Software Project Management Laboratory
1. Git Introduction

Andrea Morichetta, Phd

Computer Science Division
http://swcarpentry.github.io/git-novice/
Pro Git Book

October 3rd, 2018

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 1/84

http://swcarpentry.github.io/git-novice/
http://swcarpentry.github.io/git-novice/

IN CASE OF FIRE

0= git commit

E‘I‘:I git push

-ﬂ| exit building

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 2/84

http://swcarpentry.github.io/git-novice/

Why Git is useful?
“FINAL doc

£9 i7)

CENAL.doc! FINAL rev.2.doc

0
FlNAL rev 8.commentsS.
FINAL _rev.6.COMMENTS.doc CORRECTIONG, doc.

JoRes CiAM ©2012

- b
FINAL_rev.18.comments?. ENAL_rev.22. commenfst{?
corrections?.MORE.30.doc ¢orrections. (0. #@%%WHYDD

WWW.PHDCOMICS. COM

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 3/84

http://swcarpentry.github.io/git-novice/

Use Case

Consider this scenario:
@ You have a homework submission for today and the assignment is
ready for submission

@ While testing it you discovered a minor bug and decided to fix it

o After attempting to do so, you accidentally changed a working code
and got yourself in a big mess

@ You no longer remember what was and what wasn’t there
o It is 23:58 PM

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 4/84

http://swcarpentry.github.io/git-novice/

Use Case

Consider this scenario:
@ You have a homework submission for today and the assignment is
ready for submission

@ While testing it you discovered a minor bug and decided to fix it

o After attempting to do so, you accidentally changed a working code
and got yourself in a big mess

@ You no longer remember what was and what wasn’t there
o It is 23:58 PM
Then you realize that Ctrl + Z won’t solve your problem

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 4/84

http://swcarpentry.github.io/git-novice/

What is Git?

@ Open source project originally developed in 2005 by Linus Torvalds
o A command line utility

@ You can imagine git as something that sits on top of your file system
and manipulates files.

o A distributed version control system - DCVS

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 5/84

http://swcarpentry.github.io/git-novice/

What is distributed version control system?

@ Version control system is a system that records changes to a file or
set of files over time so that you can recall specific versions later

o Distributed means that there is no main server and all of the full
history of the project is available once you cloned the project.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 6/84

http://swcarpentry.github.io/git-novice/

Git

@ You can imagine git as something that sits on top of your file system
and manipulates files.

@ This "something” is a tree structure where each commit creates a
new node in that tree.

@ Nearly all git commands actually serve to navigate on this tree and to
manipulate it accordingly.

branch @

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 7/84

http://swcarpentry.github.io/git-novice/

Git repository

@ The purpose of git is to manage a project, or a set of files, as they
change over time. Git stores this information in a data structure
called a repository

@ A git repository contains, mainly:

» A set of commits

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 8/84

http://swcarpentry.github.io/git-novice/

Commit

@ A commit object mainly contains three things:

» A set of changes the commit introduces
» Commit message describing the changes
» A hash, a 40-character string that uniquely identifies the commit object

Commit id (hash)

Commit message

The change the commit introduces

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 9/84

http://swcarpentry.github.io/git-novice/

GitHub

[Mojang / brigadier @watch | 128 | Star | 1340 | YFork 120

<> Code Issues 5 Pull requests 7 Insights

o Dismiss
Join GitHub today
GitHub is home to over 28 million developers working together to host and
review code, manage projects, and build software together.
Brigadier is a command parser & dispatcher, designed and developed for Minecraft: Java Edition.
® 163 commits ¥ 7 branches © 1release 22 9 contributors. e miT
e mane |
[15} y-FR and Remove usages (#13) Latest commit 7ee589b 5 days ago

W gradle/wrapper
i sic

B .gitignore

B .travis.yml

[LICENSE

B README.md

B build.gradle

B gradle.properties

B gradlew

Added missing gradle wrapper

Remove unnecessary Guava usages (#13)

Added missing gradle wrapper

Add travis CI configuration

Add MIT license

link shields respectively to the latest release and license file
Remove unnecessary Guava usages (#13)

Upload to S3 if *-PbuildNumber’ is set, otherwise version is “100.0-S.

Make gradlew executable

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory

5 months ago
5 days ago

5 months ago
7 days ago
13 days ago
7 days ago

5 days ago

3 months ago

7 days ago

October 3rd, 2018

10/84

http://swcarpentry.github.io/git-novice/

Atlassian

Bitbucket

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory

Your work

Repositories

@ Semantic
BPMINPros - Last updated 201807-10

BPMN_Models_From_Literature

BPMN_Models_ From_Literature-Last updated 2018.06.2

BEBOP_v.20
BEBOP - Lastupdated 2018

BEBOP_v.1.0
BeBop - Last

@ BPMNWStructured
8PN

OR-JoinPreprocessing
ORJoin - Last updated 20

BPMNOS
aPMNOS

View all repositories.

Lastupdated v

October 3rd, 2018

11/84

http://swcarpentry.github.io/git-novice/

create browse

. change
Basics 5

Use git help [command] if you're stuck. init status mark changes
clone log E e

master default devel branch blame

origin default upstream branch :m;;'

HEAD current branch =

HEAD™ parent of HEAD

Git Cheat Sheet (Ieﬂ:torlght) Command Flow
by Jan Kriiger <jk@k.gs>, hitp:/jan-krueger.netigit p — . S
revert update branch commit push
reset pull checkout commit
checkout fetch branch iy pstch
revert merge
HEAD-4 great-great grandparent of HEAD B
foo. .bar from branch foo to branch bar

Bhed on vy Zack s
4 \ Publish
Creste (Useful Tools \

In Git, comnit only respects changes that
e been marked explicitly with add.

Tracking Files

From existing files

it 4 it commit [-a it archive git add files
R o g o chnge s e e git mv old new
automatically e bs it files

From existing repository it format-patch origin GG b :

git clone ~/old ~/new e (et ot of ity >) Binary seach for defects 3 i ==eadie) Rl

T o e o A e (stop tracking but koap fils in working dir)

git clone sshi//...) (push o origin or remota) Take single commit from elsevhere

git tag foo git fsck
\ J \ (mark curront version) / P
git ge A
B Structure Overview
4 View) git rebase
oimele no ety Local Repository
git status Update git remote add URL
git diff [oldid newid] egotera v tmots eposry
git log [-p] [file|dir] git fetch (rom def. upstream) 1 1 this tree
git blame file Gpit ot momarie git stash heckout to switch
O ity 00 (e O o o) Temporariy sot s changes]
git show id:file git am -3 patch.mbox EE T,
git branch (shows list, + = current) git apply patch.diff . ere's more o i Current Branch
git tag -1 (shows st J U VA oot ., Branch (in .git)
\ (in .git)
Revert Branch
In G, revert usually describes a new o1 oush
commit that Lndons provious commits git checkout branch Conflicts !
’ 8 O O e B |
HET FEECE L RErd we B3 IORp ARl emote reposituq‘y (e.g. origin)
git revert branch git branch branch ER A »
A (branch curront) -
SR R D o git checkout -b new other i i “eheirs Branch [Branch |
. (branch now from other and t Tog --merge

r
git checkout id file \ Swich o 1)) \gitk “merge Y,

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 12 /84

http://swcarpentry.github.io/git-novice/

Installing Git

Before to start:
https://git-scm.com/book/en/v2/
Getting-Started-Installing-Git

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 13 /84

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://swcarpentry.github.io/git-novice/

Git Configuration

When we use Git on a new computer for the first time, we need to
configure a few thing:

@ our name and email address,

@ what our preferred text editor is,

$ git config —global user.name " Andrea Morichetta
$ git config —global user.email "andrea.morichetta@unicam. it

”

$ git config —global core.editor "gedit”

This user name and email will be associated with your subsequent Git
activity, which means that any changes pushed to GitHub, BitBucket,
GitLab or another Git host server in a later lesson will include this
information.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 14 /84

http://swcarpentry.github.io/git-novice/

Git Config List

The commands run above only need to be run once: the flag —global tells
Git to use the settings for every project, in your user account, on this
computer.

You can check your settings at any time:

$git config —list

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 15 /84

http://swcarpentry.github.io/git-novice/

Creating a Repository

First, let's create a directory in Desktop folder for our work and then move
into that directory:

$ cd “/Desktop

$ mkdir thesis

$ cd thesis
Then we tell Git to make project a repository; a place where Git can store
versions of our files:

$ git init
It is important to note that git init will create a repository that includes
subdirectories and their files; there is no need to create separate
repositories nested within the thesis repository, whether subdirectories are
present from the beginning or added later. Also, note that the creation of
the thesis directory and its initialization as a repository are completely
separate processes.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 16 /84

http://swcarpentry.github.io/git-novice/

Git Repository

If we use Is to show the directory’s contents, it appears that nothing has
changed:

$ Is

But if we add the -a flag to show everything, we can see that Git has
created a hidden directory within planets called .git:

$ Is —a

.git

Git uses this special sub-directory to store all the information about the
project, including all files and sub-directories located within the project’s
directory. If we ever delete the .git sub-directory, we will lose the project’s
history.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 17 /84

http://swcarpentry.github.io/git-novice/

Git Status

We can check that everything is set up correctly by asking Git to tell us
the status of our project:

$ git status

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 18 /84

http://swcarpentry.github.io/git-novice/

Git exercise

Create a new chapter folder in the thesis repository

$ mkdir chapter # make a sub—directory thesis/chapter
$ cd chapter # go into chapter sub—directory
$ Is —a # ensure that the sub—directory is present

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 19 /84

http://swcarpentry.github.io/git-novice/

Git exercise

Create a new chapter folder in the thesis repository
make a sub—directory thesis/chapter

into chapter sub—directory
is present

$ mkdir chapter
go
sub—directory

$ cd chapter
$ Is —a # ensure that the

Is the git init command, run inside the chapter sub-directory, required for

tracking files stored in the thesis sub-directory?

October 3rd, 2018

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory

19/84

http://swcarpentry.github.io/git-novice/

Git exercise

Create a new chapter folder in the thesis repository

$ mkdir chapter # make a sub—directory thesis/chapter
$ cd chapter # go into chapter sub—directory
$ Is —a # ensure that the sub—directory is present

Is the git init command, run inside the chapter sub-directory, required for
tracking files stored in the thesis sub-directory? J

No. We do not need to make the chapter sub-directory a Git repository
because the thesis repository will track all files, sub-directories, and
sub-directory files under the thesis directory. Thus, in order to track all
information about thesis, we only needed to add the chapter
sub-directory to the thesis directory.

Additionally, Git repositories can interfere with each other if they are
"nested”: the outer repository will try to version-control the inner
repository. Therefore, it's best to create each new Git repository in a
separate directory.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 19 /84

http://swcarpentry.github.io/git-novice/

Tracking Changes

Questions
@ How do | record changes in Git?
@ How do | check the status of my version control repository?

@ How do | record notes about what changes | made and why?

Objectives
@ Go through the modify-add-commit cycle for one or more files.
@ Explain where information is stored at each stage of that cycle.

@ Distinguish between descriptive and non-descriptive commit messages.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 20/84

http://swcarpentry.github.io/git-novice/

Create file

First let's make sure we're still in the right directory. You should be in the
thesis directory.

$ pwd
Let's create a file called title.txt that contains some notes about the title
and authors. We'll use nano to edit the file; you can use whatever editor
you like. In particular, this does not have to be the core.editor you set

globally earlier. But remember, the bash command to create or edit a new
file will depend on the editor you choose (it might not be nano).

$ nano title.txt

Type some text into the title.txt file.

$ git status

The "untracked files” message means that there’s a file in the directory
that Git isn't keeping track of.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 21/84

http://swcarpentry.github.io/git-novice/

Git Add

We can tell Git to track a file using git add:

$ git add title.txt

and then check that the right thing happened:

$ git status

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 22/84

http://swcarpentry.github.io/git-novice/

Git Commit

Git now knows that it's supposed to keep track of title.txt, but it hasn't
recorded these changes as a commit yet. To get it to do that, we need to
run one more command:

$ git commit —m " Start notes on title file”

When we run git commit, Git takes everything we have told it to save by
using git add and stores a copy permanently inside the special .git
directory. This permanent copy is called a commit (or revision) and its
short identifier is f22b25e. Your commit may have another identifier.

We use the -m flag (for "message”) to record a short, descriptive, and
specific comment that will help us remember later on what we did and
why. If we just run git commit without the -m option, Git will launch nano
so that we can write a longer message.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 23 /84

http://swcarpentry.github.io/git-novice/

Git Log

If we run git status now:
$ git status
On branch master
nothing to commit, working directory clean
t tells us everything is up to date. If we want to know what we've done

recently, we can ask Git to show us the project’s history using git log:
$ git log

commit 26be42751f20cbcc113e8b2dab00c3b2b661ee7e (HEAD —> master)
Author: Andrea M <andrea.morichetta@unicam.it>
Date: Wed Oct 10 17:05:34 2018 +0200

first commit

git log lists all commits made to a repository in reverse chronological
order. The listing for each commit includes the commit’s full identifier, the
commit’s author, when it was created, and the log message Git was given

when the commit was created.
Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 24 /84

http://swcarpentry.github.io/git-novice/

Change the title file

Now suppose that we want adds more information to the file title.txt.
$ nano title.txt

This is a new line in the title.txt file

When we run git status now, it tells us that a file it already knows about
has been modified:
$ git status

On branch master
Changes not staged for commit:

(use "git add <file >..." to update what will be committed)
(use "git checkout — <file >...” to discard changes in working di
modified : title . txt

no changes added to commit (use " git add” and/or " git commit —a")

1

The last line is the key phrase: "no changes added to commit”. We have
changed this file, but we haven't told Git we will want to save those

changes (which we do with git add) nor have we saved them (which we do
with oit commit)

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 25 /84

http://swcarpentry.github.io/git-novice/

Git Diff

It is good practice to always review our changes before saving them. We
do this using git diff. This shows us the differences between the current
state of the file and the most recently saved version:

$ git diff

diff —git a/title.txt b/title.txt
index d3e2104..81bc58d 100644

—— a/title . txt

+++ b/title . txt

©0 -1 +1,2 @@

This is the first line

+This is the second line

@ The first line tells us that Git is comparing the old and new versions of the file.

@ The second line tells which versions of the file Git is comparing; d3e2104 and
81bc58d are unique computer-generated labels for those versions.

@ The third and fourth lines once again show the name of the file being changed.
@ The remaining lines show the actual differences and the lines on which they occur.

In particular, the 4+ marker in the first column shows where we added a line.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 26 /84

http://swcarpentry.github.io/git-novice/

Git Add & Commit

Git insists that we add files to the set we want to commit before actually
committing anything. This allows us to commit our changes in stages and
capture changes in logical portions rather than only large batches. For
example, suppose we're adding a few citations to relevant research to our
thesis. We might want to commit those additions, and the corresponding
bibliography entries, but not commit some of our work drafting the
conclusion (which we haven't finished yet).

$ git add title.txt
$ git commit —m "Added the second line in the tile file”

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 27 /84

http://swcarpentry.github.io/git-novice/

Where are my changes?

O] ©)

gitinit git add git commit

e o — —
7’

Working Directory Staging Area

Make changes to files: Files are ready for commit

Git take snapshots of changes over the life of a project,

git add specifies what will go in a snapshot (putting things in the staging
area), git commit then actually takes the snapshot, and makes a
permanent record of it (as a commit).

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 28 /84

http://swcarpentry.github.io/git-novice/

Add a new line in the title file and then:
«O>» <Fr «=Z»r «E>» = Q>
Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory ~ October 3rd, 2018 ~ 29/84

http://swcarpentry.github.io/git-novice/

Git Log

To avoid having git log cover your entire terminal screen, you can limit the
number of commits that Git lists by using -N, where N is the number of

commits that you want to view. For example, if you only want information
from the last commit you can use:

$ git log -1
$ git log —oneline

$ git log —oneline —graph —all —decorate

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 30/84

http://swcarpentry.github.io/git-novice/

Multiple Add

FILE1L.txt

FILE2.txt

Andrea Morichetta, Phd (Computer Science | Software Project Management Laboratory

m]

5 =

DA
October 3rd, 2018

31/84

http://swcarpentry.github.io/git-novice/

Exploring Hystory

You can refer to the most recent commit of the working directory by using
the identifier HEAD

$ git diff HEAD title.txt

If we want to see the differences between older commits we can use git diff

again, but with the notation HEAD™1 , HEAD™2, and so on, to refer to
them:

git diff HEAD" tilde"”"2 mars. txt

Or
$git log

$ git diff f22b25e3233b4645dabd0d81e651fe074bd8e73b title . txt

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 32/84

http://swcarpentry.github.io/git-novice/

Exploring Hystory

We could also use git show which shows us what changes we made at an

older commit as well as the commit message, rather than the differences

between a commit and our working directory that we see by using git diff.
$ git show HEAD"2 mars. txt

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 33/84

http://swcarpentry.github.io/git-novice/

Git Checkout

So we can save changes to files and see what we've changed
o git status tells us that the file has been changed, but those changes
haven't been staged.
@ now how can we restore older versions of things? Let's suppose we
accidentally overwrite our file:

$ git status

On branch master
Changes not staged for commit:

(use "git add <file >..." to update what will be committed)

(use "git checkout — <file >...” to discard changes in working di
18:40

modified : title . txt

no changes added to commit (use " git add” and/or " git commit —a")

We can put things back the way they were by using git checkout:
$ git checkout HEAD title .txt

$ cat title.txt

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 34 /84

http://swcarpentry.github.io/git-novice/

Git Checkout to an Older Version

If we want to go back even further, we can use a commit identifier instead:

$ git checkout f22b25e title.txt

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 35/84

http://swcarpentry.github.io/git-novice/

lgnoring Things

What if we have files that we do not want Git to track for us, like backup
files created by our editor or intermediate files created during data
analysis?

Let's create a few dummy files:

$ mkdir newFolder
$ touch a.dat b.dat c.dat results/a.out results/b.out

and see what Git says:

$ git status

Putting these files under version control would be a waste of disk space.

Having them all listed could distract us from changes that actually matter,
so let's tell Git to ignore them.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 36 /84

http://swcarpentry.github.io/git-novice/

.gitignore

We can ignore dummy files creating in the root directory of our project a
file called .gitignore
$ nano .gitignore

$ cat .gitignore

*.dat

results/
These patterns tell Git to ignore any file whose name ends in .dat and
everything in the newFolder directory. (If any of these files were already
being tracked, Git would continue to track them.)
Once we have created this file, the output of git status is much cleaner:

$ git status

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 37/84

http://swcarpentry.github.io/git-novice/

We should track .gitignore?

everyone we're sharing our repository with will probably want to ignore the
same things that we're ignoring. Let's add and commit .gitignore:

$ git add .gitignore
$ git commit —m "lgnore data files and the results folder.”
$ git status

Using .gitignore helps us avoid accidentally adding to the repository files
that we don’t want to track:

$ git add a.dat
If we really want to override our ignore settings, we can use git add -f to

force Git to add something. For example, git add -f a.dat. We can also
always see the status of ignored files if we want:

$ git status —ignored

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 38/84

http://swcarpentry.github.io/git-novice/

Remotes in Git

Version control really comes into its own when we begin to collaborate with
other people. We already have most of the machinery we need to do this;
the only thing missing is to copy changes from one repository to another.

Systems like Git allow us to move work between any two repositories. In
practice, though, it's easiest to use one copy as a central hub, and to keep
it on the web rather than on someone’s laptop.

Most programmers use hosting services like GitHub, BitBucket or
GitLab to hold those master copies.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 39/84

http://swcarpentry.github.io/git-novice/

GitHub

@ GitHub is the single largest host for Git repositories, and is the central
point of collaboration for millions of developers and projects.

@ A large percentage of all Git repositories are hosted on GitHub, and
many open-source projects use it for Git hosting, issue tracking, code
review, and other things.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 40 /84

http://swcarpentry.github.io/git-novice/

Create a New Account

The first thing you need to do is set up a free user account. Simply visit
https://github.com, choose a user name that isn't already taken,

provide an email address and a password, and click the big green " Sign up
for GitHub" button.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 41/84

https://github.com
http://swcarpentry.github.io/git-novice/

Maintaining a Project

Creating a New Repository
Let's create a new repository to share our project code with.
Start by clicking the " New repository” button on the right-hand side of

the dashboard, or from the + button in the top toolbar next to your
username as seen in The "New repository” dropdown.

@, schacon +- ¥ P

. New repository
ss

= | Import repository

New organization

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 42 /84

http://swcarpentry.github.io/git-novice/

Create a new repository on GitHub

Pull requests Issues Gist ToDo

Edit profile

[#] Contrit

ions = [J Repositories 3 Public activity
Popular repositories Repositories contributed to

F TMAAS [anlliab

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name
il /
Great repository names are short and Need ion? How about

Description (optional)

O Public
Anyone can see this repository. You choose who can commit

Private
You choose who can see and commit to this repository.
Initialize this repository with a README

“This willlet you immediately clone the repository to your computer. Skip this step if you're importing an existing repository.

Add gitignore: None ~ Add alicense: None ~ | @

Create repository

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 43 /84

http://swcarpentry.github.io/git-novice/

New Repository

As soon as the repository is created, GitHub displays a page with a URL
and some information on how to configure your local repository:

am1987 / Thesis @unwatch~ 0 st 0 o

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings

Quick setup — if you’ve done this kind of thing before
or [HTTPS | ssH | nttps://github.con/an1987/Thesis.git &

We recommend every repository include a README, LICENSE, and .gitignore.

...or create a new repository on the command line

echo "# Thesis" >> README.md B
git init

git add README.md

git commit -m "first commit"

git remote add origin https://github.com/am1987/Thesis.git

git push -u origin master

...or push an existing repository from the command line

git remote add origin https://github.com/am1987/Thesis.git B
git push -u origin master

...or import code from another repository

You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Import code

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 44 /84

http://swcarpentry.github.io/git-novice/

What happened in the Server?
This effectively does the following on GitHub's servers:

~iad/planets

htps://github.com/viad/planets.git

Note that our local repository still contains our earlier work, but the remote
repository on GitHub appears empty as it doesn't contain any files yet.

[m] = = =
Andrea Morichetta, Phd (Computer Science | Software Project Management Laboratory

E DA
October 3rd, 2018 45 /84

http://swcarpentry.github.io/git-novice/

Connect Local and Remote Repositories

We do this by making the GitHub repository a remote for the local

repository. The home page of the repository on GitHub includes the string
we need to identify it:

Quick setup — if you’ve done this kind of thing before

or HTTPS SSH https://github.com/ami987/Thesis.git

B
We recommend every repository include a README, LICENSE, and .gitignore.

Click on the HTTPS' link to change the protocol from SSH to HTTPS.
Copy that URL from the browser, go into the local thesis repository, and

run this command:

$ git remote add origin https://github.com/am1987/Thesis. git

We can check that the command has worked by running git remote -v:
$ git remote —v

The name origin is a local nickname for your remote repository. We could
use something else if we wanted to, but origin is by far the most common.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 46 /84

http://swcarpentry.github.io/git-novice/

Git Push

Once the nickname origin is set up, this command will push the changes
from our local repository to the repository on GitHub:

~Nad/planets

https://github.com/viad/planets.git

m]

Andrea Morichetta, Phd (Computer Science | Software Project Management Laboratory

=

DA

October 3rd, 2018 47 /84

http://swcarpentry.github.io/git-novice/

Curiosity

Push vs. Commit

When we push changes, we're interacting with a remote repository to
update it with the changes we've made locally (often this corresponds to
sharing the changes we've made with others). Commit only updates your
local repository.

Fixing Remote Repository

The command git remote set-url allows us to change the remote’'s URL
to fix it.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 48 /84

http://swcarpentry.github.io/git-novice/

Git Pull

We can pull changes from the remote repository to the local one as well:

$ git pull origin master

While the git fetch command will fetch down all the changes on the server
that you don't have yet, it will not modify your working directory at all. It
will simply get the data for you and let you merge it yourself. However,
there is a command called git pull which is essentially a git fetch
immediately followed by a git merge in most cases.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 49 /84

http://swcarpentry.github.io/git-novice/

Collaborating in Git

One person will be the "Owner” and the other will be the " Collaborator”.
The goal is that the Collaborator add changes into the Owner's repository.

The Owner needs to give the Collaborator access. On GitHub, click the

settings button on the right, then select Collaborators, and enter your
partner’s username.

Code Issues 0 Pull requests 0 Wiki Pulse Graphs £} Settings

Options Collaborators

Push access to the repository
Collaborators

Webhooks & services This repository doesn't have any collaborators yet. Use the form below to add a collaborator.

Deploy keys

Search by username, full name or email address

To accept access to the Owner's repo, the Collaborator needs to go to
https://github.com/notifications. Once there she can accept access to the
Owner's repo.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 50/84

http://swcarpentry.github.io/git-novice/

Clone a project

The Collaborator needs to download a copy of the Owner's repository to

her machine. This is called " cloning a repo”. To clone the Owner’s repo
into her Desktop folder, the Collaborator enters:

:
g
R

hitps//github comviad/planets.git

N

Andrea Morichetta, Phd (Computer Science | Software Project Management Laboratory

DA

October 3rd, 2018 51/84

Si

http://swcarpentry.github.io/git-novice/

Collaborators Change

The Collaborator can now make a change in her clone of the Owner's
repository, exactly the same way as we've been doing before:

$ cd “/Desktop/thesis
$ nano title.txt
$ cat title.txt

$ git add title.txt
$ git commit —m "Add notes about new part”

Then push the change to the Owner’s repository on GitHub:
$ git push origin master
Note that we didn’t have to create a remote called origin: Git uses

this name by default when we clone a repository. (This is why origin was a
sensible choice earlier when we were setting up remotes by hand.)

Take a look to the Owner’s repository on its GitHub website now (maybe
you need to refresh your browser.) You should be able to see the new
commit made by the Collaborator.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 52/84

http://swcarpentry.github.io/git-novice/

Download Collaborators Changes

$ git pull origin master

Now the three repositories (Owner's local, Collaborator’s local, and
Owner's on GitHub) are back in sync.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018

53 /84

http://swcarpentry.github.io/git-novice/

Summarizing

In practice, it is good to be sure that you have an updated version of the
repository you are collaborating on, so you should git pull before
making our changes.

The basic collaborative workflow would be:

update your local repo with git pull origin master,

make your changes and stage them with git add,

commit your changes with git commit -m,

upload the changes to GitHub with git push origin master

It is better to make many commits with smaller changes rather than of
one commit with massive changes: small commits are easier to read
and review.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 54 /84

http://swcarpentry.github.io/git-novice/

Review Changes

On the command line, the Collaborator can use git fetch origin master
to get the remote changes into the local repository, but without merging
them.
Then by running git diff master origin/master the Collaborator will see
the changes output in the terminal.

$ git fetch origin/master

$ git diff master origin/master
$ git merge origin/master

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 55 /84

http://swcarpentry.github.io/git-novice/

Conflict

As soon as people can work in parallel, they'll likely step on each other’s
toes. This will even happen with a single person: if we are working on a
piece of software on both our laptop and a server in the lab, we could
make different changes to each copy. Version control helps us manage
these conflicts by giving us tools to resolve overlapping changes.

Let's create a conflict modifing the same file between collaborators:

$ nano title.txt

$ git add title.txt

$ git commit —m "Add a line in our home copy”
$ git push origin master

Now let's have the other partner make a different change to their copy
without updating from GitHub:

$ nano title.txt

$ git add title.txt

$ git commit —m "Add a line in my copy”
$ git push origin master

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 56 /84

http://swcarpentry.github.io/git-novice/

Conflict error message

To https://github.com/am1987/Thesis.git
! [rejected] master -> master (fetch first)
: failed to push some refs to 'https://github.com/am1987/Thesis.git'
: Updates were rejected because the remote contains work that you do

: not have locally. This is usually caused by another repository pushing
: to the same ref. You may want to first integrate the remote changes
: (e.g., 'git pull ...') before pushing again.

: See the 'Note about fast-forwards' in 'git push --help' for details.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 57 /84

http://swcarpentry.github.io/git-novice/

Solving the Conflict

Git rejects the push because it detects that the remote repository has
new updates that have not been incorporated into the local branch.

What we have to do is pull the changes from GitHub, merge them into the
copy we're currently working in, and then push that. Let's start by pullin

$ git pull origin master

The git pull command updates the local repository to include those
changes already included in the remote repository. After the changes
from remote branch have been fetched, Git detects that changes made
to the local copy overlap with those made to the remote repository, and
therefore refuses to merge the two versions to stop us from trampling on
our previous work.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 58 /84

http://swcarpentry.github.io/git-novice/

Conflict at Local repository

The conflict is marked in in the affected file:
$cat title.txt

<LCLLss HEAD'
We added a different line in the other copy

This line added to Wolfman's copy
>>>>>>> (dabb4c8c450e8475aee9b14b4383acc99f42afid

Our change is preceded by <<<<<<< HEAD. Git has then inserted
======= as a separator between the conflicting changes and marked
the end of the content downloaded from GitHub with >>>>>>>. (The
string of letters and digits after that marker identifies the commit we've
just downloaded.)

It is now up to us to edit this file to remove these markers and
reconcile the changes. We can do anything we want: keep the change
made in the local repository, keep the change made in the remote
repository, write something new to replace both, or get rid of the change
entirely.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 59 /84

http://swcarpentry.github.io/git-novice/

Replace the Conflict

To finish merging, we add title.txt to the changes being made by the
merge and then commit:

nano title.txt

git add title.txt

git commit —m " Merge changes from GitHub”
git push origin master

A A A

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 60 /84

http://swcarpentry.github.io/git-novice/

Good Practice

@ Pull from upstream more frequently, especially before starting new
work

@ Use topic branches to segregate work, merging to master when
complete

o Make smaller more atomic commits

o Break large files into smaller ones so reduce the possibility that two
authors will alter the same file simultaneously

Conflicts can also be minimized with:
o Clarify who is responsible for what areas with your collaborators
@ Discuss what order tasks should be carried out in with your

collaborators so that tasks expected to change the same lines
won’t be worked on simultaneously

o If the conflicts are stylistic churn (e.g. tabs vs. spaces), establish a
project convention that is governing and use code style tools
(e.g. htmltidy, perltidy, rubocop, etc.) to enforce, if necessary

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 61 /84

http://swcarpentry.github.io/git-novice/

)
i
(0
it
S
Py
i)

http://swcarpentry.github.io/git-novice/

Creating a New Branch

Let's say you want to create a new branch called testing. You do this with
the git branch command:

$ git branch testing
$ git branch

This creates a new pointer to the same commit you're currently on.

98ca9 - 34ac2 - f30ab

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 63 /84

http://swcarpentry.github.io/git-novice/

Current Branch (HEAD)

How does Git know what branch you're currently on? It keeps a special
pointer called HEAD. In Git, this is a pointer to the local branch you're
currently on.

\
\

98ca9 - 34ac2 - f30ab

A

You can easily see this by running a simple git log command that shows
you where the branch pointers are pointing.

$ git log —oneline —decorate

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 64 /84

http://swcarpentry.github.io/git-novice/

Switching Branches

To switch to an existing branch, you run the git checkout command. Let's
switch to the new testing branch:

$ git checkout testing

98ca9 - 34ac2 - f30ab
testing

HEAD

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 65 /84

http://swcarpentry.github.io/git-novice/

Let's do Another commit

$ nano title.txt
$ git add title.txt
$ git commit —-m 'made a change’

master

Y

98ca9 - 34ac2 - f30ab - 87ab2

This is interesting, because now your testing branch has moved forward,
but your master branch still points to the commit you were on when you
ran git checkout to switch branches.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 66 /84

http://swcarpentry.github.io/git-novice/

Switch to the Master

$ git checkout master

\J
98ca9 - 34ac2 - f30ab - 87ab2

e

That command did two things. It moved the HEAD pointer back to point
to the master branch, and it reverted the files in your working directory
back to the snapshot that master points to.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 67 /84

http://swcarpentry.github.io/git-novice/

Let's do Another Commit on the Master

$ nano title.txt
$ git add title.txt
$ git commit —m 'made a change’

y

\J
c2b9e

98ca9 - 34ac2 - f30ab
87ab2
A

Now the project is diverging. Both of those changes are isolated in
separate branches: you can switch back and forth between the branches

and merge them together when you're ready.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 68 /84

http://swcarpentry.github.io/git-novice/

Git Log

If you run git log —oneline —decorate —graph —all it will print out the
history of your commits, showing where your branch pointers are and how
your history has diverged.

$ git log —oneline —decorate —graph —all

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 69 /84

http://swcarpentry.github.io/git-novice/

Git Merge

In order to merge two different branches you should use:

$ git checkout master
$ git merge testing

Now that your work is merged in, you have no further need for the testing
branch. You can close the ticket in your ticket-tracking system, and delete
the branch:

$ git branch —d testing

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 70/84

http://swcarpentry.github.io/git-novice/

Basic Merge Conflicts

Occasionally, this process doesn't go smoothly. If you changed the same
part of the same file differently in the two branches you're merging

together, Git won't be able to merge them cleanly.
Auto-merging title.txt
CONFLICT (content): Merge conflict in title.txt

Automatic merge failed; fix conflicts and then commit the result.

Git hasn’t automatically created a new merge commit. It has paused the
process while you resolve the conflict. If you want to see which files are
unmerged at any point after a merge conflict, you can run git status:

$ git status

$ nano title.txt

If you was able to solve the conflict, and you verify that everything that

had conflicts has been staged, you can type git commit to finalize the
merge commit.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 71/84

http://swcarpentry.github.io/git-novice/

Adding Collaborators in a GitHub Repository

If you're working with other people who you want to give commit access
to, you need to add them as "collaborators”.

Click the "Settings” link at the bottom of the right-hand sidebar.

Issues 7
Pull Requests 3
Wiki
Collaborators
Collaborators. Ben Straub
Pulse Webhaoks & Services & =
Graphs
. Louise Corrigan
LouiseGomgan
¥ Settings

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 72/84

http://swcarpentry.github.io/git-novice/

Managing Pull Request

Pull requests let you tell others about changes you’'ve pushed to a
branch in a repository on GitHub.

Many open source projects on Github use pull requests to manage
changes from contributors as they are useful in providing a way to notify
project maintainers about changes one has made and in initiating code
review and general discussion about a set of changes before being merged
into the main branch.
Creating a Pull Request
There are 2 main work flows when dealing with pull requests:

@ Pull Request from a forked repository

@ Pull Request from a branch within a repository

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 73/84

http://swcarpentry.github.io/git-novice/

Creating a Pull Request

To create a pull request, you must have changes committed to the your
new branch.

Go to the repository page on github. And click on " Pull Request” button
in the repo header.

= -

Pick the branch you wish to have merged using the "Head branch”
dropdown. You should leave the rest of the fields as is, unless you are
working from a remote branch.

anch?
& head repo: yangsu/pull-request-tutorial

Choose a Head Branch

[|

pull-request-demo

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 74 /84

http://swcarpentry.github.io/git-novice/

Creating a Pull Request

Enter a title and description for your pull request. Remember you can use
Github Flavored Markdown in the description and comments

¥¥ New Pull Request < Commits 2 g

%\ Pull request demo

Write Preview

Finally, click on the green " Send pull request” button to finish creating the
pull request.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 75/84

http://swcarpentry.github.io/git-novice/

Using Pull Request

You can write comments related to a pull request,

% ‘Write Preview

You can write comments about this change here.|

View all the commits contained by a pull request under the commits tab,

W® Discussion O Commits 2 [£] Files Changed 1
Showing 2 unique commits by 1 author.

£ ar 29,2013
yangsu started the creating a pull reauest section

yangsu Added first step in creating a pull request

See all the file changes from the pull request across all the commits under
the " Files Changed” tab.

g1t push origin pull-request-deno

“### Creating a Pull Request

+To create a pull request, you must have changes cor

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 76 /84

http://swcarpentry.github.io/git-novice/

Using Pull Request

You can event leave a comment on particular lines in the code change
simply by hovering to the left of a line and clicking on the blue note icon.

o
] 51 +![Title and Description](https://f

[L]

Write Preview

Close form

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 77/84

http://swcarpentry.github.io/git-novice/

Merging a Pull Request

Once you and your collaborators are happy with the changes, you start to
merge the changes back to master.

First, you can use github’'s " Merge pull request” button at the bottom of
your pull request to merge your changes. This is only available when
github can detect that there will be no merge conflicts with the base
branch. If all goes well, you just have to add a commit message and click
on " Confirm Merge" to merge the changes.

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 78 /84

http://swcarpentry.github.io/git-novice/

Merging Locally

If the pull request cannot be merged online due to merge conflicts, or you
wish to test things locally before sending the merge to the repo on Github,
you can perform the merge locally instead.

You can find the instruction to do so by clicking the (i) icon on the merge
bar.

‘Add more commits by pushing to the tes ting branch on am1987/Thesis.

° This branch has no conflicts with the base branch ‘
n be performed automaticaly

Merging via command line
1f you do not want to use the merge buion or an aufomatic merge cannot be performed, you can perform a
manual merge on the command line.

TIPS | Git | pah | https://github.con/anioe7/Thesis.git &

ing
git push origin master

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 79/84

http://swcarpentry.github.io/git-novice/

Closing a Pull Request

You can simply click on the " Close” button on the pull request to close it.

Optionally, you can delete the branch directly using the " Delete this
branch” button.

[0 % veross merged commi

o (Y o Y st o

0 55 oroes consvo st

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 80 /84

http://swcarpentry.github.io/git-novice/

Hooks
The Hooks and Services section of GitHub repository administration is the
easiest way to have GitHub interact with external systems.

You specify a URL and GitHub will post an HTTP payload to that
URL on any event you want.

Generally the way this works is you can setup a small web service to listen
for a GitHub hook payload and then do something with the data when it is
received.

.............

ccccccccccc

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 81/84

http://swcarpentry.github.io/git-novice/

Hook Example

Recent Deliveries.

A (1) saeac280-4e38-11e4-9bac-c130e992644b 1
v af£20880-4e37-11e4-9089-35319435¢080 1
v

90£37680-4e37-11e4-9508-227d13b2ccfe

Request Response [EZ) © Completed in 061 seconds. S Redeliver

Headers

Request URL: https://hooks.example.con/payload
Request method: POST

content-type: application/json

Expect:

User-Agent: GitHub-Hookshot/64a1910

: 3b2cchc
X-GitHub-Event: push

Payload
“ref": “refs/heads/renove-whitespai

“before”: "99dafesbffaf827¢8age7cde00cbbOabOGIISCAS",
fter": "9378a6c3349331bac7edc3Ic78c10bca460C1ede8”,

/Fade/comp:

true,
“remove whitespace”,

014-10-07717:35:22+02:00",
thub. /

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 82/84

http://swcarpentry.github.io/git-novice/

Fork a Project

https://github.com/octocat/Spoon-Knife

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 83 /84

https://github.com/octocat/Spoon-Knife
http://swcarpentry.github.io/git-novice/

Questions?

Andrea Morichetta, Phd (Computer Science [Software Project Management Laboratory October 3rd, 2018 84 /84

http://swcarpentry.github.io/git-novice/

	Git in detail
	Exploring Hystory
	Ignoring Things
	Remotes in Git
	GitHub
	Collaborating
	Conflict
	Branching
	Advanced GitHub
	Hooks

