Properties Buffer Example Summary

Strong Bisimilarity – Summary

Properties of \sim

- an equivalence relation
- the largest strong bisimulation
- a congruence
- enough to prove some natural rules like
 - $P|Q \sim Q|P$
 - $P|Nil \sim P$
 - $(P|Q)|R \sim Q|(P|R)$
 - • •

Question

Should we look any further???

イロン イヨン イヨン イヨン

æ

Properties Buffer Example Summary

Strong Bisimilarity – Summary

Properties of \sim

- an equivalence relation
- the largest strong bisimulation
- a congruence
- enough to prove some natural rules like
 - $P|Q \sim Q|P$
 - $P|Nil \sim P$
 - $(P|Q)|R \sim Q|(P|R)$
 - • •

Question

Should we look any further???

イロン イヨン イヨン イヨン

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Problems with Internal Actions

Strong bisimilarity does not abstract away from au actions.

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Problems with Internal Actions

 $CM \mid CS) \smallsetminus \{coin, coffee\}$

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Problems with Internal Actions

QuestionDoes $a.\tau.Nil \sim a.Nil$ hold?NO!

Problem

Strong bisimilarity does not abstract away from au actions.

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Problems with Internal Actions

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Q	uestion	
---	---	---------	--

Does $a.\tau.Nil \sim a.Nil$ hold?

NO!

Problem

Strong bisimilarity does not abstract away from au actions.

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Weak Transition Relation

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Definition of Weak Transition Relation

$$\stackrel{a}{\Longrightarrow} = \begin{cases} (\stackrel{\tau}{\longrightarrow})^* \circ \stackrel{a}{\longrightarrow} \circ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a \neq \tau \\ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a = \tau \end{cases}$$

What does $s \stackrel{a}{\Longrightarrow} t$ informally mean?

• If $a \neq \tau$ then $s \stackrel{a}{\Longrightarrow} t$ means that

from s we can get to t by doing zero or more τ actions, followed by the action a, followed by zero or more τ actions

• If $a = \tau$ then $s \stackrel{\tau}{\Longrightarrow} t$ means that

from s we can get to t by doing zero or more τ actions.

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Weak Transition Relation

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Definition of Weak Transition Relation

$$\stackrel{a}{\Longrightarrow} = \begin{cases} (\stackrel{\tau}{\longrightarrow})^* \circ \stackrel{a}{\longrightarrow} \circ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a \neq \tau \\ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a = \tau \end{cases}$$

What does $s \stackrel{a}{\Longrightarrow} t$ informally mean?

• If $a \neq \tau$ then $s \stackrel{a}{\Longrightarrow} t$ means that

from s we can get to t by doing zero or more τ actions, followed by the action a, followed by zero or more τ actions.

• If $a = \tau$ then $s \stackrel{\tau}{\Longrightarrow} t$ means that

from s we can get to t by doing zero or more τ actions.

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Weak Bisimilarity

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Weak Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a weak bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$ (including τ):

- if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in R$
- if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in R$.

Weak Bisimilarity

Two processes $p_1, p_2 \in Proc$ are weakly bisimilar $(p_1 \approx p_2)$ if and only if there exists a weak bisimulation R such that $(p_1, p_2) \in R$.

 $pprox = \ \cup \{ R \mid R \text{ is a weak bisimulation} \}$

イロン イロン イヨン イヨン

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Weak Bisimilarity

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Weak Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a weak bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$ (including τ):

- if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in R$
- if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in R$.

Weak Bisimilarity

Two processes $p_1, p_2 \in Proc$ are weakly bisimilar $(p_1 \approx p_2)$ if and only if there exists a weak bisimulation R such that $(p_1, p_2) \in R$.

 $\approx = \cup \{ R \mid R \text{ is a weak bisimulation} \}$

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Weak Bisimulation Game

Definition

All the same except that

• defender can now answer using $\stackrel{a}{\Longrightarrow}$ moves.

The attacker is still using only $\stackrel{a}{\longrightarrow}$ moves.

Theorem

- States *s* and *t* are weakly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (*s*, *t*).
- States *s* and *t* are not weakly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (*s*, *t*).

イロン イヨン イヨン イヨン

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Weak Bisimulation Game

Definition

All the same except that

• defender can now answer using $\stackrel{a}{\Longrightarrow}$ moves.

The attacker is still using only $\stackrel{a}{\longrightarrow}$ moves.

Theorem

- States s and t are weakly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (s, t).
- States s and t are not weakly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (s, t).

(D) (A) (3) (3)

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Weak Bisimilarity – Properties

Properties of pprox

- an equivalence relation
- the largest weak bisimulation
- validates lots of natural laws, e.g.
 - $a.\tau.P \approx a.P$
 - $P + \tau . P \approx \tau . P$
 - $a.(P+\tau.Q) \approx a.(P+\tau.Q) + a.Q$
 - $P + Q \approx Q + P$ $P|Q \approx Q|P$ $P + Nil \approx P$...
- strong bisimilarity is included in weak bisimilarity ($\sim\,\subseteq\,\,pprox)$
- abstracts from au loops

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- α . $P \approx \alpha$.Q for each action $\alpha \in Act$
- $P \mid R \approx Q \mid R$ and $R \mid P \approx R \mid Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \setminus L \approx Q \setminus L$ for each set of labels L.

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- α . $P \approx \alpha$.Q for each action $\alpha \in Act$
- $P \mid R \approx Q \mid R$ and $R \mid P \approx R \mid Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \setminus L \approx Q \setminus L$ for each set of labels L.

What about choice? $\tau.a.Nil \approx a.Nil$ but $\tau.a.Nil + b.Nil \not\approx a.Nil + b.Nil$ Conclusion Weak bisimilarity is not a congruence for CCS.

Definitions Weak Bisimulation Game Properties of Weak Bisimilarity

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- α . $P \approx \alpha$.Q for each action $\alpha \in Act$
- $P \mid R \approx Q \mid R$ and $R \mid P \approx R \mid Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \setminus L \approx Q \setminus L$ for each set of labels L.

What about choice? $\tau.a.Nil \approx a.Nil$ but $\tau.a.Nil + b.Nil \not\approx a.Nil + b.Nil$ Conclusion Weak bisimilarity is not a congruence for CCS.

Definition of the Protocol Concurrency Workbench Example Sessions in CWB

Case Study: Communication Protocol

Send	acc.Sending	Rec	trans.Del
Sending	send.Wait	Del	del.Ack
Wait	ack.Send + error.Sending	Ack	ack.Rec

$$\begin{array}{rcl} \mathsf{Med} & \stackrel{\mathrm{def}}{=} & \mathsf{send}.\mathsf{Med}' \\ \mathsf{Med}' & \stackrel{\mathrm{def}}{=} & \tau.\mathsf{Err} + \overline{\mathsf{trans}}.\mathsf{Med} \\ \mathsf{Err} & \stackrel{\mathrm{def}}{=} & \overline{\mathsf{error}}.\mathsf{Med} \end{array}$$

<ロ> (日) (日) (日) (日) (日)

æ

Definition of the Protocol Concurrency Workbench Example Sessions in CWB

Case Study: Communication Protocol

Send	$\stackrel{\text{def}}{=}$	acc.Sending	Rec	$\stackrel{\text{def}}{=}$	trans.Del
Sending	$\stackrel{\mathrm{def}}{=}$	send.Wait	Del	$\stackrel{\rm def}{=}$	$\overline{del}.Ack$
Wait	$\stackrel{\mathrm{def}}{=}$	ack.Send + error.Sending	Ack	$\stackrel{\rm def}{=}$	ack.Rec

$$\begin{array}{rcl} \mathsf{Med} & \stackrel{\mathrm{def}}{=} & \mathsf{send.Med'} \\ \mathsf{Med'} & \stackrel{\mathrm{def}}{=} & \tau.\mathsf{Err} + \overline{\mathsf{trans.Mec}} \\ \mathsf{Err} & \stackrel{\mathrm{def}}{=} & \overline{\mathsf{error.Med}} \end{array}$$

イロト イヨト イヨト イヨト

æ

Definition of the Protocol Concurrency Workbench Example Sessions in CWB

Verification Question

$\mathsf{Impl} \stackrel{\mathrm{def}}{=} (\mathsf{Send} \,|\, \mathsf{Med} \,|\, \mathsf{Rec}) \smallsetminus \{\mathsf{send}, \mathsf{trans}, \mathsf{ack}, \mathsf{error}\}$

 $Spec \stackrel{def}{=} acc.\overline{del}.Spec$

Question Impl [?] ≈ Spec ■ Draw the LTS of Impl and Spec and prove (by hand) the equivalence

2 Use Concurrency WorkBench (CWB).

・ロト ・回 ト ・ヨト ・ヨト

Definition of the Protocol Concurrency Workbench Example Sessions in CWB

Verification Question

$$\mathsf{Impl} \stackrel{\mathrm{def}}{=} (\mathsf{Send} \,|\, \mathsf{Med} \,|\, \mathsf{Rec}) \smallsetminus \{\mathsf{send}, \mathsf{trans}, \mathsf{ack}, \mathsf{error}\}$$

 $\mathsf{Spec} \stackrel{\mathrm{def}}{=} \mathsf{acc}.\overline{\mathsf{del}}.\mathsf{Spec}$

2 Use Concurrency WorkBench (CWB).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition of the Protocol Concurrency Workbench Example Sessions in CWB

Verification Question

$$\mathsf{Impl} \stackrel{\mathrm{def}}{=} (\mathsf{Send} \,|\, \mathsf{Med} \,|\, \mathsf{Rec}) \smallsetminus \{\mathsf{send}, \mathsf{trans}, \mathsf{ack}, \mathsf{error}\}$$

 $\mathsf{Spec} \stackrel{\mathrm{def}}{=} \mathsf{acc}.\overline{\mathsf{del}}.\mathsf{Spec}$

Question Impl $\stackrel{?}{\approx}$ Spec

- Oraw the LTS of Impl and Spec and prove (by hand) the equivalence.
- 2 Use Concurrency WorkBench (CWB).

(日)

Definition of the Protocol Concurrency Workbench Example Sessions in CWB

Verification Question

$$\mathsf{Impl} \stackrel{\mathrm{def}}{=} (\mathsf{Send} \,|\, \mathsf{Med} \,|\, \mathsf{Rec}) \smallsetminus \{\mathsf{send}, \mathsf{trans}, \mathsf{ack}, \mathsf{error}\}$$

 $\mathsf{Spec} \stackrel{\mathrm{def}}{=} \mathsf{acc}.\overline{\mathsf{del}}.\mathsf{Spec}$

Question $\operatorname{Impl} \stackrel{?}{\approx} \operatorname{Spec}$

- Oraw the LTS of Impl and Spec and prove (by hand) the equivalence.
 - 2 Use Concurrency WorkBench (CWB).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition of the Protocol Concurrency Workbench Example Sessions in CWB

Verification Question

$$\mathsf{Impl} \stackrel{\mathrm{def}}{=} (\mathsf{Send} \,|\, \mathsf{Med} \,|\, \mathsf{Rec}) \smallsetminus \{\mathsf{send}, \mathsf{trans}, \mathsf{ack}, \mathsf{error}\}$$

 $\mathsf{Spec} \stackrel{\mathrm{def}}{=} \mathsf{acc}.\overline{\mathsf{del}}.\mathsf{Spec}$

Question $\mathsf{Impl} \stackrel{?}{\approx} \mathsf{Spec}$

- Oraw the LTS of Impl and Spec and prove (by hand) the equivalence.
- Use Concurrency WorkBench (CWB).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition of the Protocol Concurrency Workbench Example Sessions in CWB

CCS Expressions in CWB

CCS Definitions

 $\begin{array}{l} \mathsf{Med} \stackrel{\mathrm{def}}{=} \mathsf{send}.\mathsf{Med}'\\ \mathsf{Med}' \stackrel{\mathrm{def}}{=} \tau.\mathsf{Err} + \overline{\mathsf{trans}}.\mathsf{Med}\\ \mathsf{Err} \stackrel{\mathrm{def}}{=} \overline{\mathsf{error}}.\mathsf{Med}\\ \vdots\\ \mathsf{Impl} \stackrel{\mathrm{def}}{=} (\mathsf{Send} \mid \mathsf{Med} \mid \mathsf{Rec}) \smallsetminus\\ \{\mathsf{send}, \mathsf{trans}, \mathsf{ack}, \mathsf{error}\} \end{array}$

Spec $\stackrel{\text{def}}{=}$ acc. $\overline{\text{del}}$.Spec

CWB Program (protocol.cwb)

```
\begin{array}{l} \mbox{agent Med} = \mbox{send.Med';} \\ \mbox{agent Med'} = (tau.Err + 'trans.Med); \\ \mbox{agent Err} = 'error.Med; \\ \hdots \\ \hdo
```

イロト イヨト イヨト イヨト

agent Spec = acc.'del.Spec;

Weak Bisimilarity	Concurrency Workbench
Case Study: Communication Protocol	Example Sessions in CWB

CWB Session

- fire1\$ /pack/FS/CWB/cwb
- > help;
- > input "protocol.cwb";
- > vs(5,Impl);
- > sim(Spec);
- > strongeq(Spec,Impl);

** strong bisimilarity **

A ₽

(< E) < E)</p>

2