
Software Project
Management - Laboratory

Lecture n° 2
A.Y. 2020-2021

Prof. Fabrizio Fornari

Version Control

Use Case
Consider this scenario:

● It is 11:00 PM

● You have a homework submission for today and the assignment is ready for submission

● While testing it, you discover a minor bug and decide to fix it

● You try to fix the bug, you change several lines of code on different files and try to run the code

● You discover now that your code is not working anymore as expected

● You no longer remember what you changed

It is 11:59 PM!!!

Use Case
Consider this scenario:

● It is 11:00 PM

● You have a homework submission for today and the assignment is ready for submission

● While testing it, you discover a minor bug and decide to fix it

● You try to fix the bug, you change several lines of code on different files and try to run the code

● You discover now that your code is not working anymore as expected

● You no longer remember what you changed

Ctrl + Z is not working!

Version Control

Version control is a system that records
changes to a file or set of files over time
so that you can recall specific versions

How to do it?

Manually

Any issues?

How to do it?

Manually

How to do it?

Local Version Control Systems

How to do it?

Local Version Control Systems

Any issues?

How to do it?

Centralized Version Control Systems

How to do it?

Centralized Version Control Systems

Any issues?

How to do it?

Distributed Version Control Systems

Distributed means that there is no main
server and all of the full history of the
project is available once you cloned the
project.

What is git?

● A distributed version control system - DVCS

● Open source project originally developed in 2005 by Linus Torvalds

● A command line utility

● You can imagine git as something that sits on top of your file system and
manipulates files.

https://git-scm.com/

Git

● You can imagine git as something that sits
on top of your file system and manipulates
files.

● This “something” is a tree structure where
each commit creates a new node in that
tree.

● Nearly all git commands actually serve to
navigate on this tree and to manipulate it
accordingly.

Git

The purpose of git is to manage a project, or a set of
files, as they change over time. Git stores this
information in a data structure called a repository

A git repository contains, mainly: A set of commits

Git - Three States

Git has three main states that your files can reside in:

● Modified

● Staged

● Committed

- it means you have changed the file but have not committed it to your database yet.

- it means that you have marked a modified file in its current version to go into your

next commit snapshot.

- it means that you have marked a modified file in its current version to go into your

next commit snapshot.

Git - Three Sections

Three main sections of a Git project: the working tree, the staging area, and the Git directory.

 Git Workflow

1. Modify file in working directory
2. Stage changes you want to

commit
3. Commit, takes the file as they

are in the saging area and
stores that snapshot
permanently to your Git
directory

Git - Commit

Commit id (hash)

Commit message

A commit object mainly contains three things:

● A hash, a 40-character string that uniquely identifies the commit object
● Commit message describing the changes
● A set of changes the commit introduces

What is an hash?
The result of the application of a cryptographic hash function (CHF).

Secure Hash Algorithm 1 (SHA1) https://www.hjp.at/(st_a)/doc/rfc/rfc3174.html

CHF is a mathematical algorithm that maps data of arbitrary size (often called the "message") to a
bit array of a fixed size (the "hash value", "hash", or "message digest"). It is a function which is
practically infeasible to invert.

Give it a try: http://www.sha1-online.com/

https://www.hjp.at/(st_a)/doc/rfc/rfc3174.html
http://www.sha1-online.com/

Commits

First Commit

Second Commit

Third Commit

DevOps Our Focus

Visual Git Cheat Sheet: https://ndpsoftware.com/git-cheatsheet.html#loc=remote_repo;

https://ndpsoftware.com/git-cheatsheet.html
https://ndpsoftware.com/git-cheatsheet.html#loc=remote_repo;

Let’s start!

1. Check if you have a version of git installed on your machine $git --version
2. If not, install it https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
3. Set your user name and email address; every Git commit will use this information.

$ git config --global user.name "Name Surname"

$ git config --global user.email name.surname@studenti.unicam.it

4. You can check your settings at any time:
$git config −−l i s t

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Git Help
If you ever need help while using Git you can get the comprehensive manual page
(manpage) help for any of the Git commands by typing:

$ git help <verb>
$ git <verb> --help
$ man git-<verb>

For example, you can get the manpage help for the git config command by running this:

$ git help config

If you don’t need the full manpage help, but just a quick refresher on the available
options for a Git command you can just type -h:

$ git config -h

Getting a Git Repository

Typically we obtain a Git repository in one of two ways:

1. Take a local directory that is not currently under version control, and turn it into a Git

repository

2. Clone an existing Git repository from elsewhere

In either case, you end up with a Git repository on your local machine, ready for work.

Initialize a Repository

Create a new folder and open a terminal in that folder.

$ cd pathToTheFolder/FolderName

$ git init

This creates a new subdirectory named .git that contains all of your necessary repository files
— a Git repository skeleton. Git uses this special sub-directory to store all the information
about the project . If we ever delete the .git sub-directory, we will lose the project’s history.

Type ls -a to see the .git folder (Linux or Mac)

Type dir /a to see the .git folder (Windows)

Git Status

The command used to determine which files are in which state is git status

This means:
● you have a clean working directory.
● no changes have been detected.
● master is the name of the branch.

Tracking a File

1. Create a file in that folder (by GUI or by command line)

You can see that your new README
file is untracked, because it’s under
the “Untracked files” heading in your
status output.

Tracking a File

 2. Use the command git add <FileName> to begin tracking the README file

You can see that your README file is
staged because it’s under the
“Changes to be committed” heading.

Tracking a File

 3. Modify the README file and run git status Git stages a file exactly as it is when
you run the git add command.

If you modify a file after you run git
add, you have to run git add again to
stage the latest version of the file.

Tracking a File

 4. Run git add README and run git status -s
Git stages a file exactly as it is when
you run the git add command.

If you modify a file after you run git
add, you have to run git add again to
stage the latest version of the file.

Tracking a File

 5. Create a second File and run git status -s

 6. Create a third File and run git status -s

 7. Add all untracked file to staging area by running git add . and run git status

Tracking a File

 8. Edit one or more File and run git status -s

Can you guess
what happened?

Tracking a File

 9. Add all the changes to the staging area by running git add . and run git status -s

 10. Remove a file from the staging area git rm --cached ThirdFile.txt and run git status -s

Tracking a File

Tracking a File

 11. Edit a file and run git status

 12. Run git diff
diff compares what is in your working
directory with what is in your staging
area. The result tells you the changes
you’ve made that you haven’t yet staged.

Tracking a File

 13. Run git diff --staged

git diff --staged shows what you’ve staged
that will go into your next commit. It
compares your staged changes to your
last commit.

 14. Stage all by running git add .

Commit

When your staging area is set up the way you want it, you can commit your changes. Remember,
anything that is still unstaged — any files you have created or modified that you haven’t run git add on
since you edited them — won’t go into this commit

 15. Run git commit -m “A message which describes the changes, helping me to remember what i
changed with this commit”

Branch name SHA-1 checksum

Changed Files and statistics
about lines added/removed

Remember
The commit records the snapshot you set up in your staging area.

Anything you didn’t stage is still sitting there modified; you can do another commit to add it to your
history.

Every time you perform a commit, you’re recording a snapshot of your project that you can revert to
or compare to later.

Skip the Staging Area
Let’s assume you modified a file and you want to commit directly without staging that change

Run git commit -a -m “A message which describes the changes, helping me to remember what i
changed with this commit”

Removing Files
1. Run git rm FileName to remove a file from the working directory and staging the delete

Removing Staged Files
 2. What if you staged a file then you realize you don’t actually want to commit it? How do you
remove a staged file?

git rm --cached FileName

Rename a File
Run git mv OldFileName NewFileName

Commit History
Run git log

git log lists the commits made in that
repository in reverse chronological order

Try:
git log -p -2
git log --stat
git log --pretty=oneline
git log --pretty=format:"%h - %an, %ar : %s"

Undoing Things

I realized that FifthFile and SixthFile are
related and it makes sense to commit
them together in a single commit

I Added a FifthFile and committed it

I Created a SixthFile

I run git commit --amend

I committed both file together and
I also changed the commit
message

Unstaging & Unmodifying

To unstage run git reset HEAD FileName

To unmodify git checkout -- FileName

Ignoring Things

Often, you’ll have a class of files that you don’t want Git to automatically add or even show you as
being untracked. These are generally automatically generated files such as log files or files
produced by your build system. In such cases, you can create a file listing patterns to match them
named .gitignore.

ignore all .a files
*.a

but do track lib.a, even though you're
#ignoring .a files above
!lib.a

only ignore the TODO file in the current
directory, not subdir/TODO
/TODO

ignore all .a files
*.a

but do track lib.a, even though you're
#ignoring .a files above
!lib.a

only ignore the TODO file in the current
directory, not subdir/TODO
/TODO

Example of .gitignore https://github.com/github/gitignore

https://github.com/github/gitignore

Ignoring Things

Run cat .gitignore

