Real-time and Probabilistic Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics
e TCTL
e Model Checking for TCTL

More:

The slides in the following pages are taken from the material of the course “Advanced Model Checking”
held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.



Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C

@:::true’a’g‘@/\@’ @)agp)vgp

where a € AP, g € ACC(C) and ¢ is a path-formula defined by:

p =0 O
where J C R is an interval whose bounds are naturals

abbreviate [c, c0) by > ¢, (¢1, 2] by 1 < x < ¢5 efc.

© JPK



Advanced model checking

Some abbreviations

“Always” is obtained in the following way:
07¢ = Vo @ and V0P = 307 P
J0O7 & asserts that for some path during the interval J, ® holds

VO’ ® requires this to hold for all paths

Standard O and <-operator are obtained as follows:

OPp=00°% and Ob =00 @

© JPK



Advanced model checking

Semantics of TCTL

For state s = (¢, n) in TS(TA) the satisfaction relation |= is defined by:

s = true
s = a iff ae L({)
SEg iff nEg

sE - iff notsp=®
sEPATY iff (sE=®)and (s = V)
s = dp iff = ¢ forsome 7 € Paths,,(s)

s =V iff = forall m € Paths,,(s)

path quantification over time-divergent paths only

© JPK 5



Advanced model checking

The = relation
For infinite path fragments in TS(TA) performing oo many actions let:

Sog——> S]] —=> S9g——— ... Withdo,dl,dg...>0

denote the equivalence class containing all infinite path fragments
induced by execution fragments of the form:

dg d’go aq d} dll€1 Qg d; d];Q as
So — ... sot+dy — S — ... 5 s1+d] —> S9=... D sotdy —>
time passage of time passage of time passage of
dg time-units d time-units do time-units

where k; € IN, d; € R.( and a; € Act such that Zf;l d{ — d,.

do dq :
For m € so=—=s1== ... we have EzecTime(r) = > .., d;

© JPK 6



Advanced model checking

Semantics of TCTL

. . do dq
For time-divergent path 7 € so—— s;=—= ..., we have:

rEO/U iff  3i>0.s4+d = ¥ for some d € [0, d;] with
1—1
Z d. +deJ  and
k=0

where for s; = (¢;,n;) and d > 0 we have s;+d = ({;, n;+d)

© JPK



Advanced model checking

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks ' and locations Loc

e For TCTL-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {se Locx EvallC) | s = ®}

e TA satisfies TCTL-formula @ iff ® holds in all initial states of TA:
TAE=® ifandonlyif V¢y € Locy. (¢y,no) = P

where ng(x) =0forallz € C

© JPK 8



Advanced model checking e

Characterizing timelock

e TCTL semantics is also well-defined for TA with timelock

e A state contains a timelock whenever no time-divergent paths
emanate from it

e A state is timelock-free if and only if it satisfies dftrue

— some time-divergent path satisfies Otrue, i.e., there is > 1 time-divergent path
— note: for fair CTL, the states in which a fair path starts also satisfy 30true

e TAis timelock-free iff Vs € Reach(TS(TA)): s = d0true

e Timelocks can thus be checked by a timed CTL formula

© JPK 9



Advanced model checking

TCTL model checking

e TCTL model-checking problem: TA |= ® for non-Zeno TA

TA=® iff TS(TA) k&
N— . ~~ o/

timed automaton infinite transition system

e |dea: consider a finite quotient of TS(TA) wrt. a bisimulation

— TS(TA)/ = is a region transition system and denoted RTS(TA)
— dependence on & is ignored for the moment . . .

e Transform TCTL formula & into an “equivalent” CTL-formula )

o Then: TAl=rer @ iff  RTS(TA) on @

finite transition system

© JPK _



Advanced model checking

Basic recipe of TCTL model checking

Input: timed automaton TA and TCTL formula & (both over AP and C)
Output: TA = &

® := eliminate the timing parameters from ®;

determine the equivalence classes under =;

construct the region transition system TS = RTS(TA);
apply the CTL model-checking algorithm to check TS |= P:
TA|= ®ifandonlyif TS = ®

how does clock equivalence look like?

© JPK 11



Advanced model checking

Eliminating timing parameters

e Eliminate all intervals J # [0, 00) from TCTL formulas

— introduce a fresh clock, z say, that does not occurin TA

e Formally: for any state s of TS(TA) it holds:

sk=307d iff s{z:=0} E3IO((zeJ)AD)

~
state in TS(TA @ z)

— where TA® z is TA (over C) extended with z ¢ C

atomic clock constraints are atomic propositions, i.e., a CTL formula results

© JPK >



Advanced model checking

Correctness

Let TA = (Loc, Act,C,—, Locy, Inv, AP, L). For clock z ¢ C, let
TA® z = (Loc,Act,C U{~z},—, Locy, Inv,AP, L).
For any state s of TS(TA) it holds that:

1. s =300 iff  s{z:=0} E3C((z€J)AY)

~
state in TS(TA & =)

2. s VU iff s{z:=0} EVO((zeJ)AT)

state in TS(TA @ z)

© JPK

13



Advanced model checking

Clock equivalence =

(A) Equivalent clock valuations satisfy the same clock constraints g:

/

n=n = mEg iff 7 E=g)

(B) Time-divergent paths of equivalent states are “equivalent”

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite

© JPK ”



Advanced model checking

Clock equivalence

e Correctness criteria (A) and (B) are ensured if equivalent states:

— agree on the integer parts of all clock values, and
— agree on the ordering of the fractional parts of all clocks

=- This yields a denumerable infinite set of equivalence classes

e Observe that:

— if clocks exceed the maximal constant with which they are compared
their precise value is not of interest

= The number of equivalence classes is then finite (C)

© JPK 15



Advanced model checking

Clock equivalence: definition

Clock valuations n, " € Eval(C') are equivalent, denoted n = 7/, if either:
o forallz € C: n(z) > ¢, iff n'(x) > ¢, OF

e forany x,y € C' with n(x) < ¢, and n(y) < ¢, it holds:
= n(@)] = [n'(x)] and  frac(n(z)) = 0iff frac(n'(z)) = 0, and

= frac(n(x)) < frac(n(y)) it frac(n'(x)) < frac(n'(y)).

s=s iff £=4 and n=n

© JPK -



Advanced model checking

Regions

e The clock region of n € Eval(C'), denoted [n], is defined by:

m = {n € EvallC) |n=n}

e The state region of s = (¢,n) € TS(TA) is defined by:

[s] = () = {&n) [0 €nl}

© JPK =



Advanced model checking

Bounds on the number of regions

The number of clock regions is bounded from below and above by:

|C\!*ch < | Eval(C)/= | < [C1 % 21C1=1 H(2cx—|—2)

~~

reC number of regions reC

where for the upper bound it is assumed that ¢, > 1 forany x € C

the number of state regions is |Loc| times larger

© JPK -



Advanced model checking

Preservation of atomic properties

1. Forn,n’ € Eval(C) such that n = »":

nkEg ifandonlyif 7' = gforany g e ACC(TAU @)

2. For s, s’ € TS(TA) such that s = s

st=a ifandonlyif s |=aforanyac AP

where AP’ includes all propositions in TA and atomic clock constraints in TA and &

© JPK -



Advanced model checking

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP

© JPK

22



Advanced model checking

Region automaton: intuition

e Region automaton = quotient of TS(TA) under =
e State regions are states in quotient transition system under =

e Transitions in region automaton “mimic” those in TS(TA)

e Delays are abstract

— the exact delay is not recorded, only that some delay took place
— if any clock x exceeds c,, delays are self-loops

e Discrete transitions correspond to actions

© JPK

24



Advanced model checking

A simple example

@) z22:a

reset(x)

© JPK 25



Advanced model checking

Unbounded and successor regions

e Clock region ro, = {n € Eval(C) | Vz € C.n(z) > ¢, } is unbounded

e 1’ is the successor (clock) region of r, denoted »’' = succ(r), if either:

1. r=randr =1/, or
2. 1 #£re, v 1 and Vn € r:
dd € Rug. (n+der’ and YO<d <d.n+d erur’)
e The successor region: succ({{,r)) = (¢, succ(r))

e Note: the location invariants are ignored so far!

© JPK 26



Advanced model checking

Characterizing time convergence

For non-zeno TAand 7 = sg sy s2...apathin TS(TA):

(a) wis time-convergent = d state region (¢, r) such that for some j:

s; € ({,r) foralli>j

(b) If 9 state region (¢, r) with r # r, and an index j such that:
s; € ({,r) foralli>j
then = is time-convergent

time-convergent paths are paths that only perform delays from some time instant on

© JPK 28



Advanced model checking

Region automaton
For non-zeno TA with TS(TA) = (S, Act,—, 1, AP, L) let:

RTS(TA, ®) = (S’ Actu {7}, —',I,AP,L’) with
o '=5/=={[s]|seS}tand I’ ={]s] | s € I}, the state regions

o L'({t,r))=L() U {ge AP\ AP|r =g}

[ =g reset Dinr = Inv({)
(,ry =" (¢ reset Dinr)

e —' is defined by:

r = Inv(¢) succ(r) = Inv(l)
0,y —" (£, succ(r))

and

© JPK 29



Advanced model checking

Example: simple light switch

x = 2 : switch_off

:130<7%2

reset (x)

© JPK 30



Advanced model checking

Correctness theorem [aiur and pill, 1989]

For non-Zeno timed automaton TA and TCTL., formula &:

TAl=® iff RTS(TA,®) = ®
e A& P J
TCTL semantics CTL semantics

© JPK

31



Advanced model checking

Characterizng timelock freedom

Non-zeno TA is timelock-free iff no reachable state in RTS(TA) is terminal

timelocks can thus be checked by a reachability analysis of RTS(TA)

© JPK

33



Advanced model checking

sw_o - sw_m%w_oﬁ
. on on on on
=0 O<z<1 r=1 1<z<?2 r=2 r>2

© JPK 34



Advanced model checking

Time complexity

For timed automaton TA and TCTL formula ®, the model-checking problem
TA = ® can be determined intime O ((N+K) - | @),

where N and K are the number of states and transitions in RTS(TA, ®)

© JPK

35



Advanced model checking

Other verification problems

1. The TCTL model-checking problem is PSPACE-complete

2. Model checking safety, reachability, or w-regular properties in TA is
PSPACE-complete

3. Model checking LTL and CTL against TA is PSPACE-complete
4. The model-checking problem for timed LTL is undecidable

5. The satisfaction problem for TCTL is undecidable

all facts without proof

© JPK 36



