
Test Generation Using Symbolic Execution

Patrice Godefroid

Microsoft Research
pg@microsoft.com

Abstract
This paper presents a short introduction to automatic code-driven test generation using symbolic
execution. It discusses some key technical challenges, solutions and milestones, but is not an
exhaustive survey of this research area.

1998 ACM Subject Classification D.2.5 Testing and Debugging, D.2.4 Software/Program Ver-
ification

Keywords and phrases Testing, Symbolic Execution, Verification, Test Generation

1 Automatic Code-Driven Test Generation

In this paper, we discuss the problem of automatic code-driven test generation:

Given a program with a known set of input parameters, automatically generate a set
of input values that will exercise as many program statements as possible.

Variants of this problem definition can be obtained using other code coverage criteria [48]. An
optimal solution to this problem is theoretically impossible since this problem is undecidable
in general (for infinite-state programs written in Turing-expressive programming languages).
In practice, approximate solutions are sufficient.

Although automating test generation using program analysis is an old idea (e.g., [41]),
practical tools have only started to emerge during the last few years. Indeed, the expensive
sophisticated program-analysis techniques required to tackle the problem, such as symbolic
execution engines and constraint solvers, have only become computationally affordable in
recent years thanks to the increasing computational power available on modern computers.
Moreover, this steady increase in computational power has in turn enabled recent progress
in the engineering of more practical software analysis techniques. Specifically, this recent
progress was enabled by new advances in dynamic test generation [29], which generalizes
and is more powerful than static test generation, as explained later in this paper.

Automatic code-driven test generation differs from model-based testing. Given an ab-
stract representation of the program, called model, model-based testing consists in generat-
ing tests to check the conformance of the program with respect to the model. In contrast,
code-driven test generation does not use or require a model of the program under test. In-
stead, its goal is to generate tests that exercise as many program statements as possible,
including assertions inserted in the code if any. Another fundamental difference is that mod-
els are usually written in abstract formal modeling languages which are, by definition, more
amenable to precise analysis and test generation. In contrast, code-driven test generation
has to deal with arbitrary software code and systems for which program analysis is bound
to be imprecise, as discussed below.

2 Symbolic Execution

Symbolic execution is a program analysis technique that was introduced in the 70s (e.g.,
see [41, 5, 14, 53, 39]). Symbolic execution means executing a program with symbolic

© Patrice Godefroid;
licensed under Creative Commons License BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Test Generation Using Symbolic Execution

rather than concrete values. Assignment statements are represented as functions of their
(symbolic) arguments, while conditional statements are expressed as constraints on symbolic
values. Symbolic execution can be used for many purposes, such as bug detection, program
verification, debugging, maintenance, and fault localization [15].

One of the earliest proposals for using static analysis as a kind of symbolic program
testing method was proposed by King almost 35 years ago [41]. The idea is to symbolically
explore the tree of all computations the program exhibits when all possible value assignments
to input parameters are considered. For each control path ρ, that is, a sequence of control
locations of the program, a path constraint φρ is constructed that characterizes the input
assignments for which the program executes along ρ. All the paths can be enumerated by
a search algorithm that explores all possible branches at conditional statements. The paths
ρ for which φρ is satisfiable are feasible and are the only ones that can be executed by
the actual program. The solutions to φρ characterize the inputs that drive the program
through ρ. This characterization is exact provided symbolic execution has perfect precision.
Assuming that the theorem prover used to check the satisfiability of all formulas φρ is sound
and complete, this use of static analysis amounts to a kind of symbolic testing.

A prototype of this system allowed the programmer to be presented with feasible paths
and to experiment with assertions in order to force new and perhaps unexpected paths.
King noticed that assumptions, now called preconditions, also formulated in the logic could
be joined to the analysis forming, at least in principle, an automated theorem prover for
Floyd/Hoare’s verification method, including inductive invariants for programs that contain
loops. Since then, this line of work has been developed further in various ways, leading to
various strands of program verification approaches, such as verification-condition generation
(e.g., [20, 37, 17, 3]), symbolic model checking [6] and bounded model checking [13].

Symbolic execution is also a key ingredient for precise automatic code-driven test gen-
eration. While program verification aims at proving the absence of program errors, test
generation aims at generating concrete test inputs that can drive the program to execute
specific program statements or paths.

Work on automatic code-driven test generation using symbolic execution can roughly be
partitioned into two groups: static versus dynamic test generation.

3 Static Test Generation

Static test generation (e.g., [41]) consists of analyzing a program P statically, by using sym-
bolic execution techniques to attempt to compute inputs to drive P along specific execution
paths or branches, without ever executing the program.

Unfortunately, this approach is ineffective whenever the program contains statements
involving constraints outside the scope of reasoning of the theorem prover, i.e., statements
“that cannot be reasoned about symbolically”. This limitation is illustrated by the following
example [23]:

int obscure(int x, int y) {
if (x == hash(y)) return -1; // error
return 0; // ok

}

Assume the constraint solver cannot “symbolically reason” about the function hash (perhaps
because it is too complex or simply because its code is not available). This means that the
constraint solver cannot generate two values for inputs x and y that are guaranteed to



P. Godefroid 3

satisfy (or violate) the constraint x == hash(y). In this case, static test generation cannot
generate test inputs to drive the execution of the program obscure through either branch
of the conditional statement: static test generation is helpless for a program like this. Note
that, for test generation, it is not sufficient to know that the constraint x == hash(y) is
satisfiable for some values of x and y, it is also necessary to generate specific values for x
and y that satisfy or violate this constraint.

The practical implication of this simple observation is significant: static test generation
is doomed to perform poorly whenever precise symbolic execution is not possible. Unfor-
tunately, this is frequent in practice due to complex program statements (pointer manipu-
lations, floating-point operations, etc.) and calls to operating-system and library functions
that are hard or impossible to reason about symbolically with good enough precision.

4 Dynamic Test Generation

A second approach to test generation is dynamic test generation (e.g., [42, 49, 36]): it consists
of executing the program P , typically starting with some random inputs, while performing
symbolic execution dynamically, collecting symbolic constraints on inputs gathered from
predicates in branch statements along the execution, and then using a constraint solver
to infer variants of the previous inputs in order to steer the next execution of the program
towards an alternative program branch. This process is repeated until a given final statement
is reached or a specific program path is executed.

Directed Automated Random Testing [29], or DART for short, is a recent variant of
dynamic test generation that blends it with model checking techniques with the goal of
systematically executing all feasible program paths of a program while detecting various
types of errors using run-time checking tools (like Purify, for instance). In DART, each
new input vector attempts to force the execution of the program through some new path.
By repeating this process, such a directed search attempts to force the program to sweep
through all its feasible execution paths, in a style similar to systematic testing and dynamic
software model checking [22].

In practice, a directed search typically cannot explore all the feasible paths of large
programs in a reasonable amount of time. However, it usually does achieve better coverage
than pure random testing and, hence, can find new program bugs.

A key observation [29] is that imprecision in symbolic execution can be alleviated using
concrete values and randomization: whenever symbolic execution does not know how to
generate a constraint for a program statement depending on some inputs, one can always
simplify this constraint using the concrete values of those inputs.

Let us illustrate this important point with an example. Consider again the program
obscure given above. Even though it is impossible to generate two values for inputs x and
y such that the constraint x == hash(y) is satisfied (or violated), it is easy to generate,
for a fixed value of y, a value of x that is equal to hash(y) since the latter can be observed
and known at runtime. By picking randomly and then fixing the value of y, we first run
the program, observe the concrete value c of hash(y) for that fixed value of y in that run;
then, in the next run, we set the value of the other input x either to c or to another value,
while leaving the value of y unchanged, in order to force the execution of the then or else
branches, respectively, of the conditional statement in the function obscure. The DART
algorithm does all this automatically [29].

In summary, static test generation is unable to generate test inputs to control the execu-
tion of the program obscure, while dynamic test generation can easily drive the executions of



4 Test Generation Using Symbolic Execution

that same program through all its feasible program paths. In realistic programs, imprecision
in symbolic execution typically creeps in in many places, and dynamic test generation allows
test generation to recover from that imprecision. Dynamic test generation can be viewed as
extending static test generation with additional runtime information, and is therefore more
general, precise, and powerful.

5 The Quest for Maximum Precision

Dynamic test generation is the most precise general form of code-driven test generation
that is known today. It is more precise than static test generation and other forms of test
generation such as random, taint-based and coverage-heuristic-based test generation. It
is also the most sophisticated, requiring the use of automated theorem proving for solving
path constraints. This machinery is more complex and heavy-weight, but may excerise more
paths, find more bugs and generate fewer redundant tests covering the same path. Whether
this maximum precision is worth the trouble depends on the application domain.

How much more precise is dynamic test generation compared to static test generation?
In [24], it is shown exactly when the “concretization trick” used in the above hash example
helps, or when it does not help. This is done formally by simulating the process of simplifying
complex symbolic expressions using their runtime values using uninterpreted functions. Path
constraints are then extended with uninterpreted function symbols representing imprecision
during symbolic execution. For test generation, it is shown that those uninterpreted function
symbols need to be universally quantified, unlike variables representing ordinary program
inputs which are existentially quantified. In other words, this higher-order representation
of path constraints forces test generation to be done from validity proofs of first-order logic
formulas with uninterpreted functions, instead of satisfiability proofs of quantifier-free logic
formulas (without uninterpreted functions) as usual.

The bottom-line is this: the key property of dynamic test generation that makes it more
powerful than static test generation is only its ability to observe concrete values and to
record those in path constraints. In contrast, the process of simplifying complex symbolic
expressions using concrete runtime values can be accurately simulated statically using un-
interpreted functions. However, those concrete values are necessary to effectively compute
new input vectors, a fundamental requirement in test generation [24].

In principle, static test generation can be extended to concretize symbolic values when-
ever static symbolic execution becomes imprecise [40]. In practice, this is problematic and
expensive because this approach not only requires to detect all sources of imprecision, but
also requires one call to the constraint solver for each concretization to ensure that every
synthesized concrete value satisfies prior symbolic constraints along the current program
path. In contrast, dynamic test generation avoids these two limitations by leveraging a
specific concrete execution as an automatic fall back for symbolic execution [29].

6 Whitebox Fuzzing (The Killer App)

Another significant recent milestone is the emergence of whitebox fuzzing [32] as the current
main “killer app” for dynamic test generation, and arguably for automatic code-driven test
generation in general.

Whitebox fuzzing extends dynamic test generation from unit testing to whole-program
security testing. There are three main differences. First, inspired by so-called blackbox
fuzzing [21], whitebox fuzzing performs dynamic test generation starting from one or several



P. Godefroid 5

well-formed inputs, which is a heuristics to increase code coverage quickly and give the
search a head-start. Second, again like blackbox fuzzing, the focus of whitebox fuzzing
is to find security vulnerabilities, like buffer overflows, not to check functional correctness;
finding such security vulnerabilities can be done fully automatically and does not require an
application-specific test oracle or functional specification. Third, and more importantly, the
main technical novelty of whitebox fuzzing is scalability: it extends the scope of dynamic
test generation from (small) units to (large) whole programs. Whitebox fuzzing scales to
large file parsers embedded in applications with millions of lines of code and execution traces
with hundreds of millions of machine instructions.

Because whitebox fuzzing targets large applications, symbolic execution must scale to
very long program executions, and is expensive. For instance, a single symbolic execution of
Microsoft Excel with 45,000 input bytes executes nearly a billion x86 instructions. In this
context, whitebox fuzzing uses a novel directed search algorithm, dubbed generational search,
that maximizes the number of new input tests generated from each symbolic execution.
Given a path constraint, all the constraints in that path are systematically negated one-
by-one, placed in a conjunction with the prefix of the path constraint leading to it, and
attempted to be solved by a constraint solver. This way, a single symbolic execution can
generate thousands of new tests. (In contrast, a standard depth-first or breadth-first search
would negate only the last or first constraint in each path constraint, and generate at most
one new test per symbolic execution.)

Whitebox fuzzing was first implemented in the tool SAGE, short for Scalable Automated
Guided Execution [32]. SAGE uses several optimizations that are crucial for dealing with
huge execution traces. SAGE was also the first tool to perform dynamic symbolic execution
at the x86 binary level. Working at the x86 binary level allows SAGE to be used on any
program regardless of its source language or build process. It also ensures that “what you
fuzz is what you ship” as compilers can perform source-code changes which may impact
security.

Over the last few years, whitebox fuzzers have found many new security vulnerabili-
ties (buffer overflows) in many Windows [32] and Linux [46] applications, including image
processors, media players, file decoders, and document parsers.

Notably, SAGE found roughly one third of all the bugs discovered by file fuzzing during
the development of Microsoft’s Windows 7 [33], saving millions of dollars by avoiding ex-
pensive security patches for nearly a billion PCs worldwide. Because SAGE was typically
run last, those bugs were missed by everything else, including static program analysis and
blackbox fuzzing.

Since 2008, SAGE has been running non-stop on an average of 100+ machines, auto-
matically fuzzing hundreds of applications in Microsoft security testing labs. This is over
400 machine-years and the largest computational usage ever for any Satisfiability-Modulo-
Theories (SMT) solver, according to the authors of the Z3 SMT solver [16], with over three
billion constraints processed to date.

7 Other Related Work

Over the last several years, other tools implementing dynamic test generation have been de-
veloped for various programming languages, properties and application domains. Examples
of such tools are DART [29], EGT [9], CUTE [58], EXE [10], Catchconv [47], PEX [60],
KLEE [8], CREST [7], BitBlaze [59], Splat [45], Apollo [2], and YOGI [35], to name some.
Dynamic test generation has become so popular that it is also sometimes casually referred



6 Test Generation Using Symbolic Execution

to as “execution-generated tests” [9], “concolic testing” [58], or simply “dynamic symbolic
execution” [60].

All the above tools differ by how they perform symbolic execution (for languages such as
C, Java, x86, .NET, etc.), by the type of constraints they generate (for theories such as linear
arithmetic, bit-vectors, arrays, uninterpreted functions, etc.), and by the type of constraint
solvers they use (such as lp_solve, CVClite, STP, Disolver, Yikes, Z3, etc.). Indeed, like in
traditional static program analysis and abstract interpretation, these important parameters
depend in practice on which type of program is to be tested, on how the program interfaces
with its environment, and on the property of interest. Moreover, various cost/precision
tradeoffs are also possible, as usual in program analysis.

When building tools like these, there are many other challenges, such as: how to re-
cover from imprecision in symbolic execution [29, 24], how to check efficiently many prop-
erties together [10, 31], how to leverage grammars (when available) for complex input for-
mats [44, 27], how to deal with path explosion [23, 1, 4, 45, 35], how to precisely reason about
pointers [58, 10, 18], how to deal with inputs of varying sizes [61], how to deal with floating-
point instructions [28], how to deal with input-dependent loops [55, 34], which heuristics
to prioritize the search in the program’s search space [10, 32, 7], how to re-use previous
analysis results across code changes [51, 30, 52], how to leverage reachability facts inferred
by static program analysis [35], etc. Other recent work has also explored how to target
other application areas, such as concurrent programs [57], database applications [19], web
applications [2, 54], or device drivers [35, 43].

More broadly, many other papers discussing test generation and program verification
have been published over the last 30+ years. It would be virtually impossible to survey
them all. We only highlighted here some key technical problems and recent milestones. We
encourage the reader to consult other recent surveys, such as [11, 56, 50, 25], which present
different, yet also partial, points of view.

8 Conclusion

Automatic code-driven test generation aims at proving existential properties of programs:
does there exist a test input that can exercise a specific program branch or statement, or
follow a specific program path, or trigger a bug? Test generation dualizes traditional program
verification and static program analysis aimed at proving universal properties which holds
for all program paths, such as “there are no bugs of type X in this program”.

Symbolic reasoning about large programs is bound to be imprecise. If perfect bit-precise
symbolic reasoning was possible, static program analysis would detect standard program-
ming errors without reporting false alarms. How to deal with this imprecision is a funda-
mental problem in program analysis. Traditional static program verification builds “may”
over-approximations of the program behaviors in order to prove correctness, but at the
cost of reporting false alarms. Dually, automatic test generation requires “must” under-
approximations in order to drive program executions and find bugs without reporting false
alarms, but at the cost of possibly missing bugs.

Test generation is only one way of proving existential reachability properties of programs,
where specific concrete input values are generated to exercise specific program paths. More
generally, such properties can be proved using so-called must abstractions of programs [26],
without necessarily generating concrete tests. A must abstraction is defined as a program
abstraction that preserves existential reachability properties of the program. Sound path
constraints are particular cases of must abstractions [35]. Must abstractions can also be



P. Godefroid 7

built backwards from error states using static program analysis [12, 38]. This approach can
detect program locations and states provably leading to error states (no false alarms), but
may fail to prove reachability of those error states back from whole-program initial states,
and hence may miss bugs or report unreachable error states.

Most tools mentioned in the previous section are research prototypes, aimed at exploring
new ideas, but they are not used on a daily basis by ordinary software developers and testers.
Finding other “killer apps” for these techniques, beyond whitebox fuzzing of file and packet
parsers, is critical in order to sustain progress in this research area.

References

1 S. Anand, P. Godefroid, and N. Tillmann. Demand-Driven Compositional Symbolic Ex-
ecution. In Proceedings of TACAS’2008 (14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems), volume 4963 of Lecture Notes in
Computer Science, pages 367–381, Budapest, April 2008. Springer-Verlag.

2 S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar, and M. D. Ernst. Find-
ing Bugs in Web Applications Using Dynamic Test Generation and Explicit-State Model
Checking. IEEE Trans. Software Eng., 36(4):474–494, 2010.

3 M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In Proceedings of FMCO’2005 (4th Inter-
national Symposium on Formal Methods for Components and Objects), volume 4111 of
Lecture Notes in Computer Science, pages 364–387. Springer-Verlag, September 2006.

4 P. Boonstoppel, C. Cadar, and D. Engler. RWset: Attacking path explosion in constraint-
based test generation. In TACAS’08, April 2008.

5 R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT – a formal system for testing and
debugging programs by symbolic execution. SIGPLAN Not., 10:234–245, 1975.

6 J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. In Proceedings of LICS’1990 (5th Symposium on Logic
in Computer Science), pages 428–439, Philadelphia, June 1990.

7 J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In ASE’08, 2008.
8 C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In OSDI’08, Dec 2008.
9 C. Cadar and D. Engler. Execution Generated Test Cases: How to Make Systems Code

Crash Itself. In Proceedings of SPIN’2005 (12th International SPIN Workshop on Model
Checking of Software), volume 3639 of Lecture Notes in Computer Science, San Francisco,
August 2005. Springer-Verlag.

10 C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: Automatically
Generating Inputs of Death. In ACM CCS, 2006.

11 C. Cadar, P. Godefroid, S. Khurshid, C.S. Pasareanu, K. Sen, N.Tillmann, and W. Visser.
Symbolic Execution for Software Testing in Practice – Preliminary Assessment. In
ICSE’2011, Honolulu, May 2011.

12 S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: A Powerful Approach to Weak-
est Preconditions. In Proceedings of PLDI’2009 (ACM SIGPLAN 2009 Conference on
Programming Language Design and Implementation), Dublin, June 2009.

13 E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Checking Using Satisfiability
Solving. Formal Methods in System Design, 19(1):7–34, 2001.

14 L. A. Clarke. A program testing system. In Proc. of the 1976 annual conference, pages
488–491, 1976.

15 L. A. Clarke and D. J. Richardson. Applications of symbolic evaluation. Journal of Systems
and Software, 5(1):15–35, 1985.



8 Test Generation Using Symbolic Execution

16 L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In Proceedings of TACAS’2008
(14th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems), volume 4963 of Lecture Notes in Computer Science, pages 337–340, Budapest,
April 2008. Springer-Verlag.

17 E. W. Dĳkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18:453–457, 1975.

18 B. Elkarablieh, P. Godefroid, and M.Y. Levin. Precise Pointer Reasoning for Dynamic
Test Generation. In Proceedings of ISSTA’09 (ACM SIGSOFT International Symposium
on Software Testing and Analysis), pages 129–139, Chicago, July 2009.

19 M. Emmi, R. Majumdar, and K. Sen. Dynamic Test Input Generation for Database Appli-
cations. In Proceedings of ISSTA’2007 (International Symposium on Software Testing and
Analysis, pages 151–162, 2007.

20 R. Floyd. Assigning Meaning to Programs. In Mathematical Aspects of Computer Science,
pages 19–32. XIX American Mathematical Society, 1967.

21 J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness of Windows NT
Applications Using Random Testing. In Proceedings of the 4th USENIX Windows System
Symposium, Seattle, August 2000.

22 P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proceedings
of POPL’97 (24th ACM Symposium on Principles of Programming Languages), pages 174–
186, Paris, January 1997.

23 P. Godefroid. Compositional Dynamic Test Generation. In Proceedings of POPL’2007 (34th
ACM Symposium on Principles of Programming Languages), pages 47–54, Nice, January
2007.

24 P. Godefroid. Higher-Order Test Generation. In Proceedings of PLDI’2011 (ACM SIG-
PLAN 2011 Conference on Programming Language Design and Implementation), pages
258–269, San Jose, June 2011.

25 P. Godefroid, P. de Halleux, M. Y. Levin, A. V. Nori, S. K. Rajamani, W. Schulte, and
N. Tillmann. Automating Software Testing Using Program Analysis. IEEE Software,
25(5):30–37, September/October 2008.

26 P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based Model Checking using Modal
Transition Systems. In Proceedings of CONCUR’2001 (12th International Conference on
Concurrency Theory), volume 2154 of Lecture Notes in Computer Science, pages 426–440,
Aalborg, August 2001. Springer-Verlag.

27 P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based Whitebox Fuzzing. In Proceed-
ings of PLDI’2008 (ACM SIGPLAN 2008 Conference on Programming Language Design
and Implementation), pages 206–215, Tucson, June 2008.

28 P. Godefroid and J. Kinder. Proving Memory Safety of Floating-Point Computations by
Combining Static and Dynamic Program Analysis. In Proceedings of ISSTA’2010 (ACM
SIGSOFT International Symposium on Software Testing and Analysis), pages 1–11, Trento,
July 2010.

29 P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing. In
Proceedings of PLDI’2005 (ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation), pages 213–223, Chicago, June 2005.

30 P. Godefroid, S. K. Lahiri, and C. Rubio-Gonzalez. Statically Validating Must Summaries
for Incremental Compositional Dynamic Test Generation. In Proceedings of SAS’2011
(18th International Static Analysis Symposium), volume 6887 of Lecture Notes in Computer
Science, pages 112–128, Venice, September 2011. Springer-Verlag.

31 P. Godefroid, M.Y. Levin, and D. Molnar. Active Property Checking. In Proceedings
of EMSOFT’2008 (8th Annual ACM & IEEE Conference on Embedded Software), pages
207–216, Atlanta, October 2008. ACM Press.



P. Godefroid 9

32 P. Godefroid, M.Y. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. In Proceed-
ings of NDSS’2008 (Network and Distributed Systems Security), pages 151–166, San Diego,
February 2008.

33 P. Godefroid, M.Y. Levin, and D. Molnar. SAGE: Whitebox Fuzzing for Security Testing.
Communications of the ACM, 55(3):40–44, March 2012.

34 P. Godefroid and D. Luchaup. Automatic Partial Loop Summarization in Dynamic Test
Generation. In Proceedings of ISSTA’2011 (ACM SIGSOFT International Symposium on
Software Testing and Analysis), pages 23–33, Toronto, July 2011.

35 P. Godefroid, A.V. Nori, S.K. Rajamani, and S.D. Tetali. Compositional May-Must Pro-
gram Analysis: Unleashing The Power of Alternation. In Proceedings of POPL’2010 (37th
ACM Symposium on Principles of Programming Languages), pages 43–55, Madrid, January
2010.

36 N. Gupta, A. P. Mathur, and M. L. Soffa. Generating Test Data for Branch Coverage. In
Proceedings of the 15th IEEE International Conference on Automated Software Engineer-
ing, pages 219–227, September 2000.

37 C. A. R. Hoare. An Axiomatic Approach to Computer Programming. Communications of
the ACM, 12(10):576–580, 1969.

38 J. Hoenicke, K. R. M. Leino, A. Podelski, M. Schaf, and Th. Wies. It’s doomed; we can
prove it. In Proceedings of 2009 World Congress on Formal Methods, 2009.

39 W.E. Howden. Symbolic testing and the DISSECT symbolic evaluation system. IEEE
Transactions on Software Engineering, 3(4):266–278, 1977.

40 S. Khurshid, C. Pasareanu, and W. Visser. Generalized Symbolic Execution for Model
Checking and Testing. In TACAS’03, April 2003.

41 J. C. King. Symbolic Execution and Program Testing. Journal of the ACM, 19(7):385–394,
1976.

42 B. Korel. A Dynamic Approach of Test Data Generation. In IEEE Conference on Software
Maintenance, pages 311–317, San Diego, November 1990.

43 V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source binary device drivers
with DDT. In USENIX ATC’10, June 2010.

44 R. Majumdar and R. Xu. Directed Test Generation using Symbolic Grammars. In ASE,
2007.

45 R. Majumdar and R. Xu. Reducing test inputs using information partitions. In CAV’09,
pages 555–569, 2009.

46 D. Molnar, X. C. Li, and D. Wagner. Dynamic test generation to find integer bugs in x86
binary linux programs. In Proc. of the 18th Usenix Security Symposium, Aug 2009.

47 D. Molnar and D. Wagner. Catchconv: Symbolic execution and run-time type inference
for integer conversion errors, 2007. UC Berkeley EECS, 2007-23.

48 G. J. Myers. The Art of Software Testing. Wiley, 1979.
49 A. J. Offutt, Z. Jin, and J. Pan. The Dynamic Domain Reduction Procedure for Test Data

Generation. Software Practice and Experience, 29(2):167–193, 1997.
50 C. S. Pasareanu and W. Visser. A survey of new trends in symbolic execution for software

testing and analysis. STTT, 11(4):339–353, 2009.
51 S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differential symbolic execu-

tion. In SIGSOFT FSE, pages 226–237, 2008.
52 S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed Incremental Symbolic Execution.

In PLDI’2011, pages 504–515, San Jose, June 2011.
53 C.V. Ramamoorthy, S.-B.F. Ho, and W.T. Chen. On the automated generation of program

test data. IEEE Trans. on Software Engineering, 2(4):293–300, 1976.



10 Test Generation Using Symbolic Execution

54 P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A Symbolic
Execution Framework for JavaScript. In IEEE Symposium on Security and Privacy, pages
513–528, 2010.

55 P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-Extended Symbolic Execution
on Binary Programs. In ISSTA’2009, pages 225–236, Chicago, July 2009.

56 E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might have been afraid to ask). In IEEE
Symposium on Security and Privacy, May 2010.

57 K. Sen and G. Agha. CUTE and jCUTE : Concolic unit testing and explicit path model-
checking tools. In CAV’06, 2006.

58 K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing Engine for C. In
Proceedings of FSE’2005 (13th International Symposium on the Foundations of Software
Engineering), Lisbon, September 2005.

59 D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena. BitBlaze: A New Approach to Computer Security via Binary
Analysis. In ICISS’2008, December 2008.

60 N. Tillmann and J. de Halleux. Pex - White Box Test Generation for .NET. In Proceedings
of TAP’2008 (2nd International Conference on Tests and Proofs), volume 4966 of Lecture
Notes in Computer Science, pages 134–153. Springer-Verlag, April 2008.

61 R. Xu, , P. Godefroid, and R. Majumdar. Testing for Buffer Overflows with Length Abstrac-
tion. In Proceedings of ISSTA’08 (ACM SIGSOFT International Symposium on Software
Testing and Analysis), pages 27–38, Seattle, July 2008.


	Automatic Code-Driven Test Generation
	Symbolic Execution
	Static Test Generation
	Dynamic Test Generation
	The Quest for Maximum Precision
	Whitebox Fuzzing (The Killer App)
	Other Related Work
	Conclusion

