
Software Project
Management - Laboratory

Lecture n° 3
A.Y. 2020-2021

Prof. Fabrizio Fornari

Version Control

A version control system records changes to a file or set of files over time so that you
can recall specific versions.

How to do it?
Manually Local Version Control Systems

Centralized Version Control Systems

Distributed Version Control Systems

Distributed Version
Control System

Distributed means that there is no main
server and all of the full history of the
project is available once you cloned the
project.

Set up a Repository

1. Create a new folder and open a terminal in that folder. $ cd pathToTheFolder/FolderName

2. Initialize a repository$ git init

3. Create one file and commit,

4. Create a second file and commit,

5. Create a third file and commit

Commits
Commits can be seen as a list where each commit points to his parent.

Branching
Branching is one of the major characteristics of Git.

A git branch can be seen as a pointer that can point to any of the available commits.

The default branch name in Git is master.

Branching
6. Run git log --oneline --decorate

Creating a New Branch
1. Run git branch testing
2. Run git status

 3. Run git branch -a

The git branch command
only created a new branch
— it didn’t switch to that.

Creating a New Branch

1. Run git log --oneline --decorate

Switching to a New Branch

2. Run git checkout testing

This moves HEAD to point to
the testing branch.

Commit to a New Branch

3. Create a new file (or do some changes to the already available files)
4. Commit those changes
5. Run git log --oneline --decorate --graph --all

Your testing
branch has
moved forward

Back to master branch

6. Switch back to the master branch
7. Run git log --oneline --decorate --graph --all

● HEAD pointer is back to point to the master branch.
● Files in your working directory are back to the snapshot that master points to.

Commit to master branch

8. Make some changes to a file, or create a new one, or remove one.
9. Commit those changes
10. Run git log --oneline --decorate --graph --all

Branching and Merging
Let’s go through a simple example of branching and merging with a workflow that you might use in
the real world. You’ll follow these steps:

1. Do some work on a website.
2. Create a branch for a new user story you’re working on.
3. Do some work in that branch.

At this stage, you’ll receive a call that another issue is critical and you need a hotfix. You’ll do the
following:

1. Switch to your production branch.
2. Create a branch to add the hotfix.
3. After it’s tested, merge the hotfix branch, and push to production.
4. Switch back to your original user story and continue working.

Branching and Merging

Let’s say you’re working on your project and have a couple of commits already on the master
branch.

Now you decide to focus on a specific issue; imagine it as a user story that you want to add or
something you want to fix.

1. Run git checkout -b IssueNumber

 A short way for: git branch IssueNumber
 git checkout IssueNumber

iss22

Branching and Merging
You do some changes and you commit

Now you get the call that there is an issue with the website, and you need to fix it immediately.

What do you do?

Branching and Merging
You do some changes and you commit

Now you get the call that there is an issue with the website, and you need to fix it immediately.

1. Run git checkout master

2. You have a hotfix to make. Let’s create a hotfix branch on which to work until it’s completed.

3. Run git checkout -b hotfix

4. Modify index.html file and commit the changes

Branching and Merging

iss22

Branching and Merging

You can run your tests, make sure the hotfix is what you want, and finally merge the hotfix branch
back into your master branch to deploy to production.

1. Run git checkout master
2. Run git merge hotfix

“Fast-forward” - when you try to
merge one commit with a commit that
can be reached by following the first
commit’s history, Git simplifies things
by moving the pointer forward
because there is no divergent work to
merge together

Git

Up to now we have seen how to use git to do local versioning.

However we said during the last lesson that git is a distributed version control
system and it is useful when collaborating with others.

How do you collaborate with others? By means of the Internet

Remotes in Git
A remote repository is a repository stored somewhere else.

Most programmers use hosting services like:
● GitHub,
● BitBucket,
● GitLab

GitHub

The first thing you need to do is set up a free user account.

Visit https://github.com, choose a username that isn’t already taken, provide an email address
and a password, and click the big green “Sign up for GitHub” button.

https://github.com

Remote Repository
Create a new repository to share our code.

1. Click “New repository” button on the left side of the dashboard, or from the + button in the top
toolbar next to your profile image as seen in the “New repository” dropdown.

Remote Repository

1. Write the name of the repository
2. Add a description (optional)
3. Choose whether to create a Public or Private
repository
4. Create the repository

Remote Repository

1. Write the name of the repository
2. Add a description (optional)
3. Choose whether to create a Public or Private
repository
4. Create the repository

Remote Repository
As soon as the repository is created,
GitHub displays a page with a URL
and some information on how to
configure your local repository.

Remote Repository
What happened on the Server?

$ mkdir spm2020
$ cd spm2020
$ git init

But the repository now it is empty

Remote Repository
We have to link our local repository to the remote repository.

1. Access your local repository with a terminal (command line)
2. Run git remote add origin https://github.com/YourUserName/YourRepositoryName.git

We can check that the command has worked by running git remote -v

The name origin is a local nickname for your remote repository. We could use something else if we
wanted to, but origin is by far the most common.

Remote Repository
Once the nickname origin is set up, we push the changes from our local repository to the repository
on GitHub

3. Run git push origin master

Remote Repository
Once the nickname origin is set up, we push the changes from our local repository to the repository
on GitHub

3. Run git push origin master
4. Refresh your github webpage

Remote Repository
If you have more branches in your local repository and you want to keep track of all of them

5. Run git push origin --all

Remote Repository
If you have more branches in your local repository and you want to keep track of all of them

5. Run git push origin --all

Commit vs Push
When we commit we update our local repository.

When we push we interact with the remote repository to update it with the changes we have made
locally. In this way, who has access to the repository can see the changes.

How can your collaborators download the changes you have made and pushed to the remote
repository?

Git Pull
We can pull changes from the remote repository to the local one

1. Run git pull origin master

The command goes out to that remote project and pulls down all the data from that remote project
that you don’t have yet.

I added a README file by means of
the GitHub User Interface which
allowed me to add the file and to
perform a commit to store the changes

Git Pull
We can pull changes from the remote repository to the local one

1. Run git pull origin master

The command goes out to that remote project and pulls down all the data from that remote project
that you don’t have yet.

Collaboration on GitHub

One person will be the “Owner”
and the others will be the
“Collaborators”.

The Owner needs to give the
Collaborators access.

The Collaborators will receive
an email and/or they can check
notifications on
https://github.com/notifications

Collaboration on GitHub

A collaborators can download a copy of the Owner’s repository to their machine. This action
is referred as “cloning a repository”.

To clone a Git project hosted on GitHub:

1. Run git clone <address of the project>.git <pathToAFolderInYourMachine>

You can run git clone https://github.com/FabrizioFornari/spm2020.git

Collaboration on GitHub

The collaborator can now make a change to the copy of the repository he/she has.

Note: here I am using the same account but the effect would be the same by using the account of a collaborator

Collaboration on GitHub

To update the Owner’s version, the Owner runs:

1. git pull origin master

Collaborative Workflow

It is good to be sure that you have an updated version of the repository you are collaborating
on, so you should git pull before making our changes.

The basic collaborative workflow would be the following.

● Run git pull origin master to update your local repo with changes stored on the server
● Make changes and stage them by running git add
● Commit your changes by running git commit -m
● Upload the changes to GitHub by running git push origin master

Better to make many commits with small changes rather than of one single commit with massive
changes: small commits are easier to read and to review. Pay attention to this for the final evaluation.

Git Fetch

On the command line, the Collaborator can run git fetch origin master to get the remote
changes into the local repository, but without merging them.

Then by running git diff master origin/master the Collaborator will see the changes output in
the terminal.

$ git fetch origin/master
$ git diff master origin/master
$ git merge origin/master

The Dark Side of Collaboration

When you are collaborating on a shared repository you may end up changing the same files other
collaborators are working on. Version control helps us to manage these conflicts by giving us tools to
resolve overlapping changes.

Note: this can also happen if you are the only one working on a repo but, for instance, on different
devices (a laptop and a pc)

The Dark Side of Collaboration
As collaborators try to modify the same file (e.g. add a different line of text/code).

Collaborator A

The Dark Side of Collaboration
As collaborators try to modify the same file (e.g. add a different line of text/code).

Collaborator B

Git rejects the push because it detects that the remote repository has new updates that have not
been incorporated into the local branch.

Solve the Conflict
What we have to do is pull the changes from GitHub, merge them into the copy we’re currently working
in, and then push that.

Solve the Conflict
Run git status

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged. Git adds standard
conflict-resolution markers to the files that have conflicts, so you can open them manually and resolve
those conflicts.

Solve the Conflict
I decided to merge the
content of the files by
copy paste. I did so by
using my text editor
open -a TextEdit File.txt

I Run git status

Solve the Conflict
I removed EigthFile.txt

I run git status

I added the changes
to EightFile.txt

I committed the
changes

I pushed the changes

Solve the Conflict

Good Practice
● Pull from upstream more frequently, especially before starting new work
● Use topic branches to segregate work, merging to master when complete
● Make small commits
● Break large files into smaller ones so to reduce the possibility of conflicts

About Conflicts:
● Clarify who is responsible for what areas with your collaborators

● Discuss the order of tasks with your collaborators so that tasks expected to change the
same lines won’t be worked on simultaneously

● If the conflicts are stylistic churn (e.g. tabs vs. spaces), establish a project convention
that is governing and use code style tools (e.g. htmltidy, perltidy, rubocop, etc.) to
enforce, if necessary

Remember the Workflow

git pull origin master

echo A new line in a text file > NewFile.txt

git add NewFile.txt

git commit -m “Add a new file”

git push origin master

Additional Materials

Pro Git
https://git-scm.com/book/en/v2
by Scott Chacon and Ben Straub

https://git-scm.com/book/en/v2

In case of...

