
A Web Service Test Generator 
Patrick Vanderveen, Michael Janzen, Andrew F. Tappenden 

Department of Computing Science 
The King's University 

Edmonton, Canada 
{patrick.vanderveen, michael.janzen, andrew.tappenden}@kingsu.ca 

 
 

Abstract—An automated process for generating test inputs 
for web services from a WSDL is presented. A grammatical 
representation of the web service is extracted from the WSDL 
and used to produce test cases. A context-free grammar (CFG) is 
generated from the XSD that is stored in the WSDL. The CFG is 
provided as input into a constraint-satisfaction problem solver to 
automatically generate a diverse set of structurally correct XML 
documents. Testing data is then inserted into the XML templates 
in accordance with any constraints specified in the XSD. Web 
service-specific testing can be performed with the inclusion of 
external datasets and service-specific configurations. 

Index Terms—Software Testing, Web Services, Web Service 
testing, WSDL, XML Generation, XSD, XML. 

I. INTRODUCTION 
Automatic generation of XML data can reduce the time 

and effort needed to test and maintain a Web service (WS). 
The Web Service Definition Language (WSDL) contains a set 
of definitions that describe a web service.  An XML Schema 
Document (XSD) can be extracted from the WSDL and used 
to facilitate the automation of web service testing.  Currently 
there are few tools available that can automatically generate 
test inputs from XSDs for the testing of WS, the most notable 
being ToXGene [1] and TAXI/WS-TAXI [2, 3]. Our proposed 
solution is an automated tool for the generation of WS test 
inputs from an XSD or a WSDL.  Although the tool can be 
automated, it maintains meaningful control for the tester.   

The tool takes a WSDL document as input.  The XSD is 
then extracted from the WSDL and a context-free grammar is 
created.  Using the grammar we create XML template 
documents using a string constraint solver, each document 
having a unique structure.  The data values are inserted after 
the XML structure has been generated.  The output of the 
system is a variable sized set of XML documents that validate 
against the XSD. 

The remainder of the paper is organized as follows:  
Section II provides a summary of related works, Section III 
provides an overview of our approach starting from the 
WSDL document to the production of the final test inputs, 
Section IV outlines the WS-specific modifications present in 
the tool, in Section V we compare our tool with other similar 
tools and we conclude with future work in Section VI.  

II. RELEVANT WORK 

A. XML Generators 
There are many other tools that can be utilized for the 

generation of XML Documents, but few are useful for the 

purpose of automated test generation. All of the following 
tools require manual work in order to generate XML 
documents and most cover a small subset of the entire XSD. 
Tools currently available include: ToXGene [1], TAXI [2], 
XMLXIG [4], SunXMLGenerator [5], EJB Source Generator 
[6], and WSDLTest [7]. There is a plethora of other tools that 
generate a single XML document from an XSD but they are 
not useful in a software testing context [8]. The two most 
immediate candidates for test generation are TAXI [2, 3] and 
ToXGene [3]. Both these tools generate XML data from an 
XSD but cannot be deployed as a fully automated tool. 

ToXGene requires a Template Specification Language 
(TSL) document as input and will output a set of XML 
documents that conform to the TSL. ToXGene has some very 
useful characteristics for the generation of representative data 
values. ToXGene uses probability distributions for element 
occurrences and data values. It can cache values for inter-
XML instance value sharing and it can read external XML 
documents to retrieve values. It is difficult, however, to 
control the structure of the data [8]. ToXGene requires the 
manual creation of a TSL document. The TSL is a hybrid 
document containing both XSD and ToX notations. Currently 
there is no formalized method for the automated generation of 
TSL documents from an XSD— hence ToXGene requires a 
large degree of manual interaction.  

TAXI uses a category partition method in order to generate 
XML Documents [9]. It creates a separate XML sub-schema 
for each possible structure. Since the number of combinations 
can become intractable, they attempt to reduce the number of 
combinations using weighted elements. TAXI automates the 
structural generation of the XML but poorly represents 
diversity in the leaf nodes, i.e. the data fields. 

B. Constraint Satisfaction Problem Solvers 
Constraint satisfaction problem (CSP) solvers provide a 

method to create an XML document that satisfies a grammar. 
There are many different solvers available from the artificial 
intelligence community. The tools we have explored include: 
Z3-str [10], KALUZA [11], HAMPI [12], STRSOLVE [13], 
SCSP [14]. Our WS test input generation tool is designed to 
separate grammar extraction from CSP-specific input format, 
i.e. the tool is not tied to any specific CSP solver.  We 
currently employ HAMPI [12] to generate valid XML 
documents because of its simplicity and the understandability 
of its input grammar. Furthermore HAMPI is well-understood 
within the software testing community and has been shown 
effective for test generation [12, 15].  

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.85

517

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.85

516

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.85

516



III. THE PROPOSED TEST INPUT GENERATOR 
The proposed tool takes a WSDL document as its input.  

The output is a set of XML documents that validate against 
the XSD alongside all pertinent information to test the 
endpoints of a WS. The automated test generation process 
consists of the modules presented in Fig. 1. Each module 
identified in Fig. 1 is explained in the following subsections.  

A. XSD Extractor 
The XSD Extractor takes a WSDL as input and extracts 

the XSD for processing by the CFG Generator. The XSD is 
extracted from the WSDL through the use of an Extensible 
Stylesheet Language Transformation (XSLT) preserving all 
XML namespace definitions. The validity of the XSD is also 
ensured. An example of an XSD extracted from a WSDL is 
shown in Fig. 2. This XSD will be used for all subsequent 
examples.  

B. CFG Generator 
The CFG Generator accepts any XSD and generates an 

equivalent context-free grammar (CFG). The grammar 
represents the set of all possible inputs to the WS endpoint. 
The CFG is formatted for use in a string CSP solver.  

The CFG Generator can process a large subset of the XSD 
definition and automatically creates an equivalent grammar. 
The CFG generator processes the entire XSD with the 
exception of key references and the inclusion of external 
elements or attributes. The generated grammar is able to 
model the constraints specified in the XSD for simple type 
elements. Facets (XSD constraints) on elements or attributes 
are included in the grammar as annotated terminals that 
forward the facets to the Endpoint Test Generator.  For 
example, the totalDigits=13 facet in the simple type 
ISBNRestriction is encoded in the generated grammar. The 
constraint is realized by the ISBNRestriction production rule 
with the type, integer, followed by the facet TOTDIGITS, and 
the value, 13, as shown in Fig. 3. All XSD complex types can 
be modeled in the grammar including sequence, all and 
choice. All complex content structures: extension and 
restriction can also be modeled. Fig. 3 shows the output 
grammar resulting from the CFG Generator applied to the 
XSD in Fig. 2. The grammar also defines the overarching 
structure required for the creation of an XML document that 
will validate against the given XSD. 

The CFG Generator has self-imposed limitations that 
reduce the size of the grammar. For example, in cases where 
the maxOccurs facet is above a predefined constant, k, it is 
substituted with a Kleene operator. The all aggregation 
provides elements in any permutation but the CFG Generator 
limits all aggregations to a fixed ordering. With knowledge of 
the grammar, a tester can make simple changes without 
impacting the validity of the generated XML documents, 
giving some control over the structure and the data present in 
the final set of XML tests, as explored further in Section IV. 

In order to generate a grammar from an XSD, a root 
element is needed. Since the output XML can be valid against 

Fig. 1. The Test Generation Process 

 

Fig. 2. A Sample XSD Document 

Fig. 3. The context free grammar created by the CFG Generator  

 

518517517



the XSD using different root elements a target root element 
must be specified. The WSDL contains the root elements for 
the WS endpoints.  In many cases multiple WS endpoints are 
present in the same WSDL and all endpoints have an 
explicitly defined input type.  The CFG Generator will be 
executed once for each endpoint present in the WSDL 
resulting in the generation of one or more grammars. 

C. CSP Solver 
The CSP Solver accepts the grammar produced by the 

CFG Generator as an input. The output of the CSP Solver is a 
set of structurally valid XML templates with additional 
annotations. The annotations specify the type of data, size 
restrictions, or other facets defined in the XSD. Each XML 
template has a unique structure. In some cases there may be 
only one possible structure; others have an infinite set of 
possible structures. For example, elements with unbounded 
maxOccurs result in an infinite set of templates.  

Fixed sized (number of characters) XML templates are 
generated by the string CSP solver. The template size is 
included in the grammar (var v: 1000 in Fig. 3); The CSP 
Solver modifies the grammar to produce XML templates for a 
predefined range of sizes. The annotated XML templates are 
generated up to a fixed size limit, S; this solves the problem of 
the infinite number of different structures.  

Some drawbacks to using HAMPI are that there can only 
be two non-terminals in each production rule so longer rules 
are split into multiple rules. Because of these limitations extra 
grammars must be added for complex types that include many 
elements. For example, the element book in Fig. 2 contains a 
sequence with 5 elements. In the resulting grammar, Fig. 3, 
the sequence labeled SEQUENCE1 is divided into 4 different 
production rules, with the NEXT0, …, NEXT3 rules continuing 
the sequence. This technique is used whenever necessary, for 
example, the all aggregation.  

D. XML Templates 
Anecdotally we found that HAMPI was effective at 

generating the structure of an XML document but was ill 
suited for data generation. For example, HAMPI generated 
data exhibited repetitious values and poor coverage of the 
input space. To overcome this limitation we propose that the 
final generation of tests be conducted using established 
software testing methodologies such as, Adaptive Random 
Testing [16], Quasi-Random Testing [17], Combinatorial 
Testing [18], etc. The current implementation provides 
random generation of data or data retrieved from files. Fig. 4 
presents an example of an annotated XML template. All the 
necessary XML structure is present along with the appropriate 
tags. A large set of these templates is generated from each 
grammar and they are used as input into the Endpoint Test 
Generator.  

E. Endpoint Test Generator 
The Endpoint Test Generator accepts the annotated XML 

templates as input and produces tests for each WS Endpoint 
present in the WSDL. The current implementation of this 
module employs random generation for data values. Data can 
also be retrieved from files when non-random data is desired. 
All 44 atomic data types can be randomly generated and 
validated against the XSD although data integrity is not 
enforced. Our current prototype cannot generate key 
references, ID, IDREF and ENTITY that validate against the 
XSD. The data is generated according to all facets in the XSD 
aside from the pattern and date type constraints. 

Tests are generated according to constraints annotated by 
the XML templates. The generator is aware of all implicit data 
constraints for all 44 atomic types, such as int, which is a 
signed 32-bit value. Each atomic type, shown in Fig. 4 
(denoted by all capital letters), is replaced with a constrained 
random value by the Endpoint Test Generator. Fig. 5 presents 
the resulting XML document produced by the Endpoint Test 
Generator applied to the XML template in Fig. 4. The 
Endpoint Test Generator outputs a set of XMLs that validate 
against the XSD and are valid for one of WS endpoints. A 
variable number of tests can be generated from each XML 
Template and for each WS endpoint.  

Fig. 5. Example of a test case generated by the Endpoint Test Generator 

 

Fig. 4. Example of a XML template document generated by HAMPI  

 

519518518



IV. WS-SPECIFIC TESTING MANIPULATIONS 
Due to the nature of automated testing, which relies on the 

random generation of testing data, finer-grain test generation 
control is needed.  Generic forms of control are needed to 
support testing activities throughout the generation process.  
The proposed tool supports tester controlled data generation 
through external file constraints, additional data value 
constraints, and structural manipulations. All of the changes 
discussed do not affect the final XML validity. 

A. External File Constraints 
Although the chance of generating test values meaningful 

to the WS is non-zero, the likelihood of occurrence can render 
the test data ineffective.  WS-specific data can be provided 
through the manual inclusion of external file constraints 
allowing for the selection of meaningful data during the 
Endpoint Test Generation step. 

An external file constraint can be added to the grammar 
produced by the CFG generator in the same way other XSD 
facets are modeled (see TOTDIGITS in Fig. 3).  File 
constraints are denoted by the {[FILENAME filename]} 
terminal, where filename is the uri of the external file.  The 
file contains line-separated values that are chosen randomly 
during the Endpoint Test Generation step. The additional 
constraint is defined once in the grammar and propagates 
through the rest of the system: XML templates, generated 
XML tests, and finally the WS endpoint tests.  Furthermore, 
grammar substitutions can be defined before the process 
begins, allowing for the automated generation of values post 
WS-specific configuration. 

B. Additional Data Value Constraints 
Often the constraints contained within an XSD are 

insufficient for representing the underlying application. There 
is a need to allow for additional restrictions to be placed on 
input values. The proposed tool supports the inclusion of 
additional tester-defined constraints through grammar 
manipulations mid-process and/or through predefined WS-
specific configurations.   

Constraints on simple type data can be added into the 
grammar to control the values that are generated. For example, 
in Fig. 3 the ISBNRestriction simple type must have 13 or less 
digits as defined in the XSD, if the tester wants less digits then 
it can be changed in the grammar. Additionally, enumeration 
constraints can be added or removed in the grammar. The 
Category element in the XSD (Fig. 2) has a local simple type 
so it is given the name SIMPLE0 in the grammar (Fig. 3). This 
simple type has 3 possible enumerations: fiction, non-fiction, 
and autobiography. For example, if the tester wants to exclude 
the fiction category in the final tests then they can simply 
remove that enumeration. Also, for any elements that do not 
have enumerations, they can be added to the grammar to 
ensure a type has the desired set of values.  

Tester defined WS-specific constraints can be defined 
including: enumerations, maxLength, minLength, length, 
maxInclusive, maxExclusive, minInclusive, minExlusive, 
fractionDigits and totalDigits.  The constraints can be applied 
to all atomic data types. All of these constraints are present in 
the XSD domain, but can be added to provide fine-grain 

control over the XML data generated. 

C. Structural Manipulations 
The structure of generated XML documents can be 

controlled through grammar manipulations.  With the use of 
these changes a tester can limit the number of occurrences of 
an element, limit choices between elements and ensure an 
elements/attributes presence in all template documents, and 
control permutations of elements. 

For example, anywhere a Kleene star or Kleene plus is 
used there is the possibility of repetitive elements in the 
generated XML. The number of elements can be limited by 
changing the grammar to a finite number of elements rather 
than the Kleene operator. The tester could define the exact 
number of desired occurrences of the element or define a set 
of desired number of occurrences using the or operator. 

Anywhere the or operator is used a change can be made in 
the grammar if desired. The choice complex type is modeled 
in the grammar using the or operator. A tester can limit these 
choices by removing some from the grammar. An attributes 
presence in the final XML can also be ensured through simple 
grammar modification. Both the attributes inStock and 
Reviewer are not required, so the or operator is used in the 
grammar to specify that the attribute can be null, or it can be 
present in the element. If an attribute is desired to be present 
by the tester, this or operator can be removed to ensure that 
attribute is always in the final XML. 

The all aggregation is modeled in the grammar as a fixed 
ordering even though any possible ordering is allowed. 
Modeling all possible orderings can quickly become 
intractable depending on the number of elements in the all 
aggregation. A single ordering is used to limit the size of the 
grammar. If a desired ordering is required then a simple 
change can be made in the grammar to specify the desired 
ordering. 

V. COMPARISON TO EXISTING XML GENERATION TOOLS 
A comparison between our tool, TAXI and ToXGene is 

presented in Table I. The comparison details the most 
important parts of automatic test case generation with regards 
to automation, control, and functionality.  In Table I, our tool 
exhibits the highest level of automation through the use of the 
WSDL document to automatically generate the WS endpoint 
test inputs. Test inputs contain the testing data alongside the 
WS endpoint: URL, port, message, operation, namespace, etc. 
The generated test documents are self-contained packages that 
can be executed against a WS without additional manual 
packaging.  Even with this level of automation, meaningful 
control is retained.  Our tool works implicitly with XSD 
documents while ToXGene requires a manual conversion 
from XSD to TSL.  Our tool exhibits a higher level of XSD 
coverage than both TAXI and ToXGene allowing for a much 
larger set of all XSDs to be analyzed and used to facilitate 
automatic test input generation. 

VI. CONCLUSION & FUTURE WORK 
In conclusion, the proposed test generation tool can 

provide an automated method to generate test inputs for a 
generic WS from a WSDL document. A set of inputs can be 

520519519



generated with no manual interaction. Although the tool can 
be fully automated, control for the tester is still available 
through external datasets and pre-defined WS-specific 
configurations.  In comparison with existing solutions, our 
tool matches or exceeds in automation, XSD coverage, and 
tester control. 

Future work includes the incorporation of multiple CSP 
solvers allowing for an empirical evaluation of the use of 
various CSPs in the software testing context. Further work 
will focus on an empirical evaluation of the proposed testing 
tool against TAXI and ToXGene using WS-MAT [19] as the 
benchmark for comparison. 

REFERENCES

[1] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. Lyons, 
“ToXgene: An extensible template-based data generator for XML,” in 
IN WEBDB, 2002, pp. 49–54. 

[2] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “TAXI–A Tool for 
XML-Based Testing,” in 29th International Conference on Software 
Engineering - Companion, 2007. ICSE 2007 Companion, 2007, pp. 
53–54. 

[3] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “WS-TAXI: A 
WSDL-based Testing Tool for Web Services,” presented at the 
International Conference on Software Testing Verification and 
Validation, 2009. ICST ’09, 2009, pp. 326–335. 

[4] “XML-XIG: XML Instance Generator (XIG).” [Online]. Available: 
http://xml-xig.sourceforge.net/. [Accessed: 02-Jul-2014]. 

[5] “Sun Multi-Schema Validator,” 02-Jul-2014. [Online]. Available: 
https://java.net/projects/msv/sources/svn/show/trunk?rev=1827. 
[Accessed: 02-Jul-2014]. 

[6] “EJBGen : EJB Source Generation Library.” [Online]. Available: 
http://ejbgen.sourceforge.net/. [Accessed: 02-Jul-2014]. 

[7] H. M. Sneed and S. Huang, “The design and use of WSDL-Test: a 
tool for testing Web services,” J. Softw. Maint. Evol. Res. Pract., vol. 
19, no. 5, pp. 297–314, Sep. 2007. 

[8] S. Cohen, “Generating XML Structure Using Examples and 
Constraints,” Proc VLDB Endow, vol. 1, no. 1, pp. 490–501, Aug. 
2008. 

[9] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Automatic Test 
Data Generation for XML Schema-based Partition Testing,” presented 
at the Second International Workshop on Automation of Software 
Test , 2007. AST ’07, 2007, pp. 4–4. 

[10] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A Z3-based String 
Solver for Web Application Analysis,” in Proceedings of the 2013 9th 
Joint Meeting on Foundations of Software Engineering, New York, 
NY, USA, 2013, pp. 114–124. 

[11] V. Ganesh and A. Kiezun, “Kaluza String Solver.” [Online]. 
Available: http://webblaze.cs.berkeley.edu/2010/kaluza/. [Accessed: 
21-Oct-2013]. 

[12] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst, 
“HAMPI: A Solver for String Constraints,” in Proceedings of the 
Eighteenth International Symposium on Software Testing and 
Analysis, New York, NY, USA, 2009, pp. 105–116. 

[13] P. Hooimeijer and W. Weimer, “StrSolve: solving string constraints 
lazily,” Autom. Softw. Eng., vol. 19, no. 4, pp. 531–559, Dec. 2012. 

[14] M. Janzen, M. Horsch, and E. Neufeld, “Camera Selection Using 
SCSPs,” in Proceedings of the 2008 Conference on Future Play: 
Research, Play, Share, New York, NY, USA, 2008, pp. 252–253. 

[15] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox 
fuzzing,” in SIGPLAN Not., 2008, vol. 43, pp. 206–215. 

[16] A. Shahbazi, A. F. Tappenden, and J. Miller, “Centroidal Voronoi 
Tessellations—A New Approach to Random Testing,” IEEE Trans. 
Softw. Eng., vol. 39, no. 2, pp. 163–183, Feb. 2013. 

[17] T. Y. Chen and R. Merkel, “Quasi-Random Testing,” IEEE Trans. 
Reliab., vol. 56, no. 3, pp. 562–568, Sep. 2007. 

[18] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter, “Combinatorial Software 
Testing,” Computer, vol. 42, no. 8, pp. 94–96, 2009. 

[19] A. Martens and A. F. Tappenden, “A Benchmark for Automated Web 
Service Testing,” presented at the 1st CCWSR Meeting, Edmonton, 
Canada, 2014. 

 

TABLE I. COMPARISON OF THE PROPOSED TOOL VS. TAXI VS. TOXGENE 

The Proposed Tool TAXI ToXGene 

Ease of Automation Fully automated with random data Semi-Automated Semi-Automated 

Manual Interactions 
Required 

Optional: 

WS-specific configuration available 

XSD Extraction, Root Element, and 
Generation Options Required 

No Post Generation Packaging 

Automated when processing 
TSL 
XSD Extraction and  
Manual XSD to TSL Required 

No Post Generation Packaging 

Tester Control Tester supplied data and structure 
customizations  Control over structure but not data. Extensive control over data,  

limited control over structure. 

Namespace Handling Automatically maintains all namespaces Maintains namespaces, but requires manual 
configuration Does not maintain namespaces 

XSD Coverage 

Cannot generate key references, ID, IDREF 
and ENTITY that validate against the XSD.  

The pattern constraint and date type 
constraints are not currently implemented.  

Lack of support for nested choices, 
attribute groups, any, union, extension, 
IDREF, ID, groups, enumerations. 

Unaware of implicit data constraints for all 
44 atomic data types. 

None, requires manual 
conversion from XSD to TSL. 

521520520


