
Unit Testing - Recap

with JUnit

Unit testing is a software development process in which the
smallest testable parts of an application, called units, are
individually and independently analysed for proper operation.

● Unit Testing
● Integration Testing
● Regression Testing
● ...

https://www.softwaretestinghelp.com/types-of-software-testing/

Individual modules are combined and tested as a group.
Data transfer between the modules is tested as well.

Regression means retesting the unchanged parts of the application.

Test cases are re-executed in order to check whether the previous
functionality of the application is working fine and the new changes have
not introduced any new bugs.

This test can be performed on a new build when there is a significant
change in the original functionality that too even in a single bug fix.

The oldest type of software testing.

It requires a tester to perform manual
test operations on the test software
without automation scripts.

The tester choose which tests to run,
when to run them, and how many times.

Automated Testing

To automatically verify main functionality, ensure new version
does not cause new defects, provide regression testing and help
the teams to run a large number of tests in a short period of time.

Companies having great number of projects are looking for
specialists in the field of automated testing.

Automated web testing

with Selenium

is a chemical
element with
symbol Se and
atomic number
34

Selenium is a suite of tools to automate web browsers across
many platforms.

We will use it for automating tests of web applications

During the development of selenium core 2004 there was another competitive
product developed by a company called Mercury Interactive.

A joke by Jason Huggins saying that “mercury poisoning can be cured
by taking selenium supplements”.

Selenium is used to remove the toxic content mercury from the human body,
so Jason coined the term Selenium for their creative open-source project.

http://www.jrandolph.com/blog/

to remotely control browsers so that we can do things like write
automated tests for the content they run or tests for the browser UI
itself.

Should I write a test in a different way per each browser that is out
there? No, to this end, a group of people from several organizations is
working on the WebDriver Specification.

https://w3c.github.io/webdriver/

Selenium WebDriver provides APIs so that you can write code in your
favourite language to simulate user actions like this:

client.get("http://pros.unicam.it/")
link = client.find_element_by_id("participate")
link.click()

Underneath that API, commands are transmitted via JSON over HTTP.

For example,
to tell the browser to navigate to a url, a client sends a POST request to the
endpoint /session/{session id of the browser instance you're talking to}/url
with body {"url": "http://pros.unicam.it/"}.

At the beginning Selenium had to develop drivers for some browser they
wanted to interact with.

Then, browser vendors started implementing the Selenium JSON Wire
Protocol themselves!

This makes a lot of sense: they’re in the best position to maintain the server
side and they can build the necessary behaviour directly into the browser.

It started with OperaDriver in 2009-2011, and then others followed such as
ChromeDriver and Mozilla’s geckodriver with Marionette. This is where the
motivation for a WebDriver standard comes from.

https://dev.opera.com/blog/operadriver-now-a-part-of-selenium-and-experimental-android-support-2/

GO TO: https://www.seleniumhq.org/

Step 0 Open Eclipse
Step 1 Create a new Maven Project
Step 2 Add Selenium Maven Dependency
Step 3 Download Third Party Browser Drivers
Step 4 Follow Me! :D

Preferred selector order : id > name > css > xpath

● Html is a standard markup language for creating Web pages. Html
elements are the building blocks of HTML pages. HTML tags label
pieces of content, such as “heading”, “paragraph”, “table”, and so
on.

● HTML elements usually consists of start tag and end tag with
content inserted between them.

● For example:
- <h1> An example for an HTML title </h1>
- <p> An example for an HTML paragraph </p>

● CSS is a language that describes the style of an HTML document.

● CSS describes how HTML elements should be displayed.

● A CSS rule-set consists of a selector and a declaration block. For
example: selector - h1, declaration – {color:blue;}.

<style>

body {
 background-color: lightblue;
}

</style>

● CSS selectors are used to "find" (or select) HTML elements based
on their element name, id, class, attribute, and more.

● Some Selectors:

○ Element selector : The element selector selects elements
based on the element name. for example: p, h1 etc.

○ ID selector: The id selector uses the id attribute of an HTML
element to select a specific element. For example: #id1,
#para2 etc.

● A CSS rule-set consists of a selector and a declaration block. For
example: selector - h1, declaration – {color:blue;}.

● XPath stands for XML Path Language, it can be used to navigate
through elements and attributes in an XML document.

● XPath uses path expressions to select nodes or node-sets in an
XML document

Syntax:
● // - Selects nodes in the document from the current node that

match the selection no matter where they are.
● @ - Selects attributes

● Example

<!DOCTYPE html>
<html>
<head>
<title> Page Title</title>
</head>
<body>
<h1 id=”h1_id”> This is part of the presentation title</h1>
<p>This is the paragraph.</p>
</body>
</html>

The query: //h1[@id=’h1_id’] will get the h1 element

● A Selenium Web driver must be created

● For using Chrome:
○ System.setProperty("webdriver.chrome.driver",

projectPath+"/drivers/chromedriver");*
○ WebDriver driver = new ChromeDriver();

● Interaction with the Chrome instance will be made in the code on
the driver.

*Note: you need to specify, before instantiating the BrowserDriver, the
path to the actual driver that you downloaded following instructions from
the selenium website https://www.seleniumhq.org/download/.

● Navigation using a Selenium WebDriver is very simple, given a
defined URL. It can be done in two ways, driver.get(…) or
driver.navigate().to(…)

○ driver.get("https://www.google.com/");
○ driver.navigate().to("https://www.google.com/");

● The driver.get(…) and driver.navigate().to(…) do exactly the same
thing. driver.navigate() supports also driver.navigate().forward() and
driver.navigate().backward()

● Web elements can be defined as each opening and closing tags in
the web page. For example: <button>Click Me</button> - a web
element.

● Finding a web element and interacting with it can be done in
several ways: - ID. - Class. - Name. - Xpath. - Css Selector, etc.

● An example:

○ Assuming that we have the following web page:
<html>

<body>
<button id= “my_button”> Click Me</button>

</body>
</html>

○ The following lines of code will be used for clicking the button:
WebElement button = driver.findElement(By.id(" my_button "));
button.click();

Download it from:
https://www.seleniumhq.org/selenium-ide/

and let us see what we can do with it...

Download the extension for the browser you want to use

Try to find any difference

You can find here a nice introduction on Selenium
(not done by me):

https://www.youtube.com/watch?v=SQkyo1k7c8A

