Software Project
Management - Laboratory

Lecture n° 4
A.Y. 2020-2021

Prof. Fabrizio Fornari

DevOps

X | gra | | git s ||-&* | aws

Confluence docker

Our Focus

Nagios | |splunk> g

DATADOG

Apache Maven

Apache Maven is an open source, standards-based project management framework that simplifies the
building, testing, reporting, and packaging of projects.

http://maven.apache.org/

Maven’s History

Maven's initial roots were in the Apache Jakarta Alexandria project that took place in early 2000. It was
subsequently used in the Apache Turbine project. Like many other Apache projects at that time, the
Turbine project had several subprojects, each with its own Ant- based build system.

Back then, there was a strong desire for developing a standard way to build projects and to share
generated artifacts easily across projects. This desire gave birth to Maven. Maven version 1.0 was
released in 2004, followed by version 2.0 in 2005 and version 3.0 in 2010.

The current version of Maven is 3.6.3

Maven has become one of the most widely used open source software programs in enterprises around
the world. Let's look at some of the reasons why Maven is so popular.

Maven - Standardized Directory Structure

Maven addresses the preceding problems by standardizing the folder structure and organization of a
project.

Maven provides recommendations on where different parts of a project, such as source code, test
code, and configuration files, should reside.

For example, Maven suggests that all of the Java source code should be placed in the src\main\java
folder. This makes it easier to understand and navigate any Maven project.

Maven - Declarative Dependency Management

Most Java projects rely on other projects and open source frameworks to function properly. It
can be cumbersome to download these dependencies manually and keep track of their
versions as you use them in your project.

Maven provides a convenient way to declare these project dependencies in a separate,

external pom.xml file. It then automatically downloads those dependencies and allows you to
use them in your project. This simplifies project dependency management greatly. It is important
to note that in the pom.xml file, you specify the what and not the how.

Maven - Archetypes

Maven archetypes are predefined project templates that can be used to generate new projects.

Projects created using archetypes will contain all of the folders and files needed to get you going.

E.g., consider a team that works heavily on Spring framework-based web applications.

All Spring-based web projects share common dependencies and require

a set of configuration files. It is also highly possible that all of these web projects have similar
Log4j/Logback configuration files, CSS/Images, and Thymeleaf page layouts. Maven lets this team
bundle these common assets into an archetype. When new projects get created using this archetype,
they will automatically have the common assets included.

Maven - Alternatives

Apache Ant

Apache Ant (http://ant.apache.org) is a popular open source tool for scripting builds. Ant is Java
based, and it uses Extensible Markup Language (XML) for its configuration. The default configuration
file for Ant is the build.xml file.

Listing 1-1. Sample Ant build.xml File

<project name="Sample Build File" default="compile"

n n

basedir=".">

<target name="compile" description="Compile Source Code">
<echo message="Starting Code Compilation"/>
<javac srcdir="src" destdir="dist"/>
<echo message="Completed Code Compilation"/>

</target>

</project>

Maven - Alternatives

Apache lvy

Apache lvy (http://ant.apache.org/ivy/) provides automated dependency management, making Ant
more joyful to use. With Ivy, you declare the dependencies in an XML file called ivy.xml

Listing 1-2. Sample Ivy Listing

<ivy-module version="2.0">
<info organisation="com.apress” module="gswm-ivy" />

<dependencies>

<dependency org="org.apache.logging.log4j" name="log4j-api"
rev="2.11.2" />
</dependencies>

</ivy-module>

Maven - Alternatives

Gradle

Gradle (http://gradle.org/) is an open source build, project automation tool that can be used for
Java and non-Java projects. Unlike Ant and Maven, which use XML for configuration, Gradle uses

a Groovy-based domain-specific language (DSL).
Listing 1-3. Default build.gradle File

plugins {
id 'java'
}

version = '1.0.0'

repositories {
mavenCentral()

}

dependencies {
testCompileOnly group: 'junit', name: 'junit',
version: '4.10'

}

Maven

Despite growing competition from
other tools, Maven continues to
dominate the build tool space.

0%
Maven Gradle Ant Other

Figure 1-1. Survey results of build tool usage

https://snyk.io/blog/jvm-ecosystem-report-2018-tools/

Maven

slf4j-provider

distribution

Y

Y

slf4j-api

embedder

commons-cli

Maven can be

extended by L]
plugins to utilise a compat
number of other — : L —_—
development tools]arI\SI shared-utils core pluglﬁn-apl
for reporting or the Y / \
build process

wagon-provider-api

plexus

inject guice
N Y

A | sisu — __V_
settings-builder| |\ javax.inject

native

(\) D
settings I\ component-annotations | | classworlds

sec-dispatcher || cipher

"x, _y| interpolation
~ || plexus

resolver-provider
// \{ v
— \\ | builder-support ‘
i impl \\ P4

v\ /

v " Ymodel-builder-— |

util

resolver

A -\
repository-metadata artifact

https://maven.apache.org/plugins/

Maven - Convention over Configuration

Maven uses Convention over Configuration, which means developers are not required to create build
process themselves.

Developers do not have to mention each and every configuration detail. Maven provides sensible
default behavior for projects. When a Maven project is created, Maven creates default project
structure. Developer is only required to place files accordingly and he/she need not to define any

configuration in pom.xml.

Maven - Convention over Configuration

As an example, following table shows the default values for project source code files, resource files
and other configurations. Assuming, $basedir denotes the project location

Source code ${basedir}/src/main/java
Resources ${basedir}/sr/main/resources
Tests ${basedir}/src/tests
Compiled byte code ${basedir}/target
Distributable JAR ${basedir}/target/classes

Maven - Convention over Configuration

v | | spmProject2020

-] pom.xml
& src

v 1 main

> | ljava

» |7 resources
) test

» [java

» | | resources
> [target

v 2 spmProject2020
(# src/main/java
(2 src/main/resources
8 src/testfjava
{8 src/test/resources
P =, JRE System Library
P (= src

(= target
[m] pom.xml

spmProject2020 is the root folder of the project. Typically, the name of
the root folder matches the name of the generated artifact.

src contains project-related artifacts such as source code or property
files, which you typically would like to manage in a source control
management (SCM) system, such as Git.

src/main/java folder contains the Java source code.

srcltest/java folder contains the Java unit test code.

target folder holds generated artifacts, such as .class files. Generated
artifacts are typically not stored in SCM, so you don’t commit the target
folder and its contents into SCM.

pom.xml file. It holds project and configuration information, such as
dependencies and plug-ins

Maven - Convention over Configuration

src/main/java Application/Library sources

src/main/resources Application/Library resources

src/mainffilters Resource filter files
src/main/webapp Web application sources

src/test/java Test sources

src/test/resources Test resources

src/test/filters Test resource filter files

srclit Integration Tests (primarily for plugins)
src/assembly Assembly descriptors
src/site Site

LICENSE.txt Project's license

NOTICE.txt Notices and attributions required by libraries that the project depends on

README..txt Project's readme

http://maven.apache.org/quides/introduction/introduction-to-the-standard-directory-layout.html

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Maven - Environment Setup

Maven is a Java-based application and requires the Java Development Kit (JDK) to function
properly.

You can install it by downloading the latest version of Maven from the Apache Maven web site
(http://maven.apache.org/ download.html)

After some setup you will end up with Maven installed

fabriziounicam:Local user$ mvn -v

Apache Maven 3.3.9 (bb52d3502b132ecBaba3f4cA9453cA7478323dcE; 2015-11-1AT17:41:47+01:00)
Maven home: Ausr/local/apache-maven/apache-maven-3.3.9

Java version: 1.8.8_161, vendor: Oracle Corporation

Java home: /Library/Java/JdavaVirtualMachines/jdkl.8.8_161.jdk/Contents/Home/jre

Default locale: en_US, platform encoding: UTF-8

05 name: "mac os x", version: "18.15.4", arch: "x86_64", family: "mac"

Q All modern IDEs come with full Maven integration without needing any further configuration

Maven - Environment Setup

Install Eclipse IDE for Enterprise Java Developers

Eclipse IDE for Enterprise Java Developers

3B2MB 424,127 DOWNLOADS

Tools for developers working with Java and Web applications, including a Java

IDE, tools for Web Services, JPA and Data Tools, JavaServer Pages and Faces, Windows 64-bit

Mylyn, Maven and Gradle, Git, and more. Mac Cocoa 64-bit
Linux 64-bit

Click here to file a bug against Eclipse Web Tools Platform.

Click here to file a bug against Eclipse Platform.

Click here to file a bug against Maven integration for web projects.

Click here to report an issue against Eclipse Wild Web Developer (incubating).

https://www.eclipse.org/downloads/packages/release/2020-09/r/eclipse-ide-enterprise-java-developers

https://www.eclipse.org/downloads/packages/release/2020-09/r/eclipse-ide-enterprise-java-developers

Maven - Project Setup

Create a Maven Project by following:
File — New — Other — Maven
Project — Next

Insert “maven-archetype-quickstart”,
select and proceed

New Maven project

New Maven Project

Select an Archetype

Catalog: | All Catalogs

Filter: quickstart

Group Id

org.apache.flink
org.apache.flink
org.apache.flink
org.apache.isis
org.apache.isis.archetype
org.apache.kafka
org.apache.maven.archetypes
org.apache.tapestry
org.apache.tuscany.sca
org.apache.tuscany.sca
ora.anache tuscanv sca

An archetype which contains a sample Maven project.
https://repo1.maven.org/maven2

Artifact Id
flink-quickstart-scala
flink-quickstart-scala_2.11
statefun-quickstart
quickstart-archetype
quickstart_wicket_restful_jdo-archetype
streams-quickstart-java
maven-archetype-quickstart
quickstart
tuscany-quickstart
tuscany-quickstart-bpel
tuscanv-auickstart-isf

Show the last version of Archetype only Include snapshot archetypes

» Advanced

B Configure...

%
Version

1.11.1

0.10.2

2.1.0
0.2.0-incubating
1.5.0

2.6.0

1.4

5.6.0

2.0.1

2.0.1

2.01

Add Archetype...

Cancel

¥ =5 SPM2020
¥ (% src/main/java

Maven - Project Setup i
¥ (@ src/test/java
¥ £ pros.unicam.SPM2020

This is the structure and the content > [J] AppTest java
f r ro'ect ¥ B, JRE System Library |
Of your project. P (4 resources.jar - /L

P (a rt.jar

P 3o jsse.jar

P [jce.jar

P (39 charsets.jar

P 9 jfrjar - /Lil

P (o0 sunec.jar
(oa dnsns.jar - /Librz
loig localedata.jar - /Li)
jog sunjce_provider.jar - /Lif
foig sunpkcs11.jar - /Library,
(wa Zipfs.jar - /Library/Java
oo MRJToolkit.jar

¥ B, Maven Dependencies

(58 junit-4.11 jar - /Users/u
b E hamcrest-core-1.3.jar
¥ (= src

(= main

[~ test
(~target
(M| pom.xml

Maven - Project Setup

1. Inspect the project folders and files.
2. Run App.java as Java Application

f% Package Explorer 53 = ¢ = B | [J] App.java 2
package pros.unicam.it.SPM202@CourseProject;

[

v &3 > SPM2020CourseProject [M
¥ (% > src/mainfjava
¥ f3 > pros.unicam.it.SPM2020CourseProject

» [2 App.java

> @% > srcftestfjava

» B\ JRE System Library [JavaSE-1.7]

» =, Maven Dependencies

P (=5 > src

S [¥x
* Hello world!
*
*/
public class App
{
= public static void main(String[] args)

{

~SN~SouommbsWwWwN

(o]

O

(= target

System.out.printin("Hello World!");
[pom.xml

Ped ok ek
WN =S

Maven - Testing

1. Inspect the project folders and files.
2. Run AppTest.java as JUnit Test

[% Package Explorer 53 BE < ¢ = 8 | [J)] App.java [J] AppTest.java 53
VEﬁk-SPMzozocoumePnnectPJ; ndRepo master] I package pros.unicam.it.SPM202@CourseProject;
¥ (#% > src/mainfjava
¥ §3 > pros.unicam.it.SPM2020CourseProject
» [App.java S /4%
¥ {3 > srcftestfjava 8 % Unit test for simple App.
¥ §3 > pros.unicam.it.SPM2020CourseProject D\
» [2; AppTest.java L2 public class AppTest

» =\ JRE System Library [JavaSE-1.7] ~ { 4k
» B\ Maven Dependencies * Rigorous Test :
> 5> src 14 %/
(= target ! @Test :
?ublic void shouldAnswerWithTrue()

}

+ import static org.junit.Assert.assertTrue;[]

[»3 pom.xml

assertTrue(true);

Testing

To be continued...

Maven - POM

Maven project structure and contents are declared in an xml file, pom.xml, referred as Project Object
Model (POM), which is the fundamental unit of the entire Maven system.

The POM contains information about the project and various configuration details used by Maven to
build the project(s).

POM also contains the goals and plugins. While executing a task or goal, Maven looks for the POM in
the current directory. It reads the POM, gets the needed configuration information, and then executes
the goal.

Some of the configuration that can be specified in the POM are:
e project dependencies
e plugins
e goals
e Duild profiles
e project version

Maven

project The project root tag. You need to specify the basic schema settings such
as apache schema and w3.org specification

model Version Should be set to 4.0.0. Is the version of project descriptor your POM
conforms to.

groupld The Id of the project group. It is generally unique amongst an
organization or a project.

artifactld The Id of the project.

version The version of the project. E.g., 0.0.1-SNAPSHOT

name The name of the project.

Maven Lifecycle

Build processes generating artifacts such as JAR or WAR files typically require several steps and
tasks to be completed successfully in a well-defined order. Examples of such tasks include
compiling source code, running unit tests, and packaging of the artifact. Maven uses the concept
of goals to represent such granular tasks.

; . - Package the
Write Code Compile Code Run Unit Tests Artifact

Maven - Plugins

Goals in Maven are packaged in plug-ins, which are essentially a collection of one or more goals.

Compiler Plugin

vy o The compile goal identifies the Java class
<artifactId>maven-compiler-plugin</artifactId> HelloWorld.java under src/main/java, compiles it,
</;§iﬁgii§”>3-8-°</V”51°”=' and places the compiled class file under the
] target\classes folder.

Clean Plugin

<!== clean lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#clean_Lifecycle -->
<plugin>

<artifactId>maven-clean-plugin</artifactId>
<version>3.1.0</version>
</plugin>

The clean goal accomplishes exactly that, as it attempts to delete the target folder and all its
contents.

Maven Lifecycle

Maven goals are granular and
typically perform one task.

To perform complex operations.

Maven simplifies these complex
operations via lifecycle and phase
abstractions

Every Maven project has the following three built-in lifecycles:

This lifecycle handles the compiling, packaging,

default | and deployment of a Maven project.
This lifecycle handles the deletion of temporary
clean files and generated artifacts from the target
directory.
site This lifecycle handles the generation of

documentation and site generation.

Maven Lifecycle

Runs checks to ensure that the project is correct
validate and that all dependencies are downloaded and
available.
compile Compiles the source code.
tost Runs unit tests using frameworks. This step
doesn’t require that the application be packaged.
K Assembles compiled code into a distributable
pacrage | format, such as JAR or WAR.
Installs the packaged archive into a local
install repository. The archive is now available for use by
any project running on that machine.
deol Pushes the built archive into a remote repository
epioy for use by other teams and team members.

DEFAULT LIFE CYCLE

resources

compiler

install

Maven - Dependency Management MVN

Search the library you need
and add it to the POM

| searched for a JSON library

Note: if you don’t know about JSON
https://www.json.org/json-en.html

MYNREPOSITORY

Indexed Artifacts (18.2M)

Popular Categories

Aspect Oriented

Actor Frameworks
Application Metrics
Build Tools

Bytecode Libraries
Command Line Parsers
Cache Implementations
Cloud Computing

Code Analyzers
Collections
Configuration Libraries
Core Utilities

Date and Time Utilities

Dependency Injection

https://mvnrepository.com/

Search for groups, artifacts, categories ‘ Search

Home » org.json » json » 20200518

JSON In Java » 20200518
JSON is a light-weight, language independent, data interchange format. See

http://www.JSON.org/ The files in this package implement JSON encoders/decoders in Java. It
also includes the capability to convert between JSON and XML, HTTP headers, Cookies, and
CDL. This is a reference implementation. There is a large number of JSON packages in Java.
Perhaps someday the Java community will standardize on one. Until then, choose carefully. The
license includes this restriction: "The software ...

License [350N |
Categories JSON Libraries

HomePage https://github.com/douglascrockford/JSON-java
Date (May 22, 2020)

Files bundle (64 KB) View All

Repositories m

Used By 3,839 artifacts

| Maven H Gradle || SBT | Ivy Leiningen || Buildr
<!l=-- https://mvnrepository.com/artifact/org.json/json -->
<dependency>
<groupId>org.json</groupId>
<artifactId>json</artifactId>
<version>20200518</version>
</dependency>

https://mvnrepository.com/
https://www.json.org/json-en.html

Maven - Dependency Management MVN

https://mvnrepository.com/

Search the library you need
and add it to the POM

<groupIld>pros.unicam</groupld>
<artifactId>SPM202@CourseProject</artifactId>
<version>0.0.1-SNAPSHOT</version>

o~

- S W0

<name>SPM2020CourseProject</name>
<!-— FIXME change it to the project's website —>
<url>http://www.example.com</url>

w N

[Y

| searched for a JSON library <properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>

</properties>

(=2 IL¥ B -0

~

| added it to the POM and |
build the project

p
1
1
1
18
5

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>|
<scope>test</scope>

<!=- https://mvnrepository.com/artifact/org.json/json —>
<dependency>
<groupId>org.json</groupId>
<artifactId>json</artifactId>
<version>20200518</version>
</dependency>
</dependencies>

Wwwww
- W N

https://mvnrepository.com/

Create a JSON file

public class ApB
{

public static void main(String[] args)
{
System.out.printin("Hello World!");
writeJson();|
//writelsonArray();

}
public static void writelson() {

JSONObject jo = new JSONObject();
jo.put("name", "jon doe");
jo.put("age", "22");
jo.put("city", "chicago");

String fileName = "/Users/user/Desktop/SPM/fileJSON. json";
try (BufferedWriter writer = Files.newBufferedWriter(Paths.get(fileName), StandardCharsets.UTF_8)) {
jo.write(writer);
writer.write("\n");
} catch (Exception ex) {
System.err.println("Couldn't write contestNames\n"
+ ex.getMessage());

System.out.println("Successfully Copied JSON Object to File...");
System.out.println("\nJSON Object: " + jo);

Create a JSON file

Viewer Text
Viewer Text

= [Juson

=2{}o

® name : "jon doe"

Paste Copy Format Remove white space Clear Load JSON data

"age": "22",
"name": "jon doe",
"city": "chicago"

age : "22"

city : "chicago"

"age": "31",
"name": "Fabrizio Fornari",
"city": "Camerino”

j{}:

® name : "Fabrizio Fornari"

age : "31"

M city : "Camerino”

http://jsonviewer.stack.hu/

http://jsonviewer.stack.hu/

Maven - Additional Material

Introducing Maven:
A Build Tool for Today’s Java Developers.

by Balaji Varanasi

Introducing
Maven

A Build Tool for Today’s Java
Developers

Second Edition

Balaji Varanasi

https://www.amazon.com/-/es/Balaji-Varanasi/e/B00J6CFTO0/ref=dp_byline_cont_book_1

Time to Exercise

N

4
e,

Time to Exercise

1. From your command line, Create a local git repository

2. From a web browser, Create a GitHub repository

3. Add other your colleagues as collaborators

4. From your command line, Connect the local repository with the remote repository on GitHub
5. From your IDE (e.g. Eclipse), Create a Maven project

6. From your command line, Run git status

Did anything changed inside your local git repository?

Why?

Time to Exercise

. From your command line, Create a local git repository

. From a web browser, Create a GitHub repository

. Add other your colleagues as collaborators

. From your command line, Connect the local repository with the remote repository on GitHub

. From your IDE (e.g. Eclipse), Create a Maven project

. From your command line, Run git status

. Ensure that you have created the maven project inside your local repository folder

. Make some changes to the code and commit them and push them by using the command line

O~NO OGP, WN -

