Semantics and Verification 2005

Lecture 10

- region graph and the reachability problem
- networks of timed automata
- model checking of timed automata

Automatic Verification of Timed Automata Clock Equivalence Automatic Verification of Timed Automata

Motivation

Intuition

Fact

Even very simple timed automata generate timed transition systems with infinitely (even uncountably) many reachable states.

Question

Is any automatic verification approach (like bisimilarity checking, model checking or reachability analysis) possible at all?

Answei

Yes, using region graph techniques.

Key idea: infinitely many clock valuations can be categorized into finitely many equivalence classes.

Automatic Verification of Timed Automata

Fact

Even very simple timed automata generate timed transition systems with infinitely (even uncountably) many reachable states.

Question

Is any automatic verification approach (like bisimilarity checking, model checking or reachability analysis) possible at all?

Answei

Yes, using region graph techniques.

Key idea: infinitely many clock valuations can be categorized into finitely many equivalence classes.

Automatic Verification of Timed Automata

Fact

Even very simple timed automata generate timed transition systems with infinitely (even uncountably) many reachable states.

Question

Is any automatic verification approach (like bisimilarity checking, model checking or reachability analysis) possible at all?

Answer

Yes, using region graph techniques.

Key idea: infinitely many clock valuations can be categorized into finitely many equivalence classes.

Preliminaries

Let $d \in \mathbb{R}^{\geq 0}$. Then

- let $\lfloor d \rfloor$ be the integer part of d, and
- let frac(d) be the fractional part of d.

Any $d \in \mathbb{R}^{\geq 0}$ can be now written as $d = \lfloor d \rfloor + frac(d)$.

Example: |2.345| = 2 and frac(2.345) = 0.345.

Let A be a timed automaton and $x \in C$ be a clock. We define

$$c_{x} \in \mathbb{N}$$

as the largest constant with which the clock x is ever compared either in the guards or in the invariants present in A.

Preliminaries

Let $d \in \mathbb{R}^{\geq 0}$. Then

- let $\lfloor d \rfloor$ be the integer part of d, and
- let frac(d) be the fractional part of d.

Any $d \in \mathbb{R}^{\geq 0}$ can be now written as $d = \lfloor d \rfloor + frac(d)$.

Example: $\lfloor 2.345 \rfloor = 2$ and frac(2.345) = 0.345.

Let A be a timed automaton and $x \in C$ be a clock. We define

$$c_x \in \mathbb{N}$$

as the largest constant with which the clock x is ever compared either in the guards or in the invariants present in A.

Intuition

Let $v, v': C \to \mathbb{R}^{\geq 0}$ be clock valuations.

Let \sim denote untimed bisimilarity of timed transition systems.

Our Aim

Define an equivalence relation ≡ over clock valuations such that

- $v \equiv v'$ implies $(\ell, v) \sim (\ell, v')$ for any location ℓ
- $2 \equiv$ has only finitely many equivalence classes.

Equivalence Relation on Clock Valuations

Clock valuations v and v' are equivalent $(v \equiv v')$ iff

Equivalence Relation on Clock Valuations

Clock valuations v and v' are equivalent $(v \equiv v')$ iff

• for all $x \in C$ such that $v(x) \le c_x$ or $v'(x) \le c_x$ we have

$$\lfloor v(x)\rfloor = \lfloor v'(x)\rfloor$$

Equivalence Relation on Clock Valuations

Clock valuations v and v' are equivalent $(v \equiv v')$ iff

• for all $x \in C$ such that $v(x) \le c_x$ or $v'(x) \le c_x$ we have

$$\lfloor v(x)\rfloor = \lfloor v'(x)\rfloor$$

② for all $x \in C$ such that $v(x) \le c_x$ we have

$$frac(v(x)) = 0$$
 iff $frac(v'(x)) = 0$

Equivalence Relation on Clock Valuations

Clock valuations v and v' are equivalent $(v \equiv v')$ iff

• for all $x \in C$ such that $v(x) \le c_x$ or $v'(x) \le c_x$ we have

$$\lfloor v(x)\rfloor = \lfloor v'(x)\rfloor$$

② for all $x \in C$ such that $v(x) \le c_x$ we have

$$frac(v(x)) = 0$$
 iff $frac(v'(x)) = 0$

3 for all $x, y \in C$ such that $v(x) \le c_x$ and $v(y) \le c_y$ we have

$$frac(v(x)) \le frac(v(y))$$
 iff $frac(v'(x)) \le frac(v'(y))$

Regions

Let v be a clock valuation. The \equiv -equivalence class represented by v is denoted by v and defined by v = v.

Definition of a Region

An \equiv -equivalence class [v] represented by some clock valuation v is called a region.

Theorem

For every location ℓ and any two valuations v and v' from the same region $(v \equiv v')$ it holds that

$$(\ell,\nu) \sim (\ell,\nu')$$

where \sim stands for untimed bisimilarity.

Regions

Let v be a clock valuation. The \equiv -equivalence class represented by v is denoted by v and defined by v = v.

Definition of a Region

An \equiv -equivalence class [v] represented by some clock valuation v is called a region.

Theorem

For every location ℓ and any two valuations v and v' from the same region ($v \equiv v'$) it holds that

$$(\ell, v) \sim (\ell, v')$$

where \sim stands for untimed bisimilarity.

Symbolic States and Region Graph

state
$$(\ell, v) \longrightarrow \text{symbolic state } (\ell, [v])$$

Note: $v \equiv v'$ implies that $(\ell, [v]) = (\ell, [v'])$.

Region Graph

Region graph of a timed automaton A is an unlabelled (and untimed) transition system where

- states are symbolic states
- on symbolic states is defined as follows:

$$(\ell, [v]) \stackrel{\longrightarrow}{\Longrightarrow} (\ell', [v'])$$
 iff $(\ell, v) \stackrel{a}{\longrightarrow} (\ell', v')$ for some label a
 $(\ell, [v]) \stackrel{\longrightarrow}{\Longrightarrow} (\ell, [v'])$ iff $(\ell, v) \stackrel{d}{\longrightarrow} (\ell, v')$ for some $d \in \mathbb{R}^{\geq 0}$

state
$$(\ell, v) \longrightarrow \text{symbolic state } (\ell, [v])$$

Note: $v \equiv v'$ implies that $(\ell, [v]) = (\ell, [v'])$.

Region Graph

Region graph of a timed automaton A is an unlabelled (and untimed) transition system where

- states are symbolic states
- \Longrightarrow on symbolic states is defined as follows:

$$(\ell, [v]) \stackrel{\longrightarrow}{\Longrightarrow} (\ell', [v'])$$
 iff $(\ell, v) \stackrel{a}{\longrightarrow} (\ell', v')$ for some label a
 $(\ell, [v]) \stackrel{\longrightarrow}{\Longrightarrow} (\ell, [v'])$ iff $(\ell, v) \stackrel{d}{\longrightarrow} (\ell, v')$ for some $d \in \mathbb{R}^{\geq 0}$

Fact

A region graph of any timed automaton is finite.

Application of Region Graphs to Reachability

We write $(\ell, \nu) \longrightarrow (\ell', \nu')$ whenever

- $(\ell, \nu) \xrightarrow{a} (\ell', \nu')$ for some label a, or
- $(\ell, v) \xrightarrow{d} (\ell', v')$ for some $d \in \mathbb{R}^{\geq 0}$.

Reachability Problem for Timed Automata

Instance (input): Automaton $A = (L, \ell_0, E, I)$ and a state (ℓ, ν) .

Question: Is it true that $(\ell_0, \nu_0) \longrightarrow^* (\ell, \nu)$?

(where $v_0(x) = 0$ for all $x \in C$)

Reduction of Timed Automata Reachability to Region Graphs

Reachability for timed automata is decidable because

 $(\ell_0, \nu_0) \longrightarrow^* (\ell, \nu)$ in a timed automaton if and only if $(\ell_0, [\nu_0]) \Longrightarrow^* (\ell, [\nu])$ in its (finite) region graph.

Application of Region Graphs to Reachability

We write $(\ell, v) \longrightarrow (\ell', v')$ whenever

- $(\ell, \nu) \stackrel{a}{\longrightarrow} (\ell', \nu')$ for some label a, or
- $(\ell, v) \xrightarrow{d} (\ell', v')$ for some $d \in \mathbb{R}^{\geq 0}$.

Reachability Problem for Timed Automata

Instance (input): Automaton $A = (L, \ell_0, E, I)$ and a state (ℓ, ν) .

Question: Is it true that $(\ell_0, \nu_0) \longrightarrow^* (\ell, \nu)$?

(where $v_0(x) = 0$ for all $x \in C$)

Reduction of Timed Automata Reachability to Region Graphs

Reachability for timed automata is decidable because

 $(\ell_0, \nu_0) \longrightarrow^* (\ell, \nu)$ in a timed automaton if and only if $(\ell_0, [\nu_0]) \Longrightarrow^* (\ell, [\nu])$ in its (finite) region graph.

Applicability of Region Graphs

Pros

Region graphs provide a natural abstraction which enables to prove decidability of e.g.

- reachability
- timed and untimed bisimilarity
- untimed language equivalence and language emptiness.

Cons

Region graphs have too large state spaces. State explosion is exponential in

- the number of clocks
- the maximal constants appearing in the guards.

Applicability of Region Graphs

Pros

Region graphs provide a natural abstraction which enables to prove decidability of e.g.

- reachability
- timed and untimed bisimilarity
- untimed language equivalence and language emptiness.

Cons

Region graphs have too large state spaces. State explosion is exponential in

- the number of clocks
- the maximal constants appearing in the guards.

Zones and Zone Graphs

Zones provide a more efficient representation of symbolic state spaces. A number of regions can be described by one zone.

Zone

A zone is described by a clock constraint $g \in \mathcal{B}(C)$.

$$[g] = \{ v \mid v \models g \}$$

Region Graphs

symbolic state: $(\ell, [v])$

where v is a clock valuation

Zone Graphs

symbolic state: $(\ell, [g])$

where g is a clock constraint

A zone is usually represented (and stored in the memory) as DBM (Difference Bound Matrix).

Zones and Zone Graphs

Zones provide a more efficient representation of symbolic state spaces. A number of regions can be described by one zone.

Zone

A zone is described by a clock constraint $g \in \mathcal{B}(C)$.

$$[g] = \{ v \mid v \models g \}$$

Region Graphs

symbolic state: $(\ell, [v])$ where v is a clock valuation

Zone Graphs

symbolic state: $(\ell, [g])$ where g is a clock constraint

A zone is usually represented (and stored in the memory) as DBM (Difference Bound Matrix).

Zones and Zone Graphs

Zones provide a more efficient representation of symbolic state spaces. A number of regions can be described by one zone.

Zone

A zone is described by a clock constraint $g \in \mathcal{B}(C)$.

$$[g] = \{ v \mid v \models g \}$$

Region Graphs

symbolic state: $(\ell, [v])$ where v is a clock valuation

Zone Graphs

symbolic state: $(\ell, [g])$ where g is a clock constraint

A zone is usually represented (and stored in the memory) as DBM (Difference Bound Matrix).

