
Unit Testing

with JUnit

Testing is the activity of finding out whether a piece of code (a method, class, or
program) produces the intended behavior.

Funny quotes: https://community.4geeks.co/the-importance-of-testing-your-code-its-done/

Testing DebuggingVS

Which is the difference?

Testing
The purpose of testing is
to find bugs and errors.

Debugging

Testing
The purpose of testing is
to find bugs and errors.

Debugging
The purpose of debugging is to
correct those bugs found during
testing.

The optimistic scenario

The
pessimistic
scenario

So...

Which is the difference from testing and
detecting a bug at the beginning of a
project compared to testing (or not
testing at all) and finding a bug at the
end of a project?

● Unit testing on individual units of source code (smallest
testable part).

● Integration testing on groups of individual software
modules.

● System testing on a complete, integrated system
(evaluate compliance with requirements)

● a unit test is a piece of code written by a developer that executes a specific
functionality in the code to be tested.

● a unit test targets a small unit of code, e.g., a method or a class

● it ensures that code works as intended, or that it still works as intended in case
you need to modify code for fixing a bug or extending functionality.

● the percentage of code which is tested by unit tests is typically
called test coverage.

● having a high test coverage of your code allows you to continue developing
features without having to perform lots of manual tests.

● JUnit (http://junit.org/) is a test framework which uses annotations to identify
methods that specify a test. Typically these test methods are contained in a
class which is only used for testing. It is typically called a Test class.

● current version JUnit 5.3.1

● Tests are realized as public void testX() methods.

● A test typically calls a few methods, then checks if the state matches the
expectation. If not, it fails.

● To define that a certain method is a test method, annotate it with the @Test
annotation.

● This method executes the code under test. You use an assert method,
provided by JUnit or another assert framework, to check an expected result
versus the actual result. These method calls are typically called asserts or
assert statements.

● You should provide meaningful messages in assert statements. That makes
it easier for the user to identify and fix the problem. This is especially true if
someone looks at the problem, who did not write the code under test or the
test code.

JUnit test example

package main;

public class MyClass {

public int multiply(int a, int b) {

return (a*b);

}

}

package test;
import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;
import main.MyClass;

public class MyTests {
 @Test
 public void multiplicationOfZeroIntegersShouldReturnZero() {
 MyClass tester = new MyClass(); // MyClass is tested
 // assert statements
 assertEquals(0, tester.multiply(10, 0), "10 x 0 must be 0");
 assertEquals(0, tester.multiply(0, 10), "0 x 10 must be 0");
 assertEquals(0, tester.multiply(0, 0), "0 x 0 must be 0");
 }
}

● A widely-used solution for classes is to use the "Test" suffix at the end of test
classes names. (The Maven build system automatically includes such classes in its test scope.)

● As a general rule, a test name should explain what the test does. If that is done
correctly, reading the actual implementation can be avoided.

● One possible convention is to use the "should" in the test method name. For
example, "ordersShouldBeCreated" or "menuShouldGetActive". This gives a
hint what should happen if the test method is executed.

● Another approach is to use
"Given[ExplainYourInput]When[WhatIsDone]Then[ExpectedResult]" for the
display name of the test method.

JUnit test example - MyClass

public class MyClass {

 public int multiply(int x, int y) {

 return x / y;

 }

}

JUnit test example - MyClassTest
package test;

import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;
import main.MyClass;

public class MyClassTest {

 @Test
 public void testMultiply() {
 MyClass tester = new MyClass();
 assertEquals(50, tester.multiply(10, 5),"10 x 5 must be 50");
 }
}

Run Tests
● The test is failing, because

our multiplier class is
currently not working
correctly.

● It does a division instead of
multiplication.

● Fix the bug and re-run the
test to get a green bar.

JUnit test example - MyClass

public class MyClass {

 public int multiply(int x, int y) {

 return x * y;

 }

}

JUnit Eclipse Legend

Annotation Description

@Test Denotes that a method is a test method. Unlike JUnit 4’s @Test
annotation, this annotation does not declare any attributes, since test
extensions in JUnit Jupiter operate based on their own dedicated
annotations. Such methods are inherited unless they are overridden

@ParameterizedTest Denotes that a method is a parameterized test. Such methods are
inherited unless they are overridden.

@RepeatedTest Denotes that a method is a test template for a test that we want to repeat
several times. Such methods are inherited unless they are overridden.

@DisplayName Declares a custom display name for the test class or test method. Such
annotations are not inherited.

All core annotations are located in the org.junit.jupiter.api package in the junit-jupiter-api module.

Annotation Description

@BeforeEach Denotes that the annotated method should be executed before each @Test,
@RepeatedTest, @ParameterizedTest, or @TestFactory method in the current class;
analogous to JUnit 4’s @Before. Such methods are inherited unless they are overridden.

@BeforeAll Denotes that the annotated method should be executed before all @Test,
@RepeatedTest, @ParameterizedTest, and @TestFactory methods in the current class;
analogous to JUnit 4’s @BeforeClass. Such methods are inherited (unless they are
hidden or overridden) and must be static (unless the "per-class" test instance lifecycle is
used).

@AfterEach Denotes that the annotated method should be executed after each @Test,
@RepeatedTest, @ParameterizedTest, or @TestFactory method in the current class;
analogous to JUnit 4’s @After. Such methods are inherited unless they are overridden.

@AfterAll Denotes that the annotated method should be executed after all @Test, @RepeatedTest,
@ParameterizedTest, and @TestFactory methods in the current class; analogous to
JUnit 4’s @AfterClass. Such methods are inherited (unless they are hidden or overridden)
and must be static (unless the "per-class" test instance lifecycle is used).

A test method is any instance method that is directly or meta-annotated with @Test,
@RepeatedTest, @ParameterizedTest, @TestFactory, or TestTemplate.

A test class is any top level or static member class that contains at least one test

method.

import static org.junit.jupiter.api.Assertions.fail;

import org.junit.jupiter.api.AfterAll;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeAll;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Disabled;

import org.junit.jupiter.api.Test;

class StandardTests {
 @BeforeAll
 static void initAll() {
 }
 @BeforeEach
 void init() {
 }
 @Test
 void succeedingTest() {
 }
 @Test
 void failingTest() {
 fail("a failing test");
 }

 @Test
 @Disabled("for demonstration
purposes")
 void skippedTest() {
 // not executed
 }
 @AfterEach
 void tearDown() {
 }
 @AfterAll
 static void tearDownAll() {
 }
}

Statement Description

fail(String) Let the method fail. Might be used to check that a certain part of the code is not
reached or to have a failing test before the test code is implemented. The String
parameter is optional.

assertTrue([message],
boolean condition)

Checks that the boolean condition is true.

assertFalse([message],
boolean condition)

Checks that the boolean condition is false.

assertEquals([String
message], expected,
actual)

Tests that two values are the same. Note: for arrays the reference is checked
not the content of the arrays.

assertEquals([String
message], expected,
actual, tolerance)

Test that float or double values match. The tolerance is the number of decimals
which must be the same.

Statement Description

assertNull([message], object) Checks that the object is null.

assertNotNull([message], object) Checks that the object is not null.

assertSame([String], expected, actual) Checks that both variables refer to the same object.

assertNotSame([String], expected, actual) Checks that both variables refer to different objects.

assertArrayEquals([String], expected, actual) Checks both array contains same values

Test classes and test methods can declare custom display names — with spaces, special

characters, and even emojis — that will be displayed by test runners and test reporting.

import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;
@DisplayName("A special test case")
class DisplayNameDemo {
 @Test
 @DisplayName("Custom test name containing spaces")
 void testWithDisplayNameContainingSpaces() {
 }
 @Test
 @DisplayName(" °□°） ")
 void testWithDisplayNameContainingSpecialCharacters() {
 }
 @Test
 @DisplayName(" ")
 void testWithDisplayNameContainingEmoji() {
 }
}

● The @Ignore annotation allow to statically ignore a test. The @Disabled

allow to disable a test.

● Alternatively you can use Assume.assumeFalse or Assume.assumeTrue to

define a condition for the test.

● Assume.assumeFalse(System.getProperty("os.name").contains("Mac OS X"));

● Assume.assumeTrue(System.getProperty("os.name").contains("Mac OS X"));

● All JUnit Jupiter assumptions are static methods in the

org.junit.jupiter.api.Assumptions class.

The ExecutionCondition extension API in JUnit Jupiter allows developers to either enable or disable a

container or test based on certain conditions programmatically.

Operating System Conditions A container or test may be enabled or disabled on a particular

operating system via the @EnabledOnOs and @DisabledOnOs annotations.

@Test
@EnabledOnOs(MAC)
void onlyOnMacOs() {
 // ...
}
@TestOnMac
void testOnMac() {
 // ...
}

@Test
@EnabledOnOs({ LINUX, MAC })
void onLinuxOrMac() {
 // ...
}
@Test
@DisabledOnOs(WINDOWS)
void notOnWindows() {
 // ...
}

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Test
@EnabledOnOs(MAC)
@interface TestOnMac {
}

Java Runtime Environment Conditions A container or test may be enabled or disabled on a

particular version of the Java Runtime Environment (JRE) via the @EnabledOnJre and @DisabledOnJre

annotations.

@Test
@EnabledOnJre(JAVA_8)
void onlyOnJava8() {

// ...
}

@Test
@EnabledOnJre({ JAVA_9, JAVA_10 })
void onJava9Or10() {
 // ...
}

@Test
@DisabledOnJre(JAVA_9)
void notOnJava9() {
 // ...
}

Environment Variable Conditions A container or test may be enabled or disabled based on

the value of the named environment variable from the underlying operating system via the

@EnabledIfEnvironmentVariable and @DisabledIfEnvironmentVariable annotations. The value

supplied via the matches attribute will be interpreted as a regular expression.

@Test
@EnabledIfEnvironmentVariable(named = "ENV", matches = "staging-server")
void onlyOnStagingServer() {
 // ...
}

@Test
@DisabledIfEnvironmentVariable(named = "ENV", matches = ".*development.*")
void notOnDeveloperWorkstation() {
 // ...
}

Script-based Conditions enable or disable a test based on the evaluation of a script configured

via the @EnabledIf or @DisabledIf annotation. Scripts can be written in JavaScript, Groovy, or any other

scripting language for which there is support for the Java Scripting API, defined by JSR 223

@Test // Static JavaScript expression.
@EnabledIf("2 * 3 == 6")
void willBeExecuted() {
 // ...
}

@RepeatedTest(10) // Dynamic JavaScript
expression.
@DisabledIf("Math.random() < 0.314159")
void mightNotBeExecuted() {
 // ...
}

@Test // Regular expression testing bound system property.
@DisabledIf("/32/.test(systemProperty.get('os.arch'))")
void disabledOn32BitArchitectures() {
 assertFalse(System.getProperty("os.arch").contains("32"));
}

@Test
@EnabledIf("'CI' == systemEnvironment.get('ENV')")
void onlyOnCiServer() {
 assertTrue("CI".equals(System.getenv("ENV")));
}

● JUnit allows you to use parameters in a tests class. This class can contain

one test method and this method is executed with the different parameters

provided.

@ParameterizedTest

@ValueSource(strings = { "pippo" , racecar",

"radar", "able was I ere I saw elba" })

void palindromes(String candidate) {

 assertTrue(isPalindrome(candidate));

}

● combine multiple tests into a test suite

● a test suite executes all test classes in

that suite in the specified order

● A test suite can also contain other test

suites.

import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)
@SuiteClasses({
 MyClassTest.class,
 MySecondClassTest.class })

public class AllTests {

}

Test classes and methods can be tagged via the @Tag annotation. Those tags

can later be used to filter test discovery and execution.

• A trimmed tag must not contain whitespace.

• A trimmed tag must not contain ISO control characters.

• A trimmed tag must not contain any of the following

reserved characters:

◦ ,: comma

◦ (: left parenthesis

◦): right parenthesis

◦ &: ampersand

◦ |: vertical bar

◦ !: exclamation point

import org.junit.jupiter.api.Tag;
import org.junit.jupiter.api.Test;

@Tag("fast")
@Tag("model")
class TaggingDemo {

 @Test
 @Tag("taxes")
 void testingTaxCalculation() {
 }

}

JUnit 5 introduces the concept of a Launcher that can be used to discover, filter,
and execute tests. The launcher API is in the junit-platform-launcher module

final LauncherDiscoveryRequest request =
 LauncherDiscoveryRequestBuilder.request()

 .selectors(selectClass(MyClassTest.class))
 .selectors(selectClass(HelloWorldTest.class))
 .build();

final Launcher launcher = LauncherFactory.create();
final SummaryGeneratingListener listener = new SummaryGeneratingListener();

launcher.registerTestExecutionListeners(listener);
launcher.execute(request);

TestExecutionSummary summary = listener.getSummary();

https://junit.org/junit5/docs/current/api/org/junit/platform/launcher/package-summary.html

● The ConsoleLauncher is a command-line Java application that lets you launch
the JUnit Platform from the console. For example, it can be used to run JUnit
Vintage and JUnit Jupiter tests and print test execution results to the console.

● An executable junit-platform-console-standalone-1.3.2.jar with all
dependencies included is published in the central Maven repository under the
junit-platform-console-standalone directory.

● java -jar lib/junit-platform-console-standalone-1.3.2.jar --class-path bin
--scan-class-path

● Tests should be written before the code (TDD - Test driven development)

● Test everything that could reasonably break.

● If it can’t break on its own, it’s too simple to break (like most get and set

methods).

● Run all your unit tests as often as possible

One of the founding fathers of Extreme Programming

● A type of Agile software development
○ it advocates frequent "releases" in short development cycles
○ introduce checkpoints at which new customer requirements can be adopted

● Other elements of extreme programming include:

○ programming in pairs or doing extensive code review
○ unit testing of all code
○ avoiding programming of features until they are actually needed
○ code simplicity and clarity
○ expecting changes in the customer's requirements as time passes and the problem is better

understood
○ frequent communication with the customer and among programmers

● XP uses Test Driven Development (TDD) and refactoring to help uncover the most effective design.
○ refactoring can be safely achieved only with a strong test system, able to check that the whole

software product don't break when you add new code, or when you modify existing ones.

https://en.wikipedia.org/wiki/Pair_programming
https://en.wikipedia.org/wiki/Code_review
https://en.wikipedia.org/wiki/Unit_testing

● Writing test before code to be tested
○ “a little test, a little code, a little test, a little code, ...”
○ Tests are added gradually during implementation – not in large lump

afterwards

● Process of writing tests drives low-level design and programming
○ Tests specify what code should do
○ Tests validate that code does what it should

● Actually, a design and coding practice
● One of the core practices of Extreme Programming

○ Developers have been applying TDD for several decades

● Proceeds step by step
a. Write a test.
b. Design and implement just enough to

make the test pass.
c. Repeat.

● Testing and coding alternate in very small
steps
○ Duration of one cycle should be a few

minutes
○ Small steps – difficult to make mistake

● TDD procedure is over when you can’t write a failing test anymore
a. Write test for each requirement of the code
b. Write test for each point that can possibly break

● One cycle at a time
a. Don’t write a bunch of tests at once

● Refactor if you ever see the chance to make the design simpler
● Run all tests after finishing episode

○ Make sure you did not break anything else

● Close feedback loop
a. TDD cycle is very short – know if code is working right after you

programmed it

● Task-orientation
a. Encourage programmer to decompose problem into manageable

programming tasks
b. Helps to maintain focus
c. Helps to measure progress and scope work

● Low-level design
a. Programmer is forced to think which classes and methods to create, how

they are used, how to name them, what arguments does a method take,
what does a method return

● Results better code
a. If the test is too hard to write, the code being tested is too

complicated
● Results testable code

a. Programmer can’t end up with code that cannot be tested
● Effect on quality

a. Testing becomes part of the development process and gets done
b. Side effect of TDD is that code gets thoroughly unit tested

● The only way to know!
● Personal experiences

a. Good feeling about the code written
■ General confidence that your code does what you have intended it to do
■ Good feeling when checking your code into version control with all green

b. Tests really get written when they are written beforehand
■ You always have an up-to-date regression testing suite
■ TDD helps you to keep focus on the current task
■ Program only what is needed to see the green light

c. Promote best practices
■ System.out.println is used for displaying messages for user – not for

developer Debugger is used for debugging

Check this out: JUnit 5 User Guide

https://junit.org/junit5/docs/current/user-guide/index.pdf
or

https://junit.org/junit5/docs/current/user-guide/

https://junit.org/junit5/docs/current/user-guide/index.pdf
https://junit.org/junit5/docs/current/user-guide/

