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Temporal Properties – Invariance and Possibility
Solving Equations

Verifying Correctness of Reactive Systems

Equivalence Checking Approach

Impl ⌘ Spec

where ⌘ is e.g. strong or weak bisimilarity.

Model Checking Approach

Impl |= F

where F is a formula from e.g. Hennessy-Milner logic.

F ,G ::= tt | ff | F ^ G | F _ G | haiF | [a]F

Theorem (for Image-Finite LTS)

It holds that p ⇠ q if and only if p and q satisfy exactly the same
Hennessy-Milner formulae.
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Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

md(tt) = md(ff ) = 0

md(F ^ G ) = md(F _ G ) = max{md(F ),md(G )}
md([a]F ) = md(haiF ) = md(F ) + 1

Idea: a formula F can “see” only upto depth md(F ).

Theorem (let F be a HM formula and k = md(F ))

If the defender has a defending strategy in the strong bisimulation
game from s and t upto k rounds then s |= F if and only if t |= F .

Conclusion

There is no Hennessy-Milner formula F that can detect a deadlock
in an arbitrary LTS.
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Temporal Properties not Expressible in HM Logic

s |= Inv(F ) i↵ all states reachable from s satisfy F

s |= Pos(F ) i↵ there is a reachable state which satisfies F

Fact

Properties Inv(F ) and Pos(F ) are not expressible in HM logic.

Let Act = {a1, a2, . . . , an

} be a finite set of actions. We define

hActiF def
= ha1iF _ ha2iF _ . . . _ ha

n

iF

[Act]F
def
= [a1]F ^ [a2]F ^ . . . ^ [a

n

]F

Inv(F ) ⌘ F ^ [Act]F ^ [Act][Act]F ^ [Act][Act][Act]F ^ . . .
Pos(F ) ⌘ F _ hActiF _ hActihActiF _ hActihActihActiF _ . . .
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Infinite Conjunctions and Disjunctions vs. Recursion

Problems

infinite formulae are not allowed in HM logic

infinite formulae are di�cult to handle

Why not to use recursion?

Inv(F ) expressed by X

def
= F ^ [Act]X

Pos(F ) expressed by X

def
= F _ hActiX

Question: How to define the semantics of such equations?
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Solving Equations is Tricky

Equations over Natural Numbers (n 2 N)

n = 2 ⇤ n one solution n = 0
n = n + 1 no solution
n = 1 ⇤ n many solutions (every n 2 N is a solution)

Equations over Sets of Integers (M 2 2N)

M = ({7} \M) [ {7} one solution M = {7}
M = N r M no solution
M = {3} [M many solutions (every M ◆ {3})

What about Equations over Processes?

X

def
= [a]ff _ haiX ) find S ✓ 2Proc s.t. S = [·a·]; [ h·a·iS
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General Approach – Lattice Theory

Problem

For a set D and a function f : D ! D, for which elements x 2 D

we have
x = f (x) ?

Such x ’s are called fixed points.

Partially Ordered Set

Partially ordered set (or simply a partial order) is a pair (D,v) s.t.

D is a set

v ✓ D ⇥ D is a binary relation on D which is
reflexive: 8d 2 D. d v d

antisymmetric: 8d , e 2 D. d v e ^ e v d ) d = e

transitive: 8d , e, f 2 D. d v e ^ e v f ) d v f
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Supremum and Infimum

Upper/Lower Bounds (Let X ✓ D)

d 2 D is an upper bound for X (written X v d)
i↵ x v d for all x 2 X

d 2 D is a lower bound for X (written d v X )
i↵ d v x for all x 2 X

Least Upper Bound and Greatest Lower Bound (Let X ✓ D)

d 2 D is the least upper bound (supremum) for X (tX ) i↵
1

X v d

2 8d 0 2 D. X v d

0 ) d v d

0

d 2 D is the greatest lower bound (infimum) for X (uX ) i↵
1

d v X

2 8d 0 2 D. d

0 v X ) d

0 v d
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Complete Lattices and Monotonic Functions

Complete Lattice

A partially ordered set (D,v) is called complete lattice i↵ tX and
uX exist for any X ✓ D.

We define the top and bottom by > def
= tD and ? def

= uD.

Monotonic Function and Fixed Points

A function f : D ! D is called monotonic i↵

d v e ) f (d) v f (e)

for all d , e 2 D.

Element d 2 D is called fixed point i↵ d = f (d).
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For General Complete Lattices
For Finite Lattices

Tarski’s Fixed Point Theorem

Theorem (Tarski)

Let (D,v) be a complete lattice and let f : D ! D be a
monotonic function.

Then f has a unique largest fixed point z

max

and a unique least
fixed point z

min

given by:

z

max

def
= t{x 2 D | x v f (x)}

z

min

def
= u{x 2 D | f (x) v x}
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Computing Min and Max Fixed Points on Finite Lattices

Let (D,v) be a complete lattice and f : D ! D monotonic.

Let f

1(x)
def
= f (x) and f

n(x)
def
= f (f n�1(x)) for n > 1, i.e.,

f

n(x) = f (f (. . . f| {z }
n times

(x) . . .)).

Theorem

If D is a finite set then there exist integers M,m > 0 such that

z

max

= f

M(>)

z

min

= f

m(?)

Idea (for z

min

): The following sequence stabilizes for any finite D

? v f (?) v f (f (?)) v f (f (f (?))) v · · ·
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