
Using Rules for Web Service Client Side Testing

Nabil El Ioini, Alberto Sillitti, Giancarlo Succi
Faculty of Computer Science, Free University of Bolzano

Piazza Domenicani 3, 39100, Bolzano, Italy
{nelioini, asillitti, gsucci}@unibz.it

Abstract— Web Services (WS) are software components
accessible over the Internet through a well-defined set of
standards. When consumers invoke a service, they expect to
receive a valid response. However, the problem is to determine
the structure of a valid request [21]. WS specifications are used
to solve this problem since they are considered the primary
piece of information for building service requests.
Unfortunately, existing specifications do not provide enough
support for this type information (e.g., WSDL) or there is little
support on the client side (e.g., OWL-S). In this paper we
address this issue by implementing a technique to reduce the
number of faulty requests. We specifically propose an
approach for extending WSDL with service input parameters
rules that help consumers and integrators to verify their calls
on the client side.

Keywords- Web Services; Testing; Client Side; Annotation;
WSDL

I. INTRODUCTION
The recent urge in providing fast and standard way for
integrating heterogeneous systems has motivated leading
companies and the research community to increase their
interest in improving Web Services technologies [4, 14].
The focus is mainly on the infrastructures that manage the
integration [23], with less attention on other aspects such as
security and testability [7, 19]. Web services are self-
contained software components that are integrated at
runtime to accomplish specific tasks [6]. The main
difference with traditional software components relates to
the unpredictability of the system behavior at runtime since
they are executed over the Internet on different execution
environments [17]. This is one of the main challenges in
WS development [8, 22]. To tackle this issue, different
studies propose the use of testing [7]. While testing is
generally performed in controlled environments before
releasing software products, WS development require testers
to additionally test services at runtime to validate their
behavior in the production environment. Moreover, this
behavior can even change from one call to another since WS
rely on distributed execution [8]. To this end, the WS
community is working on developing new testing strategies,
which support the fact that we need to perform testing on
the production environment as well [8].
To test WS, developers need to address new challenges,
such as who is going to test them (provider, customer, third

party), when, and how much it costs in terms of money and
effort. Moreover, the evolution of services increases the
level of complexity, since consumers might face unexpected
behavior when a new version of the service is released [9,
25, 26].
In this paper, we focus on two problems: 1) how service
providers can take advantage of the historical data of
services invocation to build a model for the services’ input
parameters; 2) how service consumers can use such a model
to check the services requests preventing faulty requests and
reducing the time and the money related to wrong requests.

The reminder of the paper is structured as follows.
Section 2 discusses the related work; Section 3 provides an
overview of the proposed approach; Section 4 describes the
implementation details; Section 5 presents the experimental
evaluation; finally, Section 6 draws the conclusions and
outlines future work.

II. RELATED WORK
Extending existing specifications is a challenging task since
it may affect the existing infrastructures that already use
them. Extensions generally present new and/or enhanced
features that were not considered at the time of the original
development of a specification [24]. In the context of web
services, specifications are developed to guarantee the
highest level of interoperability between service providers
and their consumers. The specifications need to provide the
necessary means for a consumer to invoke a service without
any further information [13, 16].
As new requirements emerge, new extensions are needed to
address them. One such requirement is testing. While some
studies rely entirely on the existing specifications [3, 4],
other researches considered them to be lacking useful
information for testing services [3]. Consequently, they
have proposed a variety of extensions to enrich them.
One of the first extensions reported in the literature was
applied to the Universal Description Discovery and
Integration (UDDI) registry. The extension consists of
adding a verification step to test services before adding
them to the registry [2]. Before a service is accepted into the
registry a test bed is generated and executed to assess the
functional compliance of a service. Service providers have
to develop such test bed to be allowed to publish their
services on the registry.

2013 IEEE Ninth World Congress on Services

978-0-7695-5024-4/13 $26.00 © 2013 IEEE

DOI 10.1109/SERVICES.2013.63

158

G. Dai et al. [12] expressed the rights and obligations that
consumers need to respect to interact with a service using
OWL-S. In this way, the process for checking the validity of
the consumer request and the provider response can be
automated.
 In [3], W. T. Tsai et al. proposed the extension of the Web
Service Definition Language (WSDL). They have
considered four extensions: input-output dependency,
invocation sequence, hierarchical functional description, and
sequence specifications. Input-output dependency adds
information regarding any connections between input and
output messages (e.g., if the output message of an operation
is used as input for another one). Invocation sequence,
defines the order of services invocation in case the service
needs to invoke other external services. Hierarchical
functional description defines relations between operations
and messages and other services. Sequence specification
defines the order of operations inside a WSDL file.

III. PROPOSED APPROACH
To better understand the idea of the proposed approach, let
us consider the following scenario. A travel agency
application uses a web service for booking hotels for the
clients. The service provider charges the travel agency based
on the number of requests sent. Consequently, the travel
agency needs to make sure that the requests sent respect the
service call constraints specified by the service provider to
avoid paying for faulty requests. For instance, if the travel
agency sends the wrong check-in date (e.g., check-in date
after the check-out date) the service will return an error.
However, the agency still needs to pay for the call. A second
case is where the whole booking process takes a
considerable amount of time (let us assume that it takes 2
minutes). If the travel agency makes a faulty call, it does not
want to wait 2 minutes to discover that the call was faulty
and it needs to send another request. For both cases, the
issue is how the travel agency can be sure that only valid
requests are sent. The current approach to this scenario is by
conforming to the provider specifications. This is done by
reading the documentation provided by the service provider,
then implementing the necessary mechanisms to verify that
the constrains hold before sending the request. However,
this approach requires a lot of work from the service
consumer, since it needs to be done manually and for each
new service.

Our approach automatically validates the consumers’
requests on the client side to avoid the problems described
above. It is a type of conformance testing that checks if the
client input data could generate a faulty request.

Our design is based on the idea of collaboration between
providers and consumers to reduce the number of faulty
requests. On the provider side, the architecture requires a
number of components that interact to generate the necessary

information, which is made available to consumers to
annotate their service calls implementation.

Figure 1. Overall Architecture

Figure 1 shows the general architecture of the approach.
The provider side performs most of the tasks. The
interaction starts at the provider side where the service
provider collects service invocations data, namely service
requests input parameters and responses messages. Once
collected, service requests and responses are stored in WS
history database, which is fed as input to a Decision Tree
(DT) generator. The DT generator builds a decision tree,
which represents the different classes that the combination
of the input parameters leads to. Afterwards, it generates the
parameters rules from the DT and writes them in the WSDL
file.
Consequently, it generates a new version of the WSDL file
the consumers can use to annotate their service calls. The
annotation part is done manually in the current
implementation but we are working on automating it.

In the following sub-sections we go through the different
components and show how they fit in the overall
architecture.

A. Data Collection
Data collection represents the first step of the entire process.
Data is collected at the provider side for two reasons: 1)
providers can easily collect requests and responses; 2)
providers can collect data from different consumers [15].
The data of interest at this stage is the requests and the
related responses for each service [20]. Input parameters and
their values represent the service request and response
messages represent the service response.
For new services that have no real data yet, providers could
execute a test bed that generates an initial data set to be used
by the other components.

B. Decision tree generation
Decision trees are used for creating a mapping between the
values of different attributes and output classes [25]. The
example shown in figure 2 shows a decision tree constructed
using a service that takes three parameters (name, age, and
salary) with their data types (string, integer, and double
respectively). In this example, based on the combination of
the parameters, there are 6 different classes. In a real
scenario we could have much more classes. For example
specific combinations of parameter values can generate
some distinct errors, which may be defined as separate
classes.

159

In a similar fashion our approach takes the data collected
and builds a decision tree that classifies the different
requests based on their input values.
Once the data is collected, it is passed to the decision tree
generator as input. The decision tree generator component
reads all the log data and builds a decision tree. The initial
branching points of the tree are the input parameters (e.g.
age, salary), and depending on parameters type and values
more branches are created (e.g. 15<age<100). The leaf of
the tree on the other hand is the decision that the
combination of parameters leads to. As a result the
component is able to classify the requests collected by
associating them to one of the generated classes.

Figure 2. Decision Tree Example

C. Rules extraction
The decision tree tells us what are the possible classes based
on the input values. However, consumers are not interested
in all the classes. They are interested in what makes their
requests valid requests. For this purpose, the next step is the
extraction of all the rules that help consumers build valid
requests.
For instance, in the tree in Figure 2,we can extract the
following rule:

Name = String AND 15 < age < 100 AND

500 <= salary <= 4000

This rule represents the values of the parameters that
generate a valid response based on historical data. By
having this combination of parameters, the client should
receive the expected value.
The two cases to consider while building the rules are:

a. The attribute is numeric: the tree generates different
intervals for which the attribute leads to an
acceptable class. For this case all the intervals found
will be connected with the logical operator AND.

 For instance: 100 < salary < 300 and salary != 200.

b. The attribute is non numerical: the attribute values
will be connected with the logical operator OR.

 For instance: Country = USA OR Country= ITALY.
c. All the attributes are connected to each other with

the logical operator AND.	

D. Update WSDL
WSDL is the standard interface used to publish the WS
information, so instead of using a separated method for
publishing the rules extracted from the decision tree, we
make it easier for consumers by having that rules as part of
the WSDL. WSDL provides a predefined structure that can
be extended with custom data. Our approach augments
WSDL by adding a new attribute to each operation. The
new attribute represents the validation expression associated
with every operation (Figure 3).

Figure 3. Expression attribute added to operations

E. Annotation
Annotation is the final phase, where the consumer uses the
rules published in the WSDL. The purpose of this phase is
to use the information published by the provider to annotate
the WS services calls. We are using Aspect Oriented
Programming (AOP) syntax since we can use existing tools
to check the validity of the constraints before calling the
service call. This means that for each service call, the
parameters passed will be checked against the constraint
published in the WSDL. The service call will be executed
only if they do not violate the constraints.

IV. IMPLEMENTATION
The system is implemented using a combination of existing
open source components. Figure 4 presents the components
used and how they are connected.

<wsdl>
<operation
 name="operation1”
 expression="EXPRESSION1">

…
</wsdl:operation>

<operation
 name="operation2”
 expression="EXPRESSION2">
 …
</wsdl:operation>
</wsdl>

160

Figure 4. Implementation Overview

To generate an initial dataset for building the decision tree,
an ad-hoc WSDL testing tool is used. The tool uses the
XML schema defined inside the WSDL and generates test
data for each data type. The rules for the data generation can
be configured. For instance, we can configure it to generate
boundary values for each primitive type, or generate random
values, or specify manually the values to assign to each data
type. Once the data is generated, test cases for each service
call are generated with the different combinations of the
data values. For instance, if we specify the values manually
we can have a configuration file that looks as Figure 5. In
this figure we specify that whenever a Boolean type is used
at least two cases need to be generated for example.

A. Data collection
To collect the data of the service calls we used a proxy to
intercept the requests/responses going through the provider
infrastructure. We store the data on the provider side, then
we use it to build the decision tree. In the current
implementation, we are using membrane router [1] as proxy.
Membrane router is composed of three main parts: 1) the
EndpointListner, which waits for the incoming messages, 2)
the EndpointSender, which sends the messages to their
destination, and 3) a set of interceptors in between the two
end points. In the current implementation, we have two
interceptors to capture the request parameters and the
response messages.

B. Java Code
For the three components decision tree generator, rules
extractor, and WSDL updater, we developed a Java project
to handle the three operations.

1) DT generation
The decision tree generator uses the Weka library J48 [10].
It takes a dataset from the web services execution logs as
input. The dataset is pre-processed by extracting input
parameters and response messages and formatting them to
be compatible with Weka. Weka, generates a tree model
with the classes as leafs. We used the fault attribute in the
SOAP responses as errors’ classes. If the response does not
contain a fault attribute we consider it to be a correct
response. It is important to mention that if the service has
some problem with the business logic, it cannot be found by
this approach. Our approach relies strongly on the
exceptions thrown by the services.

2) Rules extraction
The next step consists of extracting the relevant information,
which is given to the consumers to annotate their service
calls. The rule extraction component does it by executing
the following algorithm:

This algorithm first selects only the rules that have positive
responses (their arguments are acceptable by the WS). The
outer loop iterates over the arguments list, while the inner
loop iterates over the rules. For each argument the condition
is extracted and it is concatenated to the list of conditions.
We have selected the positive rules to provide consumers
with the values that are most likely to be accepted by the
services.

3) WSDL updater
The WSDL updater component is responsible of parsing the
WSDL operations and adding the rules expressions to each
operation. The extension is added in the form of an attribute
to the operation tag. Each operation is extended with an
expression. For instance, in the example bellow we have
extended the operation CalculateTax with the expression
generated from the DT in Figure 2. In this example, the
operation CalculateTax expresses the type and values
acceptable by the operation. The logical operator AND
(&&) is used to concatenate the different terms of the
expression.

select all the OK rules
Foreach argument a in the argumentList
 foreach rule r in the ruleList
 extract condition c related to a in r
 conditionList += c
 done
done

<Rules>
 <Datatype name=”Boolean”>
 <Case value=”True” />
 <Case value=”False” />
 </Datatype>
<Datatype name=”String”>
 <Case value=”null” />
 <Case value=”” />
 <Case value=”(*&^%$#@!@#$%^&^$#%^&^%$#@@*(*&” />
 <Case value=”SPACE” />
 </Datatype>
</Rules>

Figure 5. Configuration file for test data generation

161

4) Client side annotation

On the client side, consumers need to annotate their java
methods that invoke service calls. The annotation is done
manually for the current implementation; however, it is
possible to autormate it and we are working on that. The
annotation consists of taking expressions published in the
WSDL and adding them as constraints to the method calls,
so that the method will not be executed unless it satisfies the
constraints. We have used Aspect Oriented Programming
(AOP) [11] to do that. More specifically, we have used the
AspectJ framework [11] to implement our annotation
approach.
Using AspectJ, the user can take the extended WSDL and
add the constraints to the Java methods as follows:

1. Define a pointcut for each method: in an AOP a
pointcut means that we define the behavior to be
executed when a matching expression is found. For
instance the following pointcut states that when a
method with the a matching signature
*.*sayHello(..) is executed, call method1 before
executing *.*sayHello(..)
	

pointcut method1() : execution(*
*.sayHello(..)) ;	

	
 	

2. Validating the method parameters against the

expression from the WSDL: in AspectJ this is done
using around, which defines a custom behavior to
perform before executing a method. For instance,
in the following code snippet the parameters of
method1 are checked. The exectractValue method
is a user method responsible for extracting the
value passed to the sayHello method, which is then
checked against the string “value”. The
expressions from the WSDL need be validated
inside this method. If the method parameter
satisfies the condition the around returns proceed(),
which means execute the sayHello method,
otherwise return FALSE which blocks the
execution.

	
 Object around() : method1() {
 Object[] paramValues= hisJoinPoint.getArgs();
 String[] paramNames=
 ((CodeSignature)thisJoinPointStaticPart.
 getSignature()).getParameterNames();

 if(extractValue(paramNames,

 paramValues).equals("value"))
 return proceed();
 else
 System.out.println("The method 1 does not

 satisfy the condition");
 return "FALSE";

}

V. EXPERIMENTAL EVALUATION
To evaluate our approach we have devised an experiment
that puts in action all the pieces together.

A. Subject Web Services
We tested our approach on two web services. The first one
called HotelBooking, which is a simple service developed to
handle hotels booking. It uses mock objects to simulate the
booking process. The second service is a freely available
service called HolidayWebService 1 that provides
information about holidays in the US and the UK. More
than a thousand requests have been generated and executed
for each service.

1) HotelBooking Service
In the case of the HotelBooking service, we generated
random data values for each data type, however, later we
made some changes to make sure that we cover some
special cases. For instance, the check-in date and check-out
date need to be checked in different situations such as
checkin > checkout, checkin = checkout, and checkin <
checkout.

2) Holiday Service
 In the case of HolidayWebService, we combined random
values with manually generated values. The reason for this
is that the service has a set of pre-defined expected values
that need to be used.

B. Test cases
The process starts by generating the test cases. For this
purpose we used an ad-hoc tool which takes a WSDL file as
parameter and generates a set of test cases for each
operation. The tool works as shown in Figure 6.
In Figure 6 the WSDL is the input to our tool, which
extracts all the operations and their parameters. For each
parameter, we defined a set of rules. They are basically the
possible values for each primitive data type. The last step
consists of generating service calls that use different
combinations of the data values generated. In a real
scenario this tool will be used in the initial stage when a
new service is deployed and the provider does not have any
historical data to use to build the decision tree model.

1	

http://www.holidaywebservice.com/Holidays/HolidayService.asmx?
WSDL	

<wsdl:operation name="CalculateTax"
 expression="name=String &&
 age > 15 &&
 age < 100 &&
 salary >= 500 &&
 salary <= 4000">
 <wsdl:documentation>Calculate Tax for a
 specific person</wsdl:documentation>
 …………
 …………
 </wsdl:operation>don

162

Otherwise, in case the WS is already in use, the historical
data will be used.
Once the test cases are ready, the tool executes the service
calls and logs the service’s responses. Each log entry
contains the parameters used to send the request and the
response message received from the server.
To increase the test coverage of the two services we added
some test cases manually based on the services
documentation. For instance, in the Holiday Web Service,
some parameters have a set of predefined values, and if we
rely only on the random values, most of the test cases will
be rejected by the service.

Figure 6. Test Cases Generation Tool

We divided the experiment into three phases:
1. Generation of the test data and call the service to

build an initial decision tree.
2. Generation of a second set of test cases to check if

further refinement to the generated decision tree
could be added.	

3. Application of the annotations to the Java methods
and generation of a set of test cases, which would
violate the annotations. Then, execution of those
tests cases directly against the services to check the
annotations coverage.

C. Experiment Phases
1) Phase 1

In the first phase we generated random and manual test
cases for each of the two services (Table I).

TABLE I. RANDOM AND MANUAL TEST CASES (PHASE 1)

Service Name Number of
Parameters

Random
Tests

Manual
Tests

HotelBooking 3 900 50

HolidayWebService	
 3	
 900	
 100	

The result obtained is a the following expressions (Table II).

TABLE II. RESULTS OF TEST CASES EXECUTION (PHASE 1)

Service Expression
HotelBooking P1 is String AND P2 is Date AND P3 is

Date AND P2 < P3
HolidayWebService	
 (P1 = US OR P1 = GBEAW) AND (P2 =

NEW_YEAR OR MLK) AND P3 > 0	

The initial test bed allowed us to have a set of rules to start
with. Later we need to check if this set of rules can be
improved.

2) Phase 2
In the second phase, we generated more test cases to cover
additional scenarios to check if the tool is able to discover
them (Table III).

TABLE III. RANDOM AND MANUAL TEST CASES (PHASE 2)

Service Name Number of
Parameters

Random
Tests

Manual
Tests

HotelBooking 3 500 30
HolidayWebService	
 3	
 500	
 50	

After executing the test cases and rebuilding the decision
tree, we extracted the following expressions (Table IV).

TABLE IV. RESULTS OF TEST CASES EXECUTION (PHASE 2)

Service Name Expression
HotelBooking P1 is String AND P2 is Date AND P3 is

Date AND P2 < P3
HolidayWebService	
 (P1 = US OR P1 = GBEAW) AND (P2 =

NEW_YEAR OR P2 = MLK OR P2 =
MEMORIAL OR P2 = MOTHERS)

AND P3 > 0	

In the second phase, we noticed that the expressions have
been updated with new terms added to the expression.

3) Phase 3
In this phase we applied the generated expressions to the
java methods for calling this services as follows:

Object around() : method1() {
 Object[] paramValues= thisJoinPoint.getArgs();
 String[] paramNames=
 ((CodeSignature)thisJoinPointStaticPart.
 getSignature()).getParameterNames();

 if((paramsValues[0] instanceof String) &&
 paramsValues[1] instanceof DateTime &&
 paramsValues[2] instanceof DateTime &&
 paramsValues[1].compareTo(paramsValues[1]) < 0)
 return proceed();
 else {
 System.out.println("The method 1 does not
 satisfy the condition");
 return "FALSE";
 }

163

}

The expression in the rectangle represents the part of the
code that checks the parameter values.
We generated again random and manual test cases to test the
java calls with and without the annotations to check the
effectiveness of our approach (Table V).

TABLE V. RANDOM AND MANUAL TEST CASES (PHASE 3)

Service Name Number of
parameters

Random
Tests

Manual
Tests

HotelBooking 3 500 30
HolidayWebService	
 3	
 500	
 50	

The results of executing the test cases with and without the
annotated methods are presented in the following (Tables VI
and VII).

TABLE VI. RESULTS OF TEST CASES EXECUTION WITH ANNOTATIONS

Service Name Number of tests Percentage of tests violating
the expressions

HotelBooking 530 70%
HolidayWebService	
 550	
 78%	

The next step, we re-executed the test cases that have
violated the expressions directly against the web services.
The results we have obtained are the following (Table VII).

TABLE VII. RESULTS OF TEST CASES EXECUTION WITHOUT
ANNOTATIONS

Service Name Number of tests Percentage of tests violating
the expressions

HotelBooking 371 0%
HolidayWebService 429 6%

From the Table VII, we can see that 6% of the tests that
have violated the expression were still be able to pass the
tests when executed directly against the web services. This
6% represents the false positives, which are a result of some
gaps in the training data used to generate the decision tree.
When the training data is not uniformly distributed
throughout the parameters domain, which means having
requests that represent all the different combinations of
parameters, there is a chance that some requests will be
misclassified. For instance, if we consider a request with the
parameter age and in the training data we do not use any
requests with age > 100, the resulting expression will
consider the requests with age > 100 to be valid although
they will be rejected by the web service.

D. Limitations
To use this approach effectively, some limitations need to
be understood and addressed to reduce the misclassification
of incoming requests. The main limitation concerns the
quality of the collected data and the decision tree generated
[18]. As mentioned earlier, the data collected consists of
service requests issued by the service consumers or
generated by the service provider. However, it might happen

that in some cases the data does not represent all the classes
of the possible parameters combinations, which leads to
misclassifying some requests. For instance, in Figure 2 if
we do not have any requests with the parameter salary <
500, the generated tree will also consider requests with
salary < 500 to be valid requests, even if this will lead to an
exception.
One way of overcoming this limitation is by generating
more robust test cases at the beginning or using the service
without annotation for a period of time to be able to collect
realistic data to use for the DT generation.

VI. CONCLUSIONS
Reducing the number of faulty requests executed by service
consumers consists a major factor for reducing consumers’
costs and services traffic [27, 28]. However, the level of
detail missing from the existing specifications require much
more work from the consumer to understand which requests
are acceptable by a service. Extending the existing
specifications with the necessary information for consumers
benefits both the consumer and the provider. In this paper,
we have presented an extension to the WSDL specification,
which adds a model extracted from the historical data of a
service call to help consumers avoid making the same faulty
requests. The experiments we devised show the benefit of
using the extra information. As a future work, we intend to
automat the part for the code annotation to have a fully
automated process, as well as experimenting the approach
with larger scale web services.

REFERENCES

[1] A. Bertolino, L. Frantzen, A. Polini, J. Tretmans, "Audition of Web

Services for Testing Conformance to Open Specified Protocols," In
Proceedings of the 2004 international conference on Architecting
Systems with Trustworthy Components, Ralf H. Reussner, Judith A.
Stafford, and Clemens A. Szyperski (Eds.). Springer-Verlag, Berlin,
Heidelberg, 2004.

[2] A. Bertolino, A. Polini, "The audition framework for testing Web
services interoperability," Software Engineering and Advanced
Applications, 2005. 31st EUROMICRO Conference on , vol., no., pp.
134- 142, 30 Aug.-3 Sept. 2005.

[3] W.T. Tsai, P. Ray, Y. Wang, C. Fan, D. Wang, "Extending WSDL to
Facilitate Web Services Testing," High-Assurance Systems
Engineering, IEEE International Symposium on, p. 171, 7th IEEE
International Symposium on High Assurance Systems Engineering
(HASE'02), 2002.

[4] E. Martin, S. Basu, and T. Xie, “§,” Web Services, IEEE International
Conference on, Los Alamitos, CA, USA: IEEE Computer Society,
2007, pp. 647-654.

[5] E. Martin, S. Basu, and T. Xie, “WebSob: A Tool for Robustness
Testing of Web Services,” International Conference on Software
Engineering Companion, Los Alamitos, CA, USA: IEEE Computer
Society, 2007, pp. 65-66.

[6] W3C. Web Services Architecture. Nov. 2002. W3C Working Draft 14,
available at: http://www.w3.org/TR/2002/WD-ws-arch- 20021114/.

[7] M. Bozkurt, M. Harman, Y. Hassoun, Testing web services: a survey,
Technical Report TR-10-01, Department of Computer Science, King’s
College London, 2010.

164

[8] G. Canfora, M. Di Penta, “Testing services and service centric
systems: Challenges and opportunities”. IT Professional, 8(2):10-17,
March/April 2006.

[9] V. Borovskiy, A. Zeier, "Evolution Management of Enterprise Web
Services," Advanced Management of Information for Globalized
Enterprises, 2008. AMIGE 2008. IEEE Symposium on , vol., no., pp.1-
5, 28-29 Sept. 2008.

[10] Ian H. Witten, F. Eibe, “Data Mining: Practical Machine Learning
Tools and Techniques”, Second Edition (Morgan Kaufmann Series in
Data Management Systems). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[11] W.L. Dong, H. Yu, Y.B. Zhang, "Testing BPEL-based Web Service
Composition Using High-level Petri Nets," Enterprise Distributed
Object Computing Conference, 2006. EDOC '06. 10th IEEE
International, vol., no., pp.441-444, Oct. 2006.

[12] G. Dai; X. Bai; Y. Wang; F. Dai, "Contract-Based Testing for Web
Services," Computer Software and Applications Conference, 2007.
COMPSAC 2007. 31st Annual International, vol.1, no., pp.517-526,
24-27 July 2007.

[13] WSDL [http://www.w3.org/TR/wsdl]
[14] F. Maurer, G. Succi, H. Holz, B. Kötting, S. Goldmann, and B. Dellen.

“Software process support over the Internet”. In Proceedings of the
21st international conference on Software engineering, 1999.

[15] N. El Ioini, A. Garibbo, A. Sillitti, G. Succi, "An Open Source
Monitoring Framework for Enterprise SOA", 9th International
Conference on Open Source Systems (OSS 2013), Koper, Slovenia, 25
- 28 June 2013.

[16] N. El Ioini, A. Sillitti, "Open Web Services Testing", 2011 IEEE
International Workshop on Web Services / Cloud Services Testing
(WSCS-Testing 2011), Washington DC, USA, 4 - 9 July 2011.

[17] E. Damiani, N. El Ioini, A. Sillitti, G. Succi, "WS-Certificate", 2009
IEEE International Workshop on Web Services Security Management
(WSSM 2009), Los Angeles, CA, USA, 6 - 10 July 2009.

[18] H.G. Gross, M. Melideo, A. Sillitti, "Self Certification and Trust in
Component Procurement", Journal of Science of Computer
Programming, Elsevier, Vol. 56, pp. 141 - 156, April 2005.

[19] P. Predonzani, A. Sillitti, T. Vernazza, "Components and Data-Flow
Applied to the Integration of Web Services", The 27th Annual
Conference of the IEEE Industrial Electronics Society (IECON'01),
Denver, CO, USA, 29 November - 2 December 2001.

[20] M.	
 Scotto,	
 A.	
 Sillitti,	
 G.	
 Succi,	
 T.	
 Vernazza,	
 “A	
 non-­‐invasive	
 approach	

to	
 product	
 metrics	
 collection”,	
 Journal	
 of	
 Systems	
 Architecture,	

Volume	
 52,	
 Issue	
 11,	
 November	
 2006.

[21] J.	
 Clark,	
 C.	
 Clarke,	
 S.	
 De	
 Panfilis,	
 G.	
 Granatella,	
 P.	
 Predonzani,	
 A.	

Sillitti,	
 G.	
 Succi,	
 T.	
 Vernazza,	
 “Selecting	
 components	
 in	
 large	
 COTS	

repositories”,	
 Journal	
 of	
 Systems	
 and	
 Software,	
 Volume	
 73,	
 Issue	
 2,	

October	
 2004.

[22] A. Valerio, G. Succi, M. Fenaroli, “Domain analysis and framework-
based software development”. SIGAPP Appl. Comput. Rev. 5, 2,
September 1997.

[23] GL	
 Kovács,	
 S	
 Drozdik,	
 G	
 Succi,	
 P	
 Zuliani,	
 “Open	
 source	
 software	
 for	

the	
 public	
 administration”,	
 Proceedings	
 of	
 the	
 6th	
 International	

Workshop	
 on	
 Computer	
 Science	
 and	
 Information	
 Technologies,	

2004.

[24] L.	
 Corral,	
 A.	
 Sillitti,	
 G.	
 Succi,	
 “Mobile	
 Multiplatform	
 Development:	

An	
 Experiment	
 for	
 Performance	
 Analysis”,	
 Procedia	
 Computer	

Science,	
 Volume	
 10,	
 2012

[25] Andrea A. Janes and Giancarlo Succi, “The dark side of agile software
development”.	
 In	
 Proceedings	
 of	
 the	
 ACM	
 international	
 symposium	

on	
 New	
 ideas,	
 new	
 paradigms,	
 and	
 reflections	
 on	
 programming	

and	
 software,	
 2012.

[26] E, di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. , J, Vlasenko, "Pair
Programming and Software Defects - A Large, Industrial Case Study,"
Software Engineering, IEEE Transactions on , vol.PP, no.99, pp.1,1, 0.

[27] I. Fronza, A. Sillitti, G. Succi, J. Vlasenko, “Does	
 Pair	
 Programming	

Increase	
 Developers'	
 Attention”, Industrial Track of ESEC/FSE2011,
Szeged, Hungary, 2011.

[28] A. Sillitti, G. Succi, J. Vlasenko, "Toward a better understanding of
tool usage: NIER track," Software Engineering (ICSE), 2011 33rd
International Conference on , vol., no., pp.832,835, 21-28 May 2011.

165

