Unliversita di Camerino

1336

Research Papers Assignment

Andrea Polini

Software Engineering Il — Software Testing
MSc in Computer Science
University of Camerino

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM

1/12

|
Papers List

@ Test Coverage of Data-Centric Dynamic Compositions in
Service-Based Systems

© A Web Service Test Generator

© Using Rules for Web Service Client Side Testing

© Test Case Prioritization for Audit Testing of Evolving Web Services
using Information Retrieval Techniques

@ Server Interface Descriptions for Automated Testing of JavaScript
Web Applications

© Feedback-Directed Instrumentation for Deployed JavaScript
Applications

@ Test Generation Using Symbolic Execution

© CUTE: A Concolic Unit Testing Engine for C

© SAGE: Whitebox Fuzzing for Security Testing

@ Systematic Execution of Android Test Suites in Adverse
Conditions

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 2/12

1. Test Coverage of Data-Centric Dynamic
Compositions in Service-Based Systems

This paper addresses the problem of integration testing of data-centric dynamic
compositions in service-based systems. These compositions define abstract services,
which are replaced by invocations to concrete candidate services at runtime. Testing
all possible runtime instances of a composition is often unfeasible. We regard data
dependencies between services as potential points of failure, and introduce the
k-node data flow test coverage metric. Limiting the level of desired coverage helps to
significantly reduce the search space of service combinations. We formulate the
problem of generating a minimum set of test cases as a combinatorial optimization
problem. Based on the formalization we present a mapping of the problem to the data
model of FoCusS, a coverage analysis tool developed at IBM. FoCusS can efficiently
compute near-optimal solutions, which we then use to automatically generate and
execute test instances of the composition. We evaluate our prototype implementation
using an illustrative scenario to show the end-to-end practicability of the approach.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 3/12

2. A Web Service Test Generator

An automated process for generating test inputs for web services from a WSDL is
presented. A grammatical representation of the web service is extracted from the
WSDL and used to produce test cases. A context-free grammar (CFG) is generated
from the XSD that is stored in the WSDL. The CFG is provided as input into a
constraint-satisfaction problem solver to automatically generate a diverse set of
structurally correct XML documents. Testing data is then inserted into the XML
templates in accordance with any constraints specified in the XSD. Web
service-specific testing can be performed with the inclusion of external datasets and
service-specific configurations.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 4/12

-]
3. Using Rules for Web Service Client Side Testing

Web Services (WS) are software components accessible over the Internet through a
well-defined set of standards. When consumers invoke a service, they expect to
receive a valid response. However, the problem is to determine the structure of a valid
request. WS specifications are used to solve this problem since they are considered
the primary piece of information for building service requests. Unfortunately, existing
specifications do not provide enough support for this type information (e.g., WSDL) or
there is little support on the client side (e.g., OWL-S). In this paper we address this
issue by implementing a technique to reduce the number of faulty requests. We
specifically propose an approach for extending WSDL with service input parameters
rules that help consumers and integrators to verify their calls on the client side.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 5/12

4. Test Case Prioritization for Audit Testing of Evolving
Web Services using Information Retrieval Techniques

Web services evolve frequently to meet new business demands and opportunities.
However, service changes may affect service compositions that are currently
consuming the services. Hence, audit testing (a form of regression testing in charge of
checking for compatibility issues) is needed. As service compositions are often in
continuous operation and the external services have limited (expensive) access when
invoked for testing, audit testing has severe time and resources constraints, which
make test prioritization a crucial technique (only the highest priority test cases will be
executed). This paper presents a novel approach to the prioritization of audit test
cases using information retrieval. This approach matches a service change
description with the code portions exercised by the relevant test cases. So, test cases
are prioritized based on their relevance to the service change. We evaluate the
proposed approach on a system that composes services from eBay and Google.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 6/12

5. Server Interface Descriptions for Automated Testing
of JavaScript Web Applications

Automated testing of JavaScript web applications is complicated by the
communication with servers. Specifically, it is difficult to test the JavaScript code in
isolation from the server code and database contents. We present a practical solution
to this problem. First, we demonstrate that formal server interface descriptions are
useful in automated testing of JavaScript web applications for separating the concerns
of the client and the server. Second, to support the con- struction of server interface
descriptions for existing applications, we introduce an effective inference technique
that learns communi- cation patterns from sample data. By incorporating interface
descriptions into the testing tool Artemis, our experimental results show that we
increase the level of automation for high-coverage testing on a collection of JavaScript
web applications that exchange JSON data between the clients and servers.
Moreover, we demonstrate that the inference technique can quickly and accurately
learn useful server interface descriptions.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 7/12

6. Feedback-Directed Instrumentation for Deployed
JavaScript Applications

Many bugs in JavaScript applications manifest themselves as objects that have
incorrect property values when a failure occurs. For this type of error, stack traces and
log files are often insufficient for diagnosing problems. In such cases, it is helpful for
developers to know the control flow path from the creation of an object to a crashing
statement. Such crash paths are useful for understanding where the object originated
and whether any properties of the object were corrupted since its creation. We present
a feedback-directed instrumentation technique for computing crash paths that allows
the instrumentation overhead to be distributed over a crowd of users and to reduce it
for users who do not encounter the crash. We implemented our technique in a tool,
Crowdie, and evaluated it on 10 real-world issues for which error messages and stack
traces are insufficient to isolate the problem. Our results show that feedback-directed
instrumentation requires 5% to 25% of the program to be instrumented, that the same
crash must be observed 3 to 10 times to discover the crash path, and that
feedback-directed instrumentation typically slows down execution by a factor 2x-9x
compared to 8x-90x for an approach where applications are fully instrumented.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 8/12

7. Test Generation Using Symbolic Execution

This paper presents a short introduction to automatic code-driven test generation
using symbolic execution. It discusses some key technical challenges, solutions and
milestones, but is not an exhaustive survey of this research area.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 9/12

-]
8. CUTE: A Concolic Unit Testing Engine for C

In unit testing, a program is decomposed into units which are collections of functions.
A part of unit can be tested by generating inputs for a single entry function. The entry
function may contain pointer arguments, in which case the inputs to the unit are
memory graphs. The paper addresses the problem of automating unit testing with
memory graphs as inputs. The approach used builds on previous work combining
symbolic and concrete execution, and more specifically, using such a combination to
generate test inputs to explore all feasible execution paths. The current work develops
a method to represent and track constraints that capture the behavior of a symbolic
execution of a unit with memory graphs as inputs. Moreover, an efficient constraint
solver is proposed to facilitate incremental generation of such test inputs. Finally,
CUTE, a tool implementing the method is described together with the results of
applying CUTE to real-world examples of C code.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 10/12

-]
9. SAGE: Whitebox Fuzzing for Security Testing

“program verification research” as mostly theoretical with little impact on the world at
large. Think again. If you are reading these lines on a PC running some form of
Windows (like over 93% of PC users-that is, more than one billion people), then you
have been affected by this line of work-without knowing it, which is precisely the way
we want it to be. Every second Tuesday of every month, also known as “Patch
Tuesday,” Microsoft releases a list of security bulletins and associated security patches
to be deployed on hundreds of millions of machines worldwide. Each security bulletin
costs Microsoft and its users millions of dollars. If a monthly security update costs you
$0.001 (one tenth of one cent) in just electricity or loss of productivity, then this
number multiplied by one billion people is $1 million. Of course, if malware were
spreading on your machine, possibly leaking some of your private data, then that
might cost you much more than $0.001. This is why we strongly encourage you to
apply those pesky security updates.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 11/12

10. Systematic Execution of Android Test Suites in
Adverse Conditions

Event-driven applications, such as, mobile apps, are difficult to test thoroughly. The application programmers often put significant
effort into writing end-to-end test suites. Even though such tests often have high coverage of the source code, we find that they
often focus on the expected behavior, not on occurrences of unusual events. On the other hand, automated testing tools may be
capable of exploring the state space more systematically, but this is mostly without knowledge of the intended behavior of the
individual applications. As a consequence, many programming errors remain unnoticed until they are encountered by the users.
We propose a new methodology for testing by leveraging existing test suites such that each test case is systematically exposed to
adverse conditions where certain unexpected events may interfere with the execution. In this way, we explore the interesting
execution paths and take advantage of the assertions in the manually written test suite, while ensuring that the injected events do
not affect the expected outcome. The main challenge that we address is how to accomplish this systematically and efficiently. We
have evaluated the approach by implementing a tool, Thor, working on Android. The results on four real-world apps with existing
test suites demonstrate that apps are often fragile with respect to certain unexpected events and that our methodology effectively
increases the testing quality: Of 507 individual tests, 429 fail when exposed to adverse conditions, which reveals 66 distinct
problems that are not detected by ordinary execution of the tests.

(Software Engineering Il — Software Testing) Research Papers Assignment CS@UNICAM 12/12

