
Software Project Management Laboratory
1. Git Introduction

Andrea Morichetta, Phd

Computer Science Division
http://swcarpentry.github.io/git-novice/

Pro Git Book

October 3rd, 2018

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 1 / 84

http://swcarpentry.github.io/git-novice/
http://swcarpentry.github.io/git-novice/

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 2 / 84

http://swcarpentry.github.io/git-novice/

Why Git is useful?

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 3 / 84

http://swcarpentry.github.io/git-novice/

Use Case

Consider this scenario:

You have a homework submission for today and the assignment is
ready for submission

While testing it you discovered a minor bug and decided to fix it

After attempting to do so, you accidentally changed a working code
and got yourself in a big mess

You no longer remember what was and what wasn’t there

It is 23:58 PM

Then you realize that Ctrl + Z won’t solve your problem

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 4 / 84

http://swcarpentry.github.io/git-novice/

Use Case

Consider this scenario:

You have a homework submission for today and the assignment is
ready for submission

While testing it you discovered a minor bug and decided to fix it

After attempting to do so, you accidentally changed a working code
and got yourself in a big mess

You no longer remember what was and what wasn’t there

It is 23:58 PM

Then you realize that Ctrl + Z won’t solve your problem

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 4 / 84

http://swcarpentry.github.io/git-novice/

What is Git?

Open source project originally developed in 2005 by Linus Torvalds

A command line utility

You can imagine git as something that sits on top of your file system
and manipulates files.

A distributed version control system - DCVS

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 5 / 84

http://swcarpentry.github.io/git-novice/

What is distributed version control system?

Version control system is a system that records changes to a file or
set of files over time so that you can recall specific versions later

Distributed means that there is no main server and all of the full
history of the project is available once you cloned the project.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 6 / 84

http://swcarpentry.github.io/git-novice/

Git

You can imagine git as something that sits on top of your file system
and manipulates files.

This ”something” is a tree structure where each commit creates a
new node in that tree.

Nearly all git commands actually serve to navigate on this tree and to
manipulate it accordingly.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 7 / 84

http://swcarpentry.github.io/git-novice/

Git repository

The purpose of git is to manage a project, or a set of files, as they
change over time. Git stores this information in a data structure
called a repository

A git repository contains, mainly:
I A set of commits

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 8 / 84

http://swcarpentry.github.io/git-novice/

Commit

A commit object mainly contains three things:
I A set of changes the commit introduces
I Commit message describing the changes
I A hash, a 40-character string that uniquely identifies the commit object

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 9 / 84

http://swcarpentry.github.io/git-novice/

GitHub

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 10 / 84

http://swcarpentry.github.io/git-novice/

Atlassian

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 11 / 84

http://swcarpentry.github.io/git-novice/

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 12 / 84

http://swcarpentry.github.io/git-novice/

Installing Git

Before to start:

https://git-scm.com/book/en/v2/

Getting-Started-Installing-Git

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 13 / 84

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://swcarpentry.github.io/git-novice/

Git Configuration

When we use Git on a new computer for the first time, we need to
configure a few thing:

our name and email address,

what our preferred text editor is,

$ g i t c o n f i g −−g l o b a l u s e r . name ”Andrea Mor i che t t a ”
$ g i t c o n f i g −−g l o b a l u s e r . ema i l ” andrea . mor ichetta@un icam . i t ”

$ g i t c o n f i g −−g l o b a l co r e . e d i t o r ” g e d i t ”

This user name and email will be associated with your subsequent Git
activity, which means that any changes pushed to GitHub, BitBucket,
GitLab or another Git host server in a later lesson will include this
information.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 14 / 84

http://swcarpentry.github.io/git-novice/

Git Config List

The commands run above only need to be run once: the flag –global tells
Git to use the settings for every project, in your user account, on this
computer.
You can check your settings at any time:

$ g i t c o n f i g −− l i s t

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 15 / 84

http://swcarpentry.github.io/git-novice/

Creating a Repository

First, let’s create a directory in Desktop folder for our work and then move
into that directory:

$ cd ˜/Desktop
$ mkdir t h e s i s
$ cd t h e s i s

Then we tell Git to make project a repository; a place where Git can store
versions of our files:

$ g i t i n i t

It is important to note that git init will create a repository that includes
subdirectories and their files; there is no need to create separate
repositories nested within the thesis repository, whether subdirectories are
present from the beginning or added later. Also, note that the creation of
the thesis directory and its initialization as a repository are completely
separate processes.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 16 / 84

http://swcarpentry.github.io/git-novice/

Git Repository

If we use ls to show the directory’s contents, it appears that nothing has
changed:

$ l s

But if we add the -a flag to show everything, we can see that Git has
created a hidden directory within planets called .git:

$ l s −a
. . . . g i t

Git uses this special sub-directory to store all the information about the
project, including all files and sub-directories located within the project’s
directory. If we ever delete the .git sub-directory, we will lose the project’s
history.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 17 / 84

http://swcarpentry.github.io/git-novice/

Git Status

We can check that everything is set up correctly by asking Git to tell us
the status of our project:

$ g i t s t a t u s

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 18 / 84

http://swcarpentry.github.io/git-novice/

Git exercise

Create a new chapter folder in the thesis repository

$ mkdir chap t e r # make a sub−d i r e c t o r y t h e s i s / chap t e r
$ cd chap t e r # go i n t o chap t e r sub−d i r e c t o r y
$ l s −a # ensu r e tha t the sub−d i r e c t o r y i s p r e s e n t

Is the git init command, run inside the chapter sub-directory, required for
tracking files stored in the thesis sub-directory?

No. We do not need to make the chapter sub-directory a Git repository
because the thesis repository will track all files, sub-directories, and
sub-directory files under the thesis directory. Thus, in order to track all
information about thesis, we only needed to add the chapter
sub-directory to the thesis directory.
Additionally, Git repositories can interfere with each other if they are
”nested”: the outer repository will try to version-control the inner
repository. Therefore, it’s best to create each new Git repository in a
separate directory.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 19 / 84

http://swcarpentry.github.io/git-novice/

Git exercise

Create a new chapter folder in the thesis repository

$ mkdir chap t e r # make a sub−d i r e c t o r y t h e s i s / chap t e r
$ cd chap t e r # go i n t o chap t e r sub−d i r e c t o r y
$ l s −a # ensu r e tha t the sub−d i r e c t o r y i s p r e s e n t

Is the git init command, run inside the chapter sub-directory, required for
tracking files stored in the thesis sub-directory?

No. We do not need to make the chapter sub-directory a Git repository
because the thesis repository will track all files, sub-directories, and
sub-directory files under the thesis directory. Thus, in order to track all
information about thesis, we only needed to add the chapter
sub-directory to the thesis directory.
Additionally, Git repositories can interfere with each other if they are
”nested”: the outer repository will try to version-control the inner
repository. Therefore, it’s best to create each new Git repository in a
separate directory.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 19 / 84

http://swcarpentry.github.io/git-novice/

Git exercise

Create a new chapter folder in the thesis repository

$ mkdir chap t e r # make a sub−d i r e c t o r y t h e s i s / chap t e r
$ cd chap t e r # go i n t o chap t e r sub−d i r e c t o r y
$ l s −a # ensu r e tha t the sub−d i r e c t o r y i s p r e s e n t

Is the git init command, run inside the chapter sub-directory, required for
tracking files stored in the thesis sub-directory?

No. We do not need to make the chapter sub-directory a Git repository
because the thesis repository will track all files, sub-directories, and
sub-directory files under the thesis directory. Thus, in order to track all
information about thesis, we only needed to add the chapter
sub-directory to the thesis directory.
Additionally, Git repositories can interfere with each other if they are
”nested”: the outer repository will try to version-control the inner
repository. Therefore, it’s best to create each new Git repository in a
separate directory.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 19 / 84

http://swcarpentry.github.io/git-novice/

Tracking Changes

Questions

How do I record changes in Git?

How do I check the status of my version control repository?

How do I record notes about what changes I made and why?

Objectives

Go through the modify-add-commit cycle for one or more files.

Explain where information is stored at each stage of that cycle.

Distinguish between descriptive and non-descriptive commit messages.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 20 / 84

http://swcarpentry.github.io/git-novice/

Create file

First let’s make sure we’re still in the right directory. You should be in the
thesis directory.

$ pwd

Let’s create a file called title.txt that contains some notes about the title
and authors. We’ll use nano to edit the file; you can use whatever editor
you like. In particular, this does not have to be the core.editor you set
globally earlier. But remember, the bash command to create or edit a new
file will depend on the editor you choose (it might not be nano).

$ nano t i t l e . t x t

Type some text into the title.txt file.

$ g i t s t a t u s

The ”untracked files” message means that there’s a file in the directory
that Git isn’t keeping track of.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 21 / 84

http://swcarpentry.github.io/git-novice/

Git Add

We can tell Git to track a file using git add:

$ g i t add t i t l e . t x t

and then check that the right thing happened:

$ g i t s t a t u s

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 22 / 84

http://swcarpentry.github.io/git-novice/

Git Commit

Git now knows that it’s supposed to keep track of title.txt, but it hasn’t
recorded these changes as a commit yet. To get it to do that, we need to
run one more command:

$ g i t commit −m ” S t a r t no t e s on t i t l e f i l e ”

When we run git commit, Git takes everything we have told it to save by
using git add and stores a copy permanently inside the special .git
directory. This permanent copy is called a commit (or revision) and its
short identifier is f22b25e. Your commit may have another identifier.

We use the -m flag (for ”message”) to record a short, descriptive, and
specific comment that will help us remember later on what we did and
why. If we just run git commit without the -m option, Git will launch nano
so that we can write a longer message.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 23 / 84

http://swcarpentry.github.io/git-novice/

Git Log

If we run git status now:

$ g i t s t a t u s

On branch master
no th i ng to commit , work ing d i r e c t o r y c l e a n

t tells us everything is up to date. If we want to know what we’ve done
recently, we can ask Git to show us the project’s history using git log:

$ g i t l o g

commit 26 be42751f20cbcc113e8b2dab00c3b2b661ee7e (HEAD −> master)
Author : Andrea M <andrea . mor ichetta@unicam . i t>
Date : Wed Oct 10 17 : 05 : 34 2018 +0200

f i r s t commit

git log lists all commits made to a repository in reverse chronological
order. The listing for each commit includes the commit’s full identifier, the
commit’s author, when it was created, and the log message Git was given
when the commit was created.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 24 / 84

http://swcarpentry.github.io/git-novice/

Change the title file

Now suppose that we want adds more information to the file title.txt.
$ nano t i t l e . t x t

Th i s i s a new l i n e i n the t i t l e . t x t f i l e

When we run git status now, it tells us that a file it already knows about
has been modified:

$ g i t s t a t u s

On branch master
Changes not s t aged f o r commit :
(use ” g i t add < f i l e > . . . ” to update what w i l l be committed)
(use ” g i t checkout −− < f i l e > . . . ” to d i s c a r d changes i n work ing d i r e c t o r y)

mod i f i e d : t i t l e . t x t

no changes added to commit (use ” g i t add” and/ or ” g i t commit −a ”)

The last line is the key phrase: ”no changes added to commit”. We have
changed this file, but we haven’t told Git we will want to save those
changes (which we do with git add) nor have we saved them (which we do
with git commit)

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 25 / 84

http://swcarpentry.github.io/git-novice/

Git Diff

It is good practice to always review our changes before saving them. We
do this using git diff. This shows us the differences between the current
state of the file and the most recently saved version:

$ g i t d i f f

d i f f −−g i t a/ t i t l e . t x t b/ t i t l e . t x t
i nd ex d3e2104 . . 8 1 bc58d 100644
−−− a/ t i t l e . t x t
+++ b/ t i t l e . t x t
@@ −1 +1,2 @@
This i s the f i r s t l i n e
+This i s the second l i n e

The first line tells us that Git is comparing the old and new versions of the file.

The second line tells which versions of the file Git is comparing; d3e2104 and
81bc58d are unique computer-generated labels for those versions.

The third and fourth lines once again show the name of the file being changed.

The remaining lines show the actual differences and the lines on which they occur.
In particular, the + marker in the first column shows where we added a line.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 26 / 84

http://swcarpentry.github.io/git-novice/

Git Add & Commit

Git insists that we add files to the set we want to commit before actually
committing anything. This allows us to commit our changes in stages and
capture changes in logical portions rather than only large batches. For
example, suppose we’re adding a few citations to relevant research to our
thesis. We might want to commit those additions, and the corresponding
bibliography entries, but not commit some of our work drafting the
conclusion (which we haven’t finished yet).

$ g i t add t i t l e . t x t
$ g i t commit −m ”Added the second l i n e i n the t i l e f i l e ”

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 27 / 84

http://swcarpentry.github.io/git-novice/

Where are my changes?

Git take snapshots of changes over the life of a project,
git add specifies what will go in a snapshot (putting things in the staging
area), git commit then actually takes the snapshot, and makes a
permanent record of it (as a commit).

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 28 / 84

http://swcarpentry.github.io/git-novice/

Memory status changes

Add a new line in the title file and then:

$ nano t h e s i s . t x t
$ g i t d i f f

$ g i t add t h e s i s . t x t
$ g i t d i f f //no output
$ g i t d i f f −−s t aged

$ g i t commit −m ”Add t h i r d l i n e ”
$ g i t d i f f −−s t aged

$ g i t l o g

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 29 / 84

http://swcarpentry.github.io/git-novice/

Git Log

To avoid having git log cover your entire terminal screen, you can limit the
number of commits that Git lists by using -N, where N is the number of
commits that you want to view. For example, if you only want information
from the last commit you can use:

$ g i t l o g −1

$ g i t l o g −−o n e l i n e

$ g i t l o g −−o n e l i n e −−graph −−a l l −−de co r a t e

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 30 / 84

http://swcarpentry.github.io/git-novice/

Multiple Add

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 31 / 84

http://swcarpentry.github.io/git-novice/

Exploring Hystory

You can refer to the most recent commit of the working directory by using
the identifier HEAD

$ g i t d i f f HEAD t i t l e . t x t

If we want to see the differences between older commits we can use git diff
again, but with the notation HEAD˜1 , HEAD˜2, and so on, to refer to
them:

g i t d i f f HEAD” t i l d e ”2 mars . t x t

Or

$ g i t l o g

$ g i t d i f f f22b25e3233b4645dabd0d81e651fe074bd8e73b t i t l e . t x t

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 32 / 84

http://swcarpentry.github.io/git-novice/

Exploring Hystory

We could also use git show which shows us what changes we made at an
older commit as well as the commit message, rather than the differences
between a commit and our working directory that we see by using git diff.

$ g i t show HEAD˜2 mars . t x t

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 33 / 84

http://swcarpentry.github.io/git-novice/

Git Checkout

So we can save changes to files and see what we’ve changed

git status tells us that the file has been changed, but those changes
haven’t been staged.

now how can we restore older versions of things? Let’s suppose we
accidentally overwrite our file:

$ g i t s t a t u s

On branch master
Changes not s t aged f o r commit :
(use ” g i t add < f i l e > . . . ” to update what w i l l be committed)
(use ” g i t checkout −− < f i l e > . . . ” to d i s c a r d changes i n work ing d i r e c t o r y)
18 :40
mod i f i e d : t i t l e . t x t

no changes added to commit (use ” g i t add” and/ or ” g i t commit −a ”)

We can put things back the way they were by using git checkout:

$ g i t checkout HEAD t i t l e . t x t

$ ca t t i t l e . t x t

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 34 / 84

http://swcarpentry.github.io/git-novice/

Git Checkout to an Older Version

If we want to go back even further, we can use a commit identifier instead:

$ g i t checkout f22b25e t i t l e . t x t

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 35 / 84

http://swcarpentry.github.io/git-novice/

Ignoring Things

What if we have files that we do not want Git to track for us, like backup
files created by our editor or intermediate files created during data
analysis?
Let’s create a few dummy files:

$ mkdir newFolder
$ touch a . dat b . dat c . dat r e s u l t s /a . out r e s u l t s /b . out

and see what Git says:

$ g i t s t a t u s

Putting these files under version control would be a waste of disk space.
Having them all listed could distract us from changes that actually matter,
so let’s tell Git to ignore them.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 36 / 84

http://swcarpentry.github.io/git-novice/

.gitignore

We can ignore dummy files creating in the root directory of our project a
file called .gitignore

$ nano . g i t i g n o r e
$ ca t . g i t i g n o r e

∗ . dat
r e s u l t s /

These patterns tell Git to ignore any file whose name ends in .dat and
everything in the newFolder directory. (If any of these files were already
being tracked, Git would continue to track them.)
Once we have created this file, the output of git status is much cleaner:

$ g i t s t a t u s

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 37 / 84

http://swcarpentry.github.io/git-novice/

We should track .gitignore?

everyone we’re sharing our repository with will probably want to ignore the
same things that we’re ignoring. Let’s add and commit .gitignore:

$ g i t add . g i t i g n o r e
$ g i t commit −m ” I gno r e data f i l e s and the r e s u l t s f o l d e r . ”
$ g i t s t a t u s

Using .gitignore helps us avoid accidentally adding to the repository files
that we don’t want to track:

$ g i t add a . dat

If we really want to override our ignore settings, we can use git add -f to
force Git to add something. For example, git add -f a.dat. We can also
always see the status of ignored files if we want:

$ g i t s t a t u s −− i g n o r e d

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 38 / 84

http://swcarpentry.github.io/git-novice/

Remotes in Git

Version control really comes into its own when we begin to collaborate with
other people. We already have most of the machinery we need to do this;
the only thing missing is to copy changes from one repository to another.

Systems like Git allow us to move work between any two repositories. In
practice, though, it’s easiest to use one copy as a central hub, and to keep
it on the web rather than on someone’s laptop.

Most programmers use hosting services like GitHub, BitBucket or
GitLab to hold those master copies.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 39 / 84

http://swcarpentry.github.io/git-novice/

GitHub

GitHub is the single largest host for Git repositories, and is the central
point of collaboration for millions of developers and projects.

A large percentage of all Git repositories are hosted on GitHub, and
many open-source projects use it for Git hosting, issue tracking, code
review, and other things.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 40 / 84

http://swcarpentry.github.io/git-novice/

Create a New Account

The first thing you need to do is set up a free user account. Simply visit
https://github.com, choose a user name that isn’t already taken,
provide an email address and a password, and click the big green ”Sign up
for GitHub” button.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 41 / 84

https://github.com
http://swcarpentry.github.io/git-novice/

Maintaining a Project

Creating a New Repository

Let’s create a new repository to share our project code with.

Start by clicking the ”New repository” button on the right-hand side of
the dashboard, or from the + button in the top toolbar next to your
username as seen in The ”New repository” dropdown.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 42 / 84

http://swcarpentry.github.io/git-novice/

Create a new repository on GitHub

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 43 / 84

http://swcarpentry.github.io/git-novice/

New Repository

As soon as the repository is created, GitHub displays a page with a URL
and some information on how to configure your local repository:

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 44 / 84

http://swcarpentry.github.io/git-novice/

What happened in the Server?

This effectively does the following on GitHub’s servers:

$ mkdir The s i s
$ cd The s i s
$ g i t i n i t

Note that our local repository still contains our earlier work, but the remote
repository on GitHub appears empty as it doesn’t contain any files yet.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 45 / 84

http://swcarpentry.github.io/git-novice/

Connect Local and Remote Repositories

We do this by making the GitHub repository a remote for the local
repository. The home page of the repository on GitHub includes the string
we need to identify it:

Click on the HTTPS’ link to change the protocol from SSH to HTTPS.
Copy that URL from the browser, go into the local thesis repository, and

run this command:

$ g i t remote add o r i g i n h t t p s : // g i t hub . com/am1987/ The s i s . g i t

We can check that the command has worked by running git remote -v:

$ g i t remote −v

The name origin is a local nickname for your remote repository. We could
use something else if we wanted to, but origin is by far the most common.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 46 / 84

http://swcarpentry.github.io/git-novice/

Git Push

Once the nickname origin is set up, this command will push the changes
from our local repository to the repository on GitHub:

$ g i t push o r i g i n master

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 47 / 84

http://swcarpentry.github.io/git-novice/

Curiosity

Push vs. Commit

When we push changes, we’re interacting with a remote repository to
update it with the changes we’ve made locally (often this corresponds to
sharing the changes we’ve made with others). Commit only updates your
local repository.

Fixing Remote Repository

The command git remote set-url allows us to change the remote’s URL
to fix it.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 48 / 84

http://swcarpentry.github.io/git-novice/

Git Pull

We can pull changes from the remote repository to the local one as well:

$ g i t p u l l o r i g i n master

While the git fetch command will fetch down all the changes on the server
that you don’t have yet, it will not modify your working directory at all. It
will simply get the data for you and let you merge it yourself. However,
there is a command called git pull which is essentially a git fetch
immediately followed by a git merge in most cases.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 49 / 84

http://swcarpentry.github.io/git-novice/

Collaborating in Git

One person will be the ”Owner” and the other will be the ”Collaborator”.
The goal is that the Collaborator add changes into the Owner’s repository.

The Owner needs to give the Collaborator access. On GitHub, click the
settings button on the right, then select Collaborators, and enter your
partner’s username.

To accept access to the Owner’s repo, the Collaborator needs to go to
https://github.com/notifications. Once there she can accept access to the
Owner’s repo.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 50 / 84

http://swcarpentry.github.io/git-novice/

Clone a project

The Collaborator needs to download a copy of the Owner’s repository to
her machine. This is called ”cloning a repo”. To clone the Owner’s repo
into her Desktop folder, the Collaborator enters:

$ g i t c l o n e h t t p s : // g i t hub . com/am1987/ The s i s . g i t ˜ /Desktop/ t h e s i s

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 51 / 84

http://swcarpentry.github.io/git-novice/

Collaborators Change

The Collaborator can now make a change in her clone of the Owner’s
repository, exactly the same way as we’ve been doing before:

$ cd ˜/Desktop/ t h e s i s
$ nano t i t l e . t x t
$ ca t t i t l e . t x t

$ g i t add t i t l e . t x t
$ g i t commit −m ”Add no t e s about new pa r t ”

Then push the change to the Owner’s repository on GitHub:

$ g i t push o r i g i n master

Note that we didn’t have to create a remote called origin: Git uses
this name by default when we clone a repository. (This is why origin was a
sensible choice earlier when we were setting up remotes by hand.)

Take a look to the Owner’s repository on its GitHub website now (maybe
you need to refresh your browser.) You should be able to see the new
commit made by the Collaborator.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 52 / 84

http://swcarpentry.github.io/git-novice/

Download Collaborators Changes

$ g i t p u l l o r i g i n master

Now the three repositories (Owner’s local, Collaborator’s local, and
Owner’s on GitHub) are back in sync.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 53 / 84

http://swcarpentry.github.io/git-novice/

Summarizing

In practice, it is good to be sure that you have an updated version of the
repository you are collaborating on, so you should git pull before
making our changes.

The basic collaborative workflow would be:

update your local repo with git pull origin master,

make your changes and stage them with git add,

commit your changes with git commit -m,

upload the changes to GitHub with git push origin master

It is better to make many commits with smaller changes rather than of
one commit with massive changes: small commits are easier to read
and review.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 54 / 84

http://swcarpentry.github.io/git-novice/

Review Changes

On the command line, the Collaborator can use git fetch origin master
to get the remote changes into the local repository, but without merging
them.
Then by running git diff master origin/master the Collaborator will see
the changes output in the terminal.

$ g i t f e t c h o r i g i n /master
$ g i t d i f f master o r i g i n /master
$ g i t merge o r i g i n /master

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 55 / 84

http://swcarpentry.github.io/git-novice/

Conflict

As soon as people can work in parallel, they’ll likely step on each other’s
toes. This will even happen with a single person: if we are working on a
piece of software on both our laptop and a server in the lab, we could
make different changes to each copy. Version control helps us manage
these conflicts by giving us tools to resolve overlapping changes.
Let’s create a conflict modifing the same file between collaborators:

$ nano t i t l e . t x t
$ g i t add t i t l e . t x t
$ g i t commit −m ”Add a l i n e i n our home copy”
$ g i t push o r i g i n master

Now let’s have the other partner make a different change to their copy
without updating from GitHub:

$ nano t i t l e . t x t
$ g i t add t i t l e . t x t
$ g i t commit −m ”Add a l i n e i n my copy”
$ g i t push o r i g i n master

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 56 / 84

http://swcarpentry.github.io/git-novice/

Conflict error message

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 57 / 84

http://swcarpentry.github.io/git-novice/

Solving the Conflict

Git rejects the push because it detects that the remote repository has
new updates that have not been incorporated into the local branch.
What we have to do is pull the changes from GitHub, merge them into the
copy we’re currently working in, and then push that. Let’s start by pullin

$ g i t p u l l o r i g i n master

The git pull command updates the local repository to include those
changes already included in the remote repository. After the changes
from remote branch have been fetched, Git detects that changes made
to the local copy overlap with those made to the remote repository, and
therefore refuses to merge the two versions to stop us from trampling on
our previous work.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 58 / 84

http://swcarpentry.github.io/git-novice/

Conflict at Local repository

The conflict is marked in in the affected file:
$cat t i t l e . t x t

Our change is preceded by <<<<<<< HEAD. Git has then inserted
======= as a separator between the conflicting changes and marked
the end of the content downloaded from GitHub with >>>>>>>. (The
string of letters and digits after that marker identifies the commit we’ve
just downloaded.)

It is now up to us to edit this file to remove these markers and
reconcile the changes. We can do anything we want: keep the change
made in the local repository, keep the change made in the remote
repository, write something new to replace both, or get rid of the change
entirely.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 59 / 84

http://swcarpentry.github.io/git-novice/

Replace the Conflict

To finish merging, we add title.txt to the changes being made by the
merge and then commit:

$ nano t i t l e . t x t
$ g i t add t i t l e . t x t
$ g i t commit −m ”Merge changes from GitHub”
$ g i t push o r i g i n master

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 60 / 84

http://swcarpentry.github.io/git-novice/

Good Practice

Pull from upstream more frequently, especially before starting new
work

Use topic branches to segregate work, merging to master when
complete

Make smaller more atomic commits

Break large files into smaller ones so reduce the possibility that two
authors will alter the same file simultaneously

Conflicts can also be minimized with:

Clarify who is responsible for what areas with your collaborators

Discuss what order tasks should be carried out in with your
collaborators so that tasks expected to change the same lines
won’t be worked on simultaneously

If the conflicts are stylistic churn (e.g. tabs vs. spaces), establish a
project convention that is governing and use code style tools
(e.g. htmltidy, perltidy, rubocop, etc.) to enforce, if necessary

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 61 / 84

http://swcarpentry.github.io/git-novice/

A Typical Work Session

1 Update l o c a l g i t p u l l o r i g i n master
2 Make changes echo 100 >> numbers . t x t
3 Stage changes g i t add numbers . t x t
4 Commit changes g i t commit −m ”Add 100 to numbers . t x t ”
5 Update remote g i t push o r i g i n master

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 62 / 84

http://swcarpentry.github.io/git-novice/

Creating a New Branch

Let’s say you want to create a new branch called testing. You do this with
the git branch command:

$ g i t branch t e s t i n g

$ g i t branch

This creates a new pointer to the same commit you’re currently on.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 63 / 84

http://swcarpentry.github.io/git-novice/

Current Branch (HEAD)

How does Git know what branch you’re currently on? It keeps a special
pointer called HEAD. In Git, this is a pointer to the local branch you’re
currently on.

You can easily see this by running a simple git log command that shows
you where the branch pointers are pointing.

$ g i t l o g −−o n e l i n e −−de co r a t e

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 64 / 84

http://swcarpentry.github.io/git-novice/

Switching Branches

To switch to an existing branch, you run the git checkout command. Let’s
switch to the new testing branch:

$ g i t checkout t e s t i n g

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 65 / 84

http://swcarpentry.github.io/git-novice/

Let’s do Another commit

$ nano t i t l e . t x t
$ g i t add t i t l e . t x t
$ g i t commit −m ’made a change ’

This is interesting, because now your testing branch has moved forward,
but your master branch still points to the commit you were on when you
ran git checkout to switch branches.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 66 / 84

http://swcarpentry.github.io/git-novice/

Switch to the Master

$ g i t checkout master

That command did two things. It moved the HEAD pointer back to point
to the master branch, and it reverted the files in your working directory
back to the snapshot that master points to.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 67 / 84

http://swcarpentry.github.io/git-novice/

Let’s do Another Commit on the Master

$ nano t i t l e . t x t
$ g i t add t i t l e . t x t
$ g i t commit −m ’made a change ’

Now the project is diverging. Both of those changes are isolated in
separate branches: you can switch back and forth between the branches
and merge them together when you’re ready.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 68 / 84

http://swcarpentry.github.io/git-novice/

Git Log

If you run git log –oneline –decorate –graph –all it will print out the
history of your commits, showing where your branch pointers are and how
your history has diverged.

$ g i t l o g −−o n e l i n e −−de co r a t e −−graph −−a l l

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 69 / 84

http://swcarpentry.github.io/git-novice/

Git Merge

In order to merge two different branches you should use:

$ g i t checkout master
$ g i t merge t e s t i n g

Now that your work is merged in, you have no further need for the testing
branch. You can close the ticket in your ticket-tracking system, and delete
the branch:

$ g i t branch −d t e s t i n g

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 70 / 84

http://swcarpentry.github.io/git-novice/

Basic Merge Conflicts

Occasionally, this process doesn’t go smoothly. If you changed the same
part of the same file differently in the two branches you’re merging
together, Git won’t be able to merge them cleanly.

Git hasn’t automatically created a new merge commit. It has paused the
process while you resolve the conflict. If you want to see which files are
unmerged at any point after a merge conflict, you can run git status:

$ g i t s t a t u s

$ nano t i t l e . t x t

If you was able to solve the conflict, and you verify that everything that
had conflicts has been staged, you can type git commit to finalize the
merge commit.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 71 / 84

http://swcarpentry.github.io/git-novice/

Adding Collaborators in a GitHub Repository

If you’re working with other people who you want to give commit access
to, you need to add them as ”collaborators”.

Click the ”Settings” link at the bottom of the right-hand sidebar.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 72 / 84

http://swcarpentry.github.io/git-novice/

Managing Pull Request

Pull requests let you tell others about changes you’ve pushed to a
branch in a repository on GitHub.

Many open source projects on Github use pull requests to manage
changes from contributors as they are useful in providing a way to notify
project maintainers about changes one has made and in initiating code
review and general discussion about a set of changes before being merged
into the main branch.

Creating a Pull Request

There are 2 main work flows when dealing with pull requests:

Pull Request from a forked repository

Pull Request from a branch within a repository

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 73 / 84

http://swcarpentry.github.io/git-novice/

Creating a Pull Request

To create a pull request, you must have changes committed to the your
new branch.
Go to the repository page on github. And click on ”Pull Request” button
in the repo header.

Pick the branch you wish to have merged using the ”Head branch”
dropdown. You should leave the rest of the fields as is, unless you are
working from a remote branch.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 74 / 84

http://swcarpentry.github.io/git-novice/

Creating a Pull Request

Enter a title and description for your pull request. Remember you can use
Github Flavored Markdown in the description and comments

Finally, click on the green ”Send pull request” button to finish creating the
pull request.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 75 / 84

http://swcarpentry.github.io/git-novice/

Using Pull Request

You can write comments related to a pull request,

View all the commits contained by a pull request under the commits tab,

See all the file changes from the pull request across all the commits under
the ”Files Changed” tab.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 76 / 84

http://swcarpentry.github.io/git-novice/

Using Pull Request

You can event leave a comment on particular lines in the code change
simply by hovering to the left of a line and clicking on the blue note icon.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 77 / 84

http://swcarpentry.github.io/git-novice/

Merging a Pull Request

Once you and your collaborators are happy with the changes, you start to
merge the changes back to master.

First, you can use github’s ”Merge pull request” button at the bottom of
your pull request to merge your changes. This is only available when
github can detect that there will be no merge conflicts with the base
branch. If all goes well, you just have to add a commit message and click
on ”Confirm Merge” to merge the changes.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 78 / 84

http://swcarpentry.github.io/git-novice/

Merging Locally

If the pull request cannot be merged online due to merge conflicts, or you
wish to test things locally before sending the merge to the repo on Github,
you can perform the merge locally instead.
You can find the instruction to do so by clicking the (i) icon on the merge
bar.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 79 / 84

http://swcarpentry.github.io/git-novice/

Closing a Pull Request

You can simply click on the ”Close” button on the pull request to close it.
Optionally, you can delete the branch directly using the ”Delete this
branch” button.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 80 / 84

http://swcarpentry.github.io/git-novice/

Hooks

The Hooks and Services section of GitHub repository administration is the
easiest way to have GitHub interact with external systems.

You specify a URL and GitHub will post an HTTP payload to that
URL on any event you want.

Generally the way this works is you can setup a small web service to listen
for a GitHub hook payload and then do something with the data when it is
received.

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 81 / 84

http://swcarpentry.github.io/git-novice/

Hook Example

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 82 / 84

http://swcarpentry.github.io/git-novice/

Fork a Project

https://github.com/octocat/Spoon-Knife

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 83 / 84

https://github.com/octocat/Spoon-Knife
http://swcarpentry.github.io/git-novice/

Questions?

Andrea Morichetta, Phd (Computer Science Divisionhttp://swcarpentry.github.io/git-novice/Pro Git Book)Software Project Management Laboratory October 3rd, 2018 84 / 84

http://swcarpentry.github.io/git-novice/

	Git in detail
	Exploring Hystory
	Ignoring Things
	Remotes in Git
	GitHub
	Collaborating
	Conflict
	Branching
	Advanced GitHub
	Hooks

