Real-time and Probabilistic Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics

- Time Divergence
- Timelocks
- Zenoness

More:

The slides in the following pages are taken from the material of the course "Advanced Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Timed paths

Delays may be realized in TS(TA) in uncountably many ways, e.g.:

The effect of $\langle \ell, \eta \rangle \xrightarrow{d_1+d_2} \langle \ell, \eta + d_1 + d_2 \rangle$ corresponds to:

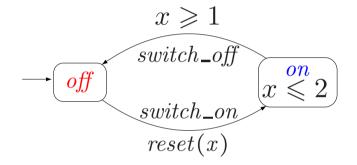
$$\langle \ell, \eta \rangle \xrightarrow{d_1} \langle \ell, \eta + d_1 \rangle \xrightarrow{d_2} \langle \ell, \eta + d_1 + d_2 \rangle$$

Thus, uncountably many states of the form $\langle \ell, \eta + t \rangle$ with $0 \leq t \leq d_1 + d_2$ are "visited"

Timed paths

- Paths through TS(TA) model possible behaviours of TA
- But, not every path represents a realistic behaviour
- Some unrealistic phenomena that may occur:
 - time convergence: time converges to some value
 - timelock: the passage of time stops
 - zenoness: infinitely many actions take place in finite time
- Timelock and zenoness are modeling flaws and to be avoided
- Time-convergent paths will be excluded for model checking
 - they are treated similar as unfair paths in transition systems

Time divergence



The timed path:

 $\langle off, 0 \rangle \xrightarrow{2^{-1}} \langle off, 1-2^{-1} \rangle \xrightarrow{2^{-2}} \langle off, 1-2^{-2} \rangle \xrightarrow{2^{-3}} \langle off, 1-2^{-3} \rangle \dots$

visits infinitely many states in the interval $\left[\frac{1}{2}, 1\right]$

Time divergence

- Let for any t < d, for fixed $d \in \mathbb{R}_{>0}$, clock valuation $\eta + t \models Inv(\ell)$
- A possible execution fragment starting from the location ℓ is:

$$\langle \ell, \eta \rangle \xrightarrow{d_1} \langle \ell, \eta + d_1 \rangle \xrightarrow{d_2} \langle \ell, \eta + d_1 + d_2 \rangle \xrightarrow{d_3} \langle \ell, \eta + d_1 + d_2 + d_3 \rangle \xrightarrow{d_4} \dots$$

- where $d_i > 0$ and the infinite sequence $d_1 + d_2 + \ldots$ converges towards d
- such path fragments are called *time-convergent*
- \Rightarrow time advances only up to a certain value
- Time-convergent execution fragments are unrealistic and *ignored*
 - much like unfair paths (as we will see later on)

Time divergence

- Infinite path fragment π is *time-divergent* if $ExecTime(\pi) = \infty$
- The function $ExecTime : Act \cup \mathbb{R}_{>0} \to \mathbb{R}_{\ge 0}$ is defined as:

$$ExecTime(\tau) = \begin{cases} 0 & \text{if } \tau \in Act \\ d & \text{if } \tau = d \in \mathbb{R}_{>0} \end{cases}$$

• For infinite execution fragment $\rho = s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \dots$ in *TS*(*TA*) let:

$$ExecTime(
ho) = \sum_{i=0}^{\infty} ExecTime(au_i)$$

- for path fragment π in *TS*(*TA*) induced by ρ : $ExecTime(\pi) = ExecTime(\rho)$

• For state *s* in *TS*(*TA*): *Paths*_{div}(*s*) = { $\pi \in Paths(s) \mid \pi$ is time-divergent }

Example: light switch

The path π in TS(Switch) in which on- and of-periods of one minute alternate:

$$\pi = \langle off, 0 \rangle \langle off, 1 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 1 \rangle \langle off, 2 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 2 \rangle \dots$$

is *time-divergent* as $ExecTime(\pi) = 1 + 1 + 1 + ... = \infty$

The path:

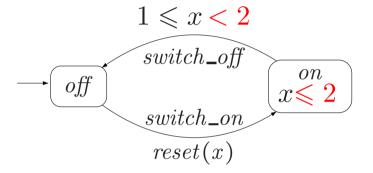
 $\pi' = \langle off, 0 \rangle \langle off, 1/2 \rangle \langle off, 3/4 \rangle \langle off, 7/8 \rangle \langle off, 15/16 \rangle \dots$

is *time-convergent*, since $ExecTime(\pi') = \sum_{i \ge 1} \left(\frac{1}{2}\right)^i = 1 < \infty$

Timelock

- State $s \in TS(TA)$ contains a *timelock* if $Paths_{div}(s) = \emptyset$
 - there is no behavior in s where time can progress *ad infinitum*
 - any terminal state contains a timelock (but also non-terminal states may do)
 - terminal location does not necessarily yield a state with timelock (e.g. inv = true)
- *TA* is *timelock-free* if no state in *Reach*(*TS*(*TA*)) contains a timelock
- Timelocks are considered as *modeling flaws* that should be avoided
 - like deadlocks, we need mechanisms to check their presence

A non timelock-free timed automaton

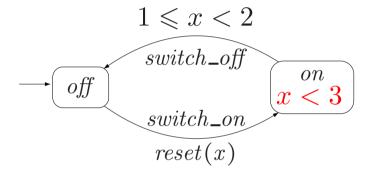


State $\langle on, 2 \rangle$ is reachable in transition system *TS*(*TA*), e.g., via:

$$\langle off, 0 \rangle \xrightarrow{switch_on} \langle on, 0 \rangle \xrightarrow{2} \langle on, 2 \rangle$$

As $\langle on, 2 \rangle$ is a terminal state, $Paths_{div}(\langle on, 2 \rangle) = \emptyset$

Another non timelock-free timed automaton



State $\langle on, 2 \rangle$ is not terminal, , e.g., the time-convergent path in:

 $\langle on, 2 \rangle \langle on, 2.9 \rangle \langle on, 2.99 \rangle \langle on, 2.999 \rangle \langle on, 2.9999 \rangle \dots$

emanates from it. But, $Paths_{div}(\langle on, 2 \rangle) = \emptyset$

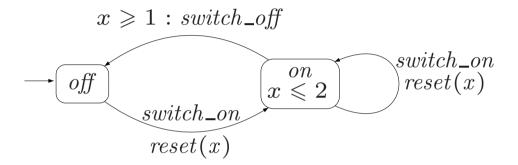
Zenoness

- A TA that performs infinitely many actions in finite time is zeno
- Path π in *TS*(*TA*) is *zeno* if:

it is time-convergent, and infinitely many actions $\alpha \in Act$ are executed along π

- *TA* is *non-zeno* if there does not exist a zeno path in TS(TA)
 - any π in TS(TA) is time-divergent or
 - is time-convergent with nearly all (i.e., all except for finitely many) transitions being delay transitions
- Zeno paths are considered as *modeling flaws* that should be avoided
 - like timelocks (and deadlocks), we need mechanisms to check zenoness
 - this, however, turns out to be difficult \Rightarrow resort to sufficient conditions

Zeno paths of a (yet another) light switch



The paths induced by the following execution fragments:

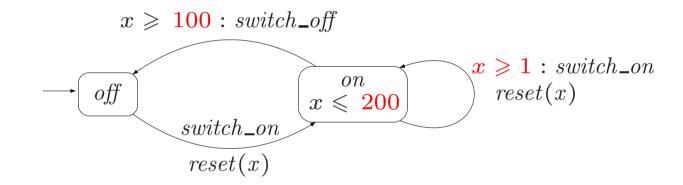
$$\langle off, 0 \rangle \xrightarrow{sw_on} \langle on, 0 \rangle \xrightarrow{sw_on} \dots$$

$$\langle off, 0 \rangle \xrightarrow{sw_on} \langle on, 0 \rangle \xrightarrow{0.5} \langle on, 0.5 \rangle \xrightarrow{sw_on} \langle on, 0 \rangle \xrightarrow{0.25} \langle on, 0.25 \rangle \xrightarrow{sw_on} \dots$$

are zeno paths during which the user presses the on button faster and faster

avoid by imposing a minimal delay, e.g., $\frac{1}{100}$, between successive on's

A non-zeno variant



Timelock, time-divergence and zenoness

• A timed automaton is adequately modeling a time-critical system whenever it is:

non-zeno and timelock-free

• Time-divergent paths will be explicitly excluded for analysis purposes