Timed Traces

Let $A = (L, \ell_0, E, I)$ be a timed automaton over a set of clocks C and a set of labels N.

Timed Traces

A sequence $(t_1, a_1)(t_2, a_2)(t_3, a_3) \dots$ where $t_i \in \mathbb{R}^{\geq 0}$ and $a_i \in N$ is called a timed trace of A iff there is a transition sequence

$$(\ell_0, v_0) \xrightarrow{d_1} \cdot \xrightarrow{a_1} \cdot \xrightarrow{d_2} \cdot \xrightarrow{a_2} \cdot \xrightarrow{d_3} \cdot \xrightarrow{a_3} \cdots$$

in A such that $v_0(x) = 0$ for all $x \in C$ and

 $t_i = t_{i-1} + d_i$ where $t_0 = 0$.

Intuition: t_i is the absolute time (time-stamp) when a_i happened since the start of the automaton A.

ヘロン ヘ週ン ヘヨン ヘヨン

Timed and Untimed Language Equivalence

The set of all timed traces of an automaton A is denoted by L(A) and called the timed language of A.

Theorem [Alur, Courcoubetis, Dill, Henzinger'94]

Timed language equivalence (the problem whether $L(A_1) = L(A_2)$ for given timed automata A_1 and A_2) is undecidable.

We say that $a_1a_2a_3...$ is an untimed trace of A iff there exist $t_1, t_2, t_3, ... \in \mathbb{R}^{\geq 0}$ such that $(t_1, a_1)(t_2, a_2)(t_3, a_3)...$ is a timed trace of A.

Theorem [Alur, Dill'94]

Untimed language equivalence for timed automata is decidable.

イロン イヨン イヨン イヨン

Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

Timed Bisimilarity

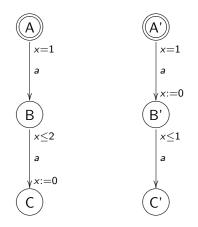
Let A_1 and A_2 be timed automata.

Timed Bisimilarity

We say that A_1 and A_2 are timed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 are strongly bisimilar.

Remark: both

•
$$\xrightarrow{a}$$
 for $a \in N$ and $\overset{d}{\longrightarrow} c$ $u \in \mathbb{R} \ge 0$

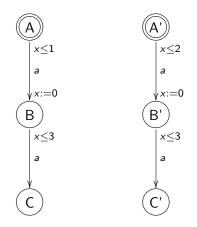

•
$$\stackrel{u}{\longrightarrow}$$
 for $d \in \mathbb{R}^{\geq 0}$

are considered as normal (visible) transitions.

イロト イヨト イヨト イヨト

Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

Example of Timed Bisimilar Automata



・ロン ・回と ・ヨン・

æ

Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

Example of Timed Non-Bisimilar Automata

・ロン ・回と ・ヨン・

æ

Untimed Bisimilarity

Let A_1 and A_2 be timed automata. Let ϵ be a new (fresh) action.

Untimed Bisimilarity

We say that A_1 and A_2 are untimed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 where every transition of the form $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ is replaced with $\stackrel{\epsilon}{\longrightarrow}$ are strongly bisimilar.

Remark:

- \xrightarrow{a} for $a \in N$ is treated as a visible transition, while
- $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ are all labelled by a single visible action $\stackrel{\epsilon}{\longrightarrow}$.

Corollary

Any two timed bisimilar automata are also untimed bisimilar

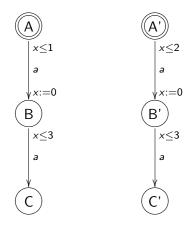
Untimed Bisimilarity

Let A_1 and A_2 be timed automata. Let ϵ be a new (fresh) action.

Untimed Bisimilarity

We say that A_1 and A_2 are untimed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 where every transition of the form $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ is replaced with $\stackrel{\epsilon}{\longrightarrow}$ are strongly bisimilar.

Remark:


- \xrightarrow{a} for $a \in N$ is treated as a visible transition, while
- $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ are all labelled by a single visible action $\stackrel{\epsilon}{\longrightarrow}$.

Corollary

Any two timed bisimilar automata are also untimed bisimilar.

Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

Timed Non-Bisimilar but Untimed Bisimilar Automata

・ロト ・回ト ・ヨト ・ヨト

æ

Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

Decidability of Timed and Untimed Bisimilarity

Theorem [Cerans'92]

Timed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Theorem [Larsen, Wang'93]

Untimed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

<ロ> (四) (四) (三) (三)

Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

Decidability of Timed and Untimed Bisimilarity

Theorem [Cerans'92]

Timed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Theorem [Larsen, Wang'93]

Untimed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).