr

M
S , or simply Pr

S, denote the probability measure Pr

MS associated
with the DTMCMS.
This measure is the basis for associating probabilities with events in the
MDPM. Let, e.g., P ™

!
2AP"Ê be an Ê-regular property. Then Pr

S(P) is
defined as:

Pr

S(P) = Pr

MS (P) = PrMS{fi œ Paths(MS) | trace(fi) œ P }.

Similarly, for fixed state s ofM, which is considered as the unique starting
state,

Pr

S(s |= P) = Pr

MSs {fi œ Paths(s) | trace(fi) œ P }

where we identify the paths inMS with the corresponding S-paths inM.
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Positional policy

Positional policy
LetM be an MDP with state space S. Policy S onM is positional (or:
memoryless) i� for each sequence s0 s1 . . . sn and t0 t1 . . . tm œ S

+ with
sn = tm:

S(s0 s1 . . . sn) = S(t0 t1 . . . tm).

In this case, S can be viewed as a function S : S æ Act.

Policy S is positional if it always selects the same action in a given state. This
choice is independent of what has happened in the history, i.e., which path led to
the current state.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/49

Reachability Probabilities in Markov Decision Processes Policies

Finite-memory policy

Finite-memory policy
LetM be an MDP with state space S and action set Act. A
finite-memory policy S forM is a tuple S = (Q, act, �, start) where

I
Q is a finite set of modes,

I � : Q ◊ S æ Q is the transition function,
I

act : Q ◊ S æ Act is a function that selects an action
act(q, s) œ Act(s) for any mode q œ Q and state sinS ofM,

I
start : S æ Q is a function that selects a starting mode for state s of
M.
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An MDP under a finite-memory policy

The behavior of an MDPM under a fm-policy S = (Q, act, �, start) is:
I Initially, a starting state s0 is randomly determined according to the

initial distribution ÿinit, i.e., ÿinit(s0) > 0.
I The fm-policy S initializes its DFA to the mode q0 = start(s0) œ Q.
I IfM is in state s and the current mode of S is q, then the decision

of S, i.e., the selected action, is – = act(q, s) œ Act(s).
I The policy changes to mode �(q, s), whileM performs the selected

action – and randomly moves to the next state according to the
distribution P(s,–, ·).
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Finite-memory policies

Relation fm-policy to definition policy
An fm-policy S = (Q, act, �, start) is identified with policy,
SÕ : Paths

ú æ Act which is defined as follows.
1. For the starting state s0, let SÕ(s0) = act(start(s0), s0).
2. For path fragment ‚fi = s0 s1 . . . sn let

SÕ(‚fi) = act(qn, sn)

where q0 = start(s0) and qi+1 = �(qi , si) for 0 6 i 6 n.

Positional policies can be considered as fm-policies with just a single mode.
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The DTMC under an fm-policy

Remark
For fm-policy S, the DTMCMS can be identified with a DTMC where
the states are just pairs Ès, qÍ where s is a state in the MDPM and q a
mode of S.
Formally,MÕS is the DTMC with state space S ◊ Q, labeling
L

Õ(Ès, qÍ) = L(s), the starting distribution ÿinit, and the transition
probabilities:

PÕS(Ès, qÍ, Èt, pÍ) = P(s, act(q, s), t).

For any MDPM anf fm-policy S:MS ≥p MÕS.

Hence, ifM is a finite MDP, then we considerMS as a finite MC.
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Positional versus fm-policies
Positional policies are insu�cient for Ê-regular properties
Consider the MDP:

Positional policy S– always chooses – in state s0
Positional policy S— always chooses — in state s0. Then:

PrS–(s0 |= ⌃a · ⌃b) = PrS— (s0 |= ⌃a · ⌃b) = 0.

Now consider fm-policy S–— which alternates between selecting – and —.
Then: PrS–— (s0 |= ⌃a · ⌃b) = 1.
Thus, the class of positional policies is insu�ciently powerful to
characterise minimal (or maximal) probabilities for Ê-regular properties.
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Reachability probabilities
Reachability probabilities
LetM be an MDP with state space S and S be a policy onM. The
reachability probability of G ™ S from state s œ S under policy S is:

Pr

S(s |= ⌃G) = Pr

MSs {fi œ Paths(s) | fi |= ⌃G }

Maximal and minimal reachability probabilities
The minimal reachability probability of G ™ S from s œ S is:

Pr

min(s |= ⌃B) = infS Pr

S(s |= ⌃B)

In a similar way, the maximal reachability probability of G ™ S is:

Pr

max(s |= ⌃B) = supS Pr

S(s |= ⌃B).

where policy S ranges over all, infinitely (countably) many, policies.
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Example
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Reachability Probabilities in Markov Decision Processes Reachability probabilities

Maximal reachability probabilities

MInimal guarantees for safety properties
Reasoning about the maximal probabilities for ⌃G is needed, e.g., for
showing that Pr

S(s |= ⌃G) 6 Á for all policies S and some small upper
bound 0 < Á 6 1. Then:

Pr

S(s |= ⇤¬G) > 1≠ Á for all policies S.

The task to compute Pr

max(s |= ⌃G) can thus be understood as showing
that a safety property (namely ⇤¬G) holds with su�ciently large
probability, viz. 1≠ Á, regardless of the resolution of nondeterminism.
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Equation system for max-reach probabilities
Equation system for max-reach probabilities
LetM be a finite MDP with state space S, s œ S and G ™ S. The vector
(xs)sœS with xs = Pr

max(s |= ⌃G) yields the unique solution of the
following equation system:

I If s œ G , then xs = 1.
I If s ”œ Pre

ú(G) \ G , then xs = 0.
I If s œ Pre

ú(G) \ G

xs = max
Ó ÿ

tœS
P(s,–, t) · xt | – œ Act(s)

Ô

such that qsœS xs is minimal.

This is an instance of the Bellman equation for dynamic programming.
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Example
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Value iteration
The previous theorem suggests to calculate the values

xs = Pr

max(s |= ⌃G)

by successive approximation.
For the states s œ Pre

ú(G) \ G we have xs = limnæŒ x

(n)
s where

x

(0)
s = 0 and x

(n+1)
s = max

Ó ÿ

tœS
P(s,–, t) · x (n)

t | – œ Act(s)
Ô
.

Note that x

(0)
s 6 x

(1)
s 6 x

(2)
s 6 . . .. Thus, the values Pr

max(s |= ⌃G) can
be approximated by successively computing the vectors

( x

(0)
s ), ( x

(1)
s ), ( x

(2)
s ), . . .,

until maxsœS |x
(n+1)
s ≠ x

(n)
s | is below a certain (typically very small)

threshold.
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Positional policies for max-reach probabilities

Existence of optimal positional policies
LetM be a finite MDP with state space S, and G ™ S. There exists a
positional policy S such that for any s œ S it holds:

Pr

S(s |= ⌃G) = Pr

max(s |= ⌃G).

Proof:
On the blackboard.
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Equation system for min-reach probabilities

Equation system for min-reach probabilities
LetM be a finite MDP with state space S, s œ S and G ™ S. The vector
(xs)sœS with xs = Pr

min(s |= ⌃G) yields the unique solution of the
following equation system:

I If s œ G , then xs = 1.
I If Pr

min(s |= G) = 0, then xs = 0.
I If Pr

min(s |= G) > 0 and s ”œ G , then

xs = min
Ó ÿ

tœS
P(s,–, t) · xt | – œ Act(s)

Ô

such that qsœS xs is maximal.
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Preprocessing
The preprocessing required to compute the set

S

min
=0 = { s œ S | Pr

min(s |= ⌃G) } = 0

can be performed by graph algorithms. The set S

min
=0 is given by S \ T

where
T =

€

n>0
Tn

and T0 = G and, for n > 0:

Tn+1 = Tn fi { s œ S | ’– œ Act(s)÷t œ Tn.P(s,–, t) > 0 }.

As T0 ™ T1 ™ T2 ™ . . . ™ S and S is finite, the sequence (Tn)n>0
eventually stabilizes, i.e., for some n > 0, Tn = Tn+1 = . . . = T .
Then: Pr

min(s |= ⌃G) > 0 if and only if s œ T .
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Preprocessing
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Positional policies for min-reach probabilities

Existence of optimal positional policies
LetM be a finite MDP with state space S, and G ™ S. There exists a
positional policy S such that for any s œ S it holds:

Pr

S(s |= ⌃G) = Pr

min(s |= ⌃G).

Proof:
Similar to the case for maximal reachability probabilities.
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Example value iteration

Determine Pr

min(si |= ⌃{ s2 }).
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Example value iteration

Determine
Pr

min(si |= ⌃{ s2 })

1. G = { s2 }, Pre ú (G) \ G = { s0, s1 }.

2. ( x

(0)
s ) = (0, 0, 1, 0)

3. ( x

(1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

4. = (0, 0.4, 1, 0)

5. ( x

(2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

6. = (0.4, 0.6, 1.0)

7. ( x

(3)
s ) = . . . . . .
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Example value iteration

Determine
Pr

min(si |= ⌃{ s2 })
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Optimal positional policy

I Outcome of the value iteration ( xs ) = ( 14
15 , 2

3 , 1, 0)

I How to obtain the optimal policy from this result?
I

xs0 = min(1· 14
15 , 0.5·1 + 0.5·0+0.25· 23 )

min( 14
15 , 2

3 )

I Thus the optimal policy always selects red.
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Induced DTMC

I Outcome of the value iteration ( xs ) = ( 14
15 , 2

3 , 1, 0)

I How to obtain the optimal policy from this reults?
I

xs0 = min(1· 14
15 , 0.5·1 + 0.5·0+0.25· 23 )

min( 14
15 , 2

3 )

I Thus the optimal policy always selects red.

An alternative to value iteration is linear programming.
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Linear programming
Linear programming
Let x1, . . . , xn be real-valued variables. Maximise (or minimise) the
objective function:

c1·x1 + c2·x2 + . . .+ cn·xn for constantsc1, . . . , cn œ R

subject to the constraints

a11·x1 + a12·x2 + . . .+ a1n·xn 6 b1

a21·x1 + a22·x2 + . . .+ a2n·xn 6 b2

. . . . . . am1·x1 + am2·x2 + . . .+ amn·xn 6 bm.

Solution techniques: e.g., Simplex, ellipsoid method, interior point method.

Linear programming
Optimisation of a linear objective function subject to linear (in)equality
constraints.Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49
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Maximal reach probabilities as a linear program
Linear program for max-reach probabilities
Consider a finite MDP with state space S, and G ™ S. The values
xs = Pr

max(s |= ⌃G) are the unique solution of the linear program:
I If s œ G , then xs = 1.
I If s /œ Pre

ú(G) \ G , then xs = 0.
I If s œ Pre

ú(G) \ G then 0 6 xs 6 1 and for all actions – œ Act(s):

xs >
ÿ

tœS
P(s,–, t) · xt

where q
sœS

xs is minimal.

Proof:
See lecture notes.
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Minimal reach probabilities as a linear program
Linear program for min-reach probabilities
Consider a finite MDP with state space S, and G ™ S. The values
xs = Pr

min(s |= ⌃G) are the unique solution of the linear program:
I If s œ G , then xs = 1.
I If Pr

min(s |= ⌃G) = 0, then xs = 0.
I If Pr

min(s |= ⌃G) > 0 and s ”œ G then 0 6 xs 6 1 and for all actions
– œ Act(s):

xs 6
ÿ

tœS
P(s,–, t) · xt

where q
sœS

xs is maximal.

Proof:
See lecture notes.
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Example linear programming

Determine
Pr

min(si |= ⌃{ s2 })

I
G = { s2 }, Pre ú (G) \ G = { s0, s1 }.

I Maximise x0 + x1 subject to the constraints:

x0 6 x1

x0 6 1
4 ·x0 + 1

2

x1 6 1
10 ·x0 + 1

2 ·x1 + 2
5
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Example linear programming
I

G = { s2 }, Pre ú (G) \ G = { s0, s1 }.
I Maximise x0 + x1 subject to the constraints:

x0 6 x1

x0 6 2
3

x1 6 2
5 ·x0 + 4

5
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Example linear programming
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Time complexity

Time complexity
For finite MDPM with state space S, G ™ S and s œ S, the values
Pr

max(s |= ⌃G) can be computed in time polynomial in the size ofM.
The same holds for Pr

min(s |= ⌃G).

Proof:
Thanks to the characterisation as a linear program and polynomial time
techniques to solve such linear programs such as ellipsoid methods.

Corollary
For finite MDPs, the question whether Pr

S(s |= ⌃G) 6 p for some
rational p œ [0, 1[ is decidable in polynomial time.
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Summary

Important points

1. Maximal reachability probabilities are suprema over reachability
probabilities for all, potentially infinitely many, policies.

2. They are characterised by equation systems with maximal operators.
3. There exists a positional policy that yields the maximal reachability

probability.
4. Such policies can bet determined using value iteration.
5. Or, alternatively, in polynomial time using linear programming.
6. Positional policies are not powerful enough for arbitrary Ê-regular

properties.
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