
Software Project
Management - Laboratory

Lecture n° 4
A.Y. 2020-2021

Prof. Fabrizio Fornari

DevOps

Our Focus

Apache Maven

Apache Maven is an open source, standards-based project management framework that simplifies the
building, testing, reporting, and packaging of projects.

http://maven.apache.org/

Maven’s History

Maven's initial roots were in the Apache Jakarta Alexandria project that took place in early 2000. It was
subsequently used in the Apache Turbine project. Like many other Apache projects at that time, the
Turbine project had several subprojects, each with its own Ant- based build system.

Back then, there was a strong desire for developing a standard way to build projects and to share
generated artifacts easily across projects. This desire gave birth to Maven. Maven version 1.0 was
released in 2004, followed by version 2.0 in 2005 and version 3.0 in 2010.

The current version of Maven is 3.6.3

Maven has become one of the most widely used open source software programs in enterprises around
the world. Let's look at some of the reasons why Maven is so popular.

Maven - Standardized Directory Structure

Maven addresses the preceding problems by standardizing the folder structure and organization of a
project.

Maven provides recommendations on where different parts of a project, such as source code, test
code, and configuration files, should reside.

For example, Maven suggests that all of the Java source code should be placed in the src\main\java
folder. This makes it easier to understand and navigate any Maven project.

Maven - Declarative Dependency Management

Most Java projects rely on other projects and open source frameworks to function properly. It
can be cumbersome to download these dependencies manually and keep track of their
versions as you use them in your project.

Maven provides a convenient way to declare these project dependencies in a separate,
external pom.xml file. It then automatically downloads those dependencies and allows you to
use them in your project. This simplifies project dependency management greatly. It is important
to note that in the pom.xml file, you specify the what and not the how.

Maven - Archetypes

Maven archetypes are predefined project templates that can be used to generate new projects.

Projects created using archetypes will contain all of the folders and files needed to get you going.

E.g., consider a team that works heavily on Spring framework-based web applications.
All Spring-based web projects share common dependencies and require
a set of configuration files. It is also highly possible that all of these web projects have similar
Log4j/Logback configuration files, CSS/Images, and Thymeleaf page layouts. Maven lets this team
bundle these common assets into an archetype. When new projects get created using this archetype,
they will automatically have the common assets included.

Maven - Alternatives

Apache Ant

Apache Ant (http://ant.apache.org) is a popular open source tool for scripting builds. Ant is Java
based, and it uses Extensible Markup Language (XML) for its configuration. The default configuration
file for Ant is the build.xml file.

Maven - Alternatives

Apache Ivy

Apache Ivy (http://ant.apache.org/ivy/) provides automated dependency management, making Ant
more joyful to use. With Ivy, you declare the dependencies in an XML file called ivy.xml

Maven - Alternatives

Gradle

Gradle (http://gradle.org/) is an open source build, project automation tool that can be used for
Java and non-Java projects. Unlike Ant and Maven, which use XML for configuration, Gradle uses
a Groovy-based domain-specific language (DSL).

Maven

https://snyk.io/blog/jvm-ecosystem-report-2018-tools/

Despite growing competition from
other tools, Maven continues to
dominate the build tool space.

Maven

Maven can be
extended by
plugins to utilise a
number of other
development tools
for reporting or the
build process

https://maven.apache.org/plugins/

Maven - Convention over Configuration

Maven uses Convention over Configuration, which means developers are not required to create build
process themselves.

Developers do not have to mention each and every configuration detail. Maven provides sensible
default behavior for projects. When a Maven project is created, Maven creates default project
structure. Developer is only required to place files accordingly and he/she need not to define any
configuration in pom.xml.

Maven - Convention over Configuration

As an example, following table shows the default values for project source code files, resource files
and other configurations. Assuming, $basedir denotes the project location

Item Default

Source code ${basedir}/src/main/java

Resources ${basedir}/sr/main/resources

Tests ${basedir}/src/tests

Compiled byte code ${basedir}/target

Distributable JAR ${basedir}/target/classes

Maven - Convention over Configuration

- spmProject2020 is the root folder of the project. Typically, the name of
the root folder matches the name of the generated artifact.

- src contains project-related artifacts such as source code or property
files, which you typically would like to manage in a source control
management (SCM) system, such as Git.

- src/main/java folder contains the Java source code.

- target folder holds generated artifacts, such as .class files. Generated
artifacts are typically not stored in SCM, so you don’t commit the target
folder and its contents into SCM.

- src/test/java folder contains the Java unit test code.

- pom.xml file. It holds project and configuration information, such as
dependencies and plug-ins

Maven - Convention over Configuration
src/main/java Application/Library sources

src/main/resources Application/Library resources

src/main/filters Resource filter files

src/main/webapp Web application sources

src/test/java Test sources

src/test/resources Test resources

src/test/filters Test resource filter files

src/it Integration Tests (primarily for plugins)

src/assembly Assembly descriptors

src/site Site

LICENSE.txt Project's license

NOTICE.txt Notices and attributions required by libraries that the project depends on

README.txt Project's readme

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Maven - Environment Setup

All modern IDEs come with full Maven integration without needing any further configuration

Maven is a Java-based application and requires the Java Development Kit (JDK) to function
properly.

You can install it by downloading the latest version of Maven from the Apache Maven web site
(http://maven.apache.org/ download.html)

After some setup you will end up with Maven installed

Maven - Environment Setup
Install Eclipse IDE for Enterprise Java Developers

https://www.eclipse.org/downloads/packages/release/2020-09/r/eclipse-ide-enterprise-java-developers

https://www.eclipse.org/downloads/packages/release/2020-09/r/eclipse-ide-enterprise-java-developers

Maven - Project Setup
Create a Maven Project by following:
File → New → Other → Maven
Project → Next

Insert “maven-archetype-quickstart”,
select and proceed

Maven - Project Setup
This is the structure and the content
of your project.

Maven - Project Setup
1. Inspect the project folders and files.
2. Run App.java as Java Application

Maven - Testing
1. Inspect the project folders and files.
2. Run AppTest.java as JUnit Test

Testing

To be continued...

Maven - POM

Maven project structure and contents are declared in an xml file, pom.xml, referred as Project Object
Model (POM), which is the fundamental unit of the entire Maven system.

The POM contains information about the project and various configuration details used by Maven to
build the project(s).

POM also contains the goals and plugins. While executing a task or goal, Maven looks for the POM in
the current directory. It reads the POM, gets the needed configuration information, and then executes
the goal.

Some of the configuration that can be specified in the POM are:
● project dependencies
● plugins
● goals
● build profiles
● project version

Maven

Tag Description

project The project root tag. You need to specify the basic schema settings such
as apache schema and w3.org specification

model Version Should be set to 4.0.0. Is the version of project descriptor your POM
conforms to.

groupId The Id of the project group. It is generally unique amongst an
organization or a project.

artifactId The Id of the project.

version The version of the project. E.g., 0.0.1-SNAPSHOT

name The name of the project.

Maven Lifecycle

Build processes generating artifacts such as JAR or WAR files typically require several steps and
tasks to be completed successfully in a well-defined order. Examples of such tasks include
compiling source code, running unit tests, and packaging of the artifact. Maven uses the concept
of goals to represent such granular tasks.

Maven - Plugins

Goals in Maven are packaged in plug-ins, which are essentially a collection of one or more goals.

Compiler Plugin

Clean Plugin

The compile goal identifies the Java class
HelloWorld.java under src/main/java, compiles it,
and places the compiled class file under the
target\classes folder.

The clean goal accomplishes exactly that, as it attempts to delete the target folder and all its
contents.

Maven Lifecycle

Maven goals are granular and
typically perform one task.

To perform complex operations.

Maven simplifies these complex
operations via lifecycle and phase
abstractions

Every Maven project has the following three built-in lifecycles:

default
This lifecycle handles the compiling, packaging,
and deployment of a Maven project.

clean
This lifecycle handles the deletion of temporary
files and generated artifacts from the target
directory.

site This lifecycle handles the generation of
documentation and site generation.

Maven Lifecycle

validate
Runs checks to ensure that the project is correct
and that all dependencies are downloaded and
available.

compile Compiles the source code.

test Runs unit tests using frameworks. This step
doesn’t require that the application be packaged.

package Assembles compiled code into a distributable
format, such as JAR or WAR.

install
Installs the packaged archive into a local
repository. The archive is now available for use by
any project running on that machine.

deploy Pushes the built archive into a remote repository
for use by other teams and team members.

Maven - Dependency Management
https://mvnrepository.com/

Search the library you need
and add it to the POM

I searched for a JSON library

Note: if you don’t know about JSON
https://www.json.org/json-en.html

https://mvnrepository.com/
https://www.json.org/json-en.html

Maven - Dependency Management
https://mvnrepository.com/

Search the library you need
and add it to the POM

I searched for a JSON library

I added it to the POM and I
build the project

https://mvnrepository.com/

Create a JSON file

Create a JSON file

http://jsonviewer.stack.hu/

http://jsonviewer.stack.hu/

Maven - Additional Material

Introducing Maven:
A Build Tool for Today’s Java Developers.

by Balaji Varanasi

https://www.amazon.com/-/es/Balaji-Varanasi/e/B00J6CFTO0/ref=dp_byline_cont_book_1

Time to Exercise

Time to Exercise

1. From your command line, Create a local git repository
2. From a web browser, Create a GitHub repository
3. Add other your colleagues as collaborators
4. From your command line, Connect the local repository with the remote repository on GitHub
5. From your IDE (e.g. Eclipse), Create a Maven project
6. From your command line, Run git status

Did anything changed inside your local git repository?

Yes No

Why?

Time to Exercise

1. From your command line, Create a local git repository
2. From a web browser, Create a GitHub repository
3. Add other your colleagues as collaborators
4. From your command line, Connect the local repository with the remote repository on GitHub
5. From your IDE (e.g. Eclipse), Create a Maven project
6. From your command line, Run git status
7. Ensure that you have created the maven project inside your local repository folder
8. Make some changes to the code and commit them and push them by using the command line

