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Automatic Verification of Timed Automata

Fact

Even very simple timed automata generate timed transition
systems with infinitely (even uncountably) many reachable states.

Question

Is any automatic verification approach (like bisimilarity checking,
model checking or reachability analysis) possible at all?

Answer

Yes, using region graph techniques.

Key idea: infinitely many clock valuations can be categorized into
finitely many equivalence classes.
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Preliminaries

Let d 2 R�0. Then

let bdc be the integer part of d , and

let frac(d) be the fractional part of d .

Any d 2 R�0 can be now written as d = bdc+ frac(d).

Example: b2.345c = 2 and frac(2.345) = 0.345.

Let A be a timed automaton and x 2 C be a clock. We define

c

x

2 N

as the largest constant with which the clock x is ever compared
either in the guards or in the invariants present in A.
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Intuition

Let v , v 0 : C ! R�0 be clock valuations.
Let ⇠ denote untimed bisimilarity of timed transition systems.

Our Aim

Define an equivalence relation ⌘ over clock valuations such that

1

v ⌘ v

0 implies (`, v) ⇠ (`, v 0) for any location `

2 ⌘ has only finitely many equivalence classes.
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Equivalence Relation on Clock Valuations

Clock valuations v and v

0 are equivalent (v ⌘ v

0) i↵

1 for all x 2 C such that v(x)  c

x

or v

0(x)  c

x

we have

bv(x)c = bv 0(x)c

2 for all x 2 C such that v(x)  c

x

we have

frac(v(x)) = 0 i↵ frac(v 0(x)) = 0

3 for all x , y 2 C such that v(x)  c

x

and v(y)  c

y

we have

frac(v(x))  frac(v(y)) i↵ frac(v 0(x))  frac(v 0(y))
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Let v be a clock valuation. The ⌘-equivalence class represented by
v is denoted by [v ] and defined by [v ] = {v 0 | v

0 ⌘ v}.

Definition of a Region

An ⌘-equivalence class [v ] represented by some clock valuation v

is called a region.

Theorem

For every location ` and any two valuations v and v

0 from the
same region (v ⌘ v

0) it holds that

(`, v) ⇠ (`, v 0)

where ⇠ stands for untimed bisimilarity.
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Definition

Applications

Zones and Zone Graphs

Symbolic States and Region Graph

state (`, v)  symbolic state (`, [v ])

Note: v ⌘ v

0 implies that (`, [v ]) = (`, [v 0]).

Region Graph

Region graph of a timed automaton A is an unlabelled (and
untimed) transition system where

states are symbolic states

=) on symbolic states is defined as follows:
(`, [v ]) =) (`0, [v 0]) i↵ (`, v)

a�! (`0, v 0) for some label a

(`, [v ]) =) (`, [v 0]) i↵ (`, v)
d�! (`, v 0) for some d 2 R�0

Fact

A region graph of any timed automaton is finite.
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Application of Region Graphs to Reachability

We write (`, v) �! (`0, v 0) whenever
(`, v)

a�! (`0, v 0) for some label a, or

(`, v)
d�! (`0, v 0) for some d 2 R�0.

Reachability Problem for Timed Automata

Instance (input): Automaton A = (L, `0,E , I ) and a state (`, v).

Question: Is it true that (`0, v0) �!⇤ (`, v) ?

(where v0(x) = 0 for all x 2 C )

Reduction of Timed Automata Reachability to Region Graphs

Reachability for timed automata is decidable because

(`0, v0) �!⇤ (`, v) in a timed automaton if and only if

(`0, [v0]) =)⇤ (`, [v ]) in its (finite) region graph.
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Applicability of Region Graphs

Pros

Region graphs provide a natural abstraction which enables to prove
decidability of e.g.

reachability

timed and untimed bisimilarity

untimed language equivalence and language emptiness.

Cons

Region graphs have too large state spaces. State explosion is
exponential in

the number of clocks

the maximal constants appearing in the guards.
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Applications

Zones and Zone Graphs

Zones and Zone Graphs

Zones provide a more e�cient representation of symbolic state
spaces. A number of regions can be described by one zone.

Zone

A zone is described by a clock constraint g 2 B(C ).

[g ] = {v | v |= g}

Region Graphs

symbolic state: (`, [v ])
where v is a clock valuation

Zone Graphs

symbolic state: (`, [g ])
where g is a clock constraint

A zone is usually represented (and stored in the memory) as
DBM (Di↵erence Bound Matrix).
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