Model Checking I alias Reactive Systems Verification

Luca Tesei
MSc in Computer Science, University of Camerino

Topics

- Program Graphs
- Semantics of Program Graphs as Transition Systems

Material

Reading:
Chapter 2 of the book, pages 29-35.

More:

The slides in the following pages are taken from the material of the course "Introduction to Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Data-dependent systems

problem: TS-representation of conditional branchings ?

$$
\text { if } x>0 \text { if } x \leq 0
$$

Data-dependent systems

problem: TS-representation of conditional branchings ?

example: sequential program

$$
\begin{aligned}
& \text { WHILE } x>0 \text { DO } \\
& x:=x-1 ; \\
& \text { OD } \quad:=y+1
\end{aligned}
$$

Data-dependent systems

problem: TS-representation of conditional branchings ?

example: sequential program

Data-dependent systems

problem: TS-representation of conditional branchings ?

example: sequential program

Data-dependent systems

problem: TS-representation of conditional branchings ?

example: sequential program

$$
\begin{aligned}
& \ell_{1} \rightarrow \text { WHILE } x>0 \text { DO } \\
& x:=x-1 ; \\
& \ell_{2} \rightarrow \quad y:=y+1 \\
& y:=y+1
\end{aligned}
$$

$\ell_{1}, \ell_{2}, \ell_{3}$ are locations, i.e., control states

Data-dependent systems

problem: TS-representation of conditional branchings ?

example: sequential program

states of the transition system:
locations + relevant data (here: values for x and y)

Example: TS for sequential program

$$
\text { initially: } x=2, y=0
$$

$$
\ell_{1} \rightarrow \text { WHILE } x>0 \text { DO }
$$

$$
x:=x-1
$$

$$
\ell_{2} \rightarrow \text { OD } y:=y+1
$$

$$
\ell_{3} \rightarrow \ldots
$$

program graph

Example: TS for sequential program

initially: $x=2, y=0$
$\ell_{1} \rightarrow$ WHILE $x>0$ DO

$$
x:=x-1
$$

$\ell_{2} \rightarrow \mathrm{OD} y:=y+1$
OD
$\ell_{3} \rightarrow \ldots$
program graph

(ℓ_{2}) if $x>0$ then

$$
x:=x-1
$$

Example: TS for sequential program

initially: $x=2, y=0$
$\ell_{1} \rightarrow$ WHILE $x>0$ DO

$$
x:=x-1 \quad \leftarrow \text { action } \alpha
$$

$\ell_{2} \rightarrow{ }_{\mathrm{OD}} y:=y+\mathbf{1} \leftarrow \operatorname{action} \beta$
$\ell_{3} \rightarrow \ldots$
program graph

Typed variables

typed variable: variable $\boldsymbol{x}+$ data domain $\operatorname{Dom}(x)$

Typed variables

typed variable: variable $x+$ data domain $\operatorname{Dom}(x)$

- Boolean variable: variable x with $\operatorname{Dom}(x)=\{0,1\}$
- integer variable: variable y with $\operatorname{Dom}(y)=\mathbb{N}$
- variable z with $\operatorname{Dom}(z)=\{$ yellow, red, blue $\}$

Typed variables

typed variable: variable $x+$ data domain $\operatorname{Dom}(x)$

- Boolean variable: variable x with $\operatorname{Dom}(x)=\{0,1\}$
- integer variable: variable \boldsymbol{y} with $\operatorname{Dom}(\boldsymbol{y})=\mathbb{N}$
- variable \boldsymbol{z} with $\operatorname{Dom}(z)=\{$ yellow, red, blue $\}$
evaluation for a set Var of typed variables:
type-consistent function η : Var \rightarrow Values

Typed variables

typed variable: variable $x+$ data domain $\operatorname{Dom}(x)$

- Boolean variable: variable x with $\operatorname{Dom}(x)=\{0,1\}$
- integer variable: variable \boldsymbol{y} with $\operatorname{Dom}(\boldsymbol{y})=\mathbb{N}$
- variable \boldsymbol{z} with $\operatorname{Dom}(z)=\{$ yellow, red, blue $\}$
evaluation for a set Var of typed variables:

Typed variables

typed variable: variable $x+$ data domain $\operatorname{Dom}(x)$

- Boolean variable: variable x with $\operatorname{Dom}(x)=\{0,1\}$
- integer variable: variable \boldsymbol{y} with $\operatorname{Dom}(\boldsymbol{y})=\mathbb{N}$
- variable \boldsymbol{z} with $\operatorname{Dom}(z)=\{$ yellow, red, blue $\}$
evaluation for a set Var of typed variables:

Notation: Eval(Var) = set of evaluations for Var

Conditions on typed variables

If $V a r$ is a set of typed variables then

> | Cond $($ Var $)=$ | set of Boolean conditions |
| ---: | :--- |
| | on the variables in Var |

Conditions on typed variables

If $V a r$ is a set of typed variables then

> | Cond $($ Var $)=$ | set of Boolean conditions |
| ---: | :--- |
| on the variables in Var | |

Example: $(\neg x \wedge y<z+3) \vee w=r e d$
where $\operatorname{Dom}(x)=\{0,1\}, \operatorname{Dom}(y)=\operatorname{Dom}(z)=\mathbb{N}$, $\operatorname{Dom}(w)=\{$ yellow, red, blue $\}$

Conditions on typed variables

If Var is a set of typed variables then

> | Cond $($ Var $)=$ | set of Boolean conditions |
| ---: | :--- |
| on the variables in Var | |

Example: $(\neg x \wedge y<z+3) \vee w=r e d$
where $\operatorname{Dom}(x)=\{0,1\}, \operatorname{Dom}(y)=\operatorname{Dom}(z)=\mathbb{N}$, $\operatorname{Dom}(w)=\{$ yellow, red, blue $\}$
satisfaction relation \vDash for evaluations and conditions

Conditions on typed variables

If Var is a set of typed variables then

> | Cond $($ Var $)=$ | set of Boolean conditions |
| ---: | :--- |
| on the variables in Var | |

Example: $(\neg x \wedge y<z+3) \vee w=r e d$
where $\operatorname{Dom}(x)=\{0,1\}, \operatorname{Dom}(y)=\operatorname{Dom}(z)=\mathbb{N}$, $\operatorname{Dom}(w)=\{$ yellow, red, blue $\}$
satisfaction relation \models for evaluations and conditions
Example:

$$
\begin{aligned}
& {[x=0, y=3, z=6] \vDash \neg x \wedge y<z} \\
& {[x=0, y=3, z=6] \not \models \quad x \vee y=z}
\end{aligned}
$$

Effect-function for actions

Given a set Act of actions that operate on the variables in Var, the effect of the actions is formalized by:

Effect-function for actions

Given a set Act of actions that operate on the variables in Var, the effect of the actions is formalized by:

$$
\text { Effect : Act } \times \text { Eval(Var) } \rightarrow \text { Eval(Var) }
$$

Effect-function for actions

Given a set Act of actions that operate on the variables in Var, the effect of the actions is formalized by:

$$
\text { Effect : Act } \times \text { Eval(Var) } \rightarrow \text { Eval(Var) }
$$

if α is " $x:=2 x+y$ " then:

$$
\operatorname{Effect}(\alpha,[x=1, y=3, \ldots])=[x=5, y=3, \ldots]
$$

Effect-function for actions

Given a set Act of actions that operate on the variables in Var, the effect of the actions is formalized by:

Effect : Act \times Eval(Var) \rightarrow Eval(Var)

if α is " $x:=2 x+y$ " then:
$\operatorname{Effect}(\alpha,[x=1, y=3, \ldots])=[x=5, y=3, \ldots]$
if β is " $x:=2 x+y ; y:=1-x$ " then:
$\operatorname{Effect}(\beta,[x=1, y=3, \ldots])=[x=5, y=-4, \ldots]$

Effect-function for actions

Given a set Act of actions that operate on the variables in Var, the effect of the actions is formalized by:

Effect : Act \times Eval(Var) \rightarrow Eval(Var)

if α is " $x:=2 x+y$ " then:
$\operatorname{Effect}(\alpha,[x=1, y=3, \ldots])=[x=5, y=3, \ldots]$
if β is " $x:=2 x+y ; y:=1-x$ " then:
$\operatorname{Effect}(\beta,[x=1, y=3, \ldots])=[x=5, y=-4, \ldots]$
if γ is " $(x, y):=(2 x+y, 1-x)$ " then:
$\operatorname{Effect}(\gamma,[x=1, y=3, \ldots])=[x=5, y=0, \ldots]$

Program graph (PG)

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(\text { Loc, Act, Effect, } \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, A c t, E f f e c t, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, A c t, E f f e c t, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, A c t, E f f e c t, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,
- Effect : Act \times Eval(Var) \rightarrow Eval(Var)

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, A c t, E f f e c t, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,
- Effect : Act \times Eval(Var) \rightarrow Eval(Var)
function that formalizes the effect of the actions

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, A c t, E f f e c t, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,
- Effect : Act \times Eval(Var) \rightarrow Eval(Var)
function that formalizes the effect of the actions example: if α is the assignment $x:=x+y$ then $\operatorname{Effect}(\alpha,[x=1, y=7])=[x=8, y=7]$

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, \text { Act, Effect }, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,
- Effect : Act \times Eval(Var) \rightarrow Eval(Var)
- $\hookrightarrow \subseteq$ Loc \times Cond (Var) \times Act \times Loc

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, A c t, E f f e c t, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,
- Effect : Act \times Eval(Var) \rightarrow Eval(Var)
- $\hookrightarrow \subseteq$ Loc \times Cond(Var) \times Act \times Loc
specifies conditional transitions of the form $\ell \stackrel{g: \alpha}{\longrightarrow} \ell^{\prime}$
ℓ, ℓ^{\prime} are locations, $g \in \operatorname{Cond}($ Var $), \alpha \in$ Act

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, \text { Act, Effect }, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,
- Effect : Act \times Eval(Var) \rightarrow Eval(Var)
- $\hookrightarrow \subseteq$ Loc \times Cond(Var) \times Act \times Loc
specifies conditional transitions of the form $\ell \xrightarrow{g: \alpha} \ell^{\prime}$
- $L o c_{0} \subseteq L o c$ is the set of initial locations,

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(L o c, A c t, E f f e c t, \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,
- Effect : Act \times Eval(Var) \rightarrow Eval(Var)
- $\hookrightarrow \subseteq$ Loc \times Cond (Var) \times Act \times Loc
specifies conditional transitions of the form $\ell \xrightarrow{g: \alpha} \ell^{\prime}$
- $L o c_{0} \subseteq L o c$ is the set of initial locations,
- $g_{0} \in C o n d($ Var $)$ initial condition on the variables

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple

$$
\mathcal{P}=\left(\text { Loc, Act, Effect, } \hookrightarrow, L o c_{0}, g_{0}\right) \text { where }
$$

- Loc is a (finite) set of locations, i.e., control states,
- Act a set of actions,
- Effect : Act \times Eval(Var) \rightarrow Eval(Var)
- $\hookrightarrow \subseteq$ Loc \times Cond (Var) \times Act \times Loc
specifies conditional transitions of the form $\ell \xrightarrow{g: \alpha} \ell^{\prime}$
- $L o c_{0} \subseteq L o c$ is the set of initial locations,
- $g_{0} \in$ Cond(Var) initial condition on the variables.

TS-semantics of a program graph

TS-semantics of a program graph

program graph \mathcal{P} over Var \Downarrow
transition system $\mathcal{T}_{\mathcal{P}}$

TS-semantics of a program graph

program graph \mathcal{P} over Var \Downarrow
transition system $\mathcal{T}_{\mathcal{P}}$
states in $\mathcal{T}_{\mathcal{P}}$ have the form
$\xlongequal{\langle\ell, \eta\rangle}$

TS-semantics of a program graph

Let $\mathcal{P}=\left(\right.$ Loc, Act, Effect, \hookrightarrow, Loc $\left._{0}, g_{0}\right)$ be a PG.
The transition system of \mathcal{P} is:

$$
\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

TS-semantics of a program graph

Let $\mathcal{P}=\left(\right.$ Loc, Act, Effect, $\left.\hookrightarrow, L o c_{0}, g_{0}\right)$ be a PG.
The transition system of \mathcal{P} is:

$$
\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- state space: $S=$ Loc $\times \operatorname{Eval}($ Var $)$

TS-semantics of a program graph

Let $\mathcal{P}=\left(\right.$ Loc, Act, Effect, $\left.\hookrightarrow, L o c_{0}, g_{0}\right)$ be a PG.
The transition system of \mathcal{P} is:

$$
\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- state space: $S=\operatorname{Loc} \times \operatorname{Eval}($ Var $)$
- initial states: $S_{0}=\left\{\langle\ell, \eta\rangle: \ell \in \operatorname{Loc}_{0}, \eta \models g_{0}\right\}$

TS-semantics of a program graph

Let $\mathcal{P}=\left(\right.$ Loc, Act, Effect, \hookrightarrow, Loc $\left._{0}, g_{0}\right)$ be a PG.
The transition system of \mathcal{P} is:

$$
\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- state space: $S=$ Loc \times Eval(Var)
- initial states: $S_{0}=\left\{\langle\ell, \eta\rangle: \ell \in \operatorname{Loc}_{0}, \eta \models g_{0}\right\}$

The transition relation \longrightarrow is given by the following rule:

$$
\frac{\ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

Structured operational semantics (SOS)

The transition system of a program graph \mathcal{P} is

$$
\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right) \text { where }
$$

the transition relation \longrightarrow is given by the following rule

$$
\frac{\ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

is a shortform notation in SOS-style.

Structured operational semantics (SOS)

The transition system of a program graph \mathcal{P} is

$$
\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right) \text { where }
$$

the transition relation \longrightarrow is given by the following rule

$$
\frac{\ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

is a shortform notation in SOS-style.
It means that \longrightarrow is the smallest relation such that:

$$
\text { if } \ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \eta \models g \text { then }\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle
$$

TS-semantics of a program graph

Let $\mathcal{P}=\left(\right.$ Loc, Act, Effect $\left., \hookrightarrow, L o c_{0}, g_{0}\right)$ be a PG. transition system $\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)$

- state space: $S=$ Loc $\times \operatorname{Eval}($ Var $)$
- initial states: $S_{0}=\left\{\langle\ell, \eta\rangle: \ell \in \operatorname{Loc}_{0}, \eta \models g_{0}\right\}$
- \longrightarrow is given by the following rule:

$$
\frac{\ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

Labeling of the states

Let $\mathcal{P}=\left(\right.$ Loc, Act, Effect, \hookrightarrow, Loc $\left._{0}, g_{0}\right)$ be a PG. transition system $\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)$

- state space: $S=$ Loc \times Eval(Var)
- initial states: $S_{0}=\left\{\langle\ell, \eta\rangle: \ell \in \operatorname{Loc}_{0}, \eta \models g_{0}\right\}$
- \longrightarrow is given by the following rule:

$$
\frac{\ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

- atomic propositions: $A P=\operatorname{Loc} \cup \operatorname{Cond}($ Var $)$

Labeling of the states

Let $\mathcal{P}=\left(\right.$ Loc, Act, Effect, \hookrightarrow, Loc $\left._{0}, g_{0}\right)$ be a PG. transition system $\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)$

- state space: $S=$ Loc \times Eval(Var)
- initial states: $S_{0}=\left\{\langle\ell, \eta\rangle: \ell \in \operatorname{Loc}_{0}, \eta \models g_{0}\right\}$
- \longrightarrow is given by the following rule:

$$
\frac{\ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

- atomic propositions: $A P=\operatorname{Loc} \cup \operatorname{Cond}($ Var $)$
- labeling function:

$$
L(\langle\ell, \eta\rangle)=\{\ell\} \cup\{g \in \operatorname{Cond}(\text { Var }): \eta \models g\}
$$

TS-semantics of a program graph

Let $\mathcal{P}=\left(\right.$ Loc, Act, Effect $\left., \hookrightarrow, L o c_{0}, g_{0}\right)$ be a PG. transition system $\mathcal{T}_{\mathcal{P}}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)$

- state space: $S=\operatorname{Loc} \times \operatorname{Eval}(\operatorname{Var})$
- initial states: $S_{0}=\left\{\langle\ell, \eta\rangle: \ell \in \operatorname{Loc}_{0}, \eta \models g_{0}\right\}$
- \longrightarrow is given by the following rule:

$$
\frac{\ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\eta, \alpha)\right\rangle}
$$

- atomic propositions: $A P=\operatorname{Loc} \cup \operatorname{Cond}($ Var $)$
- labeling function:

$$
L(\langle\ell, \eta\rangle)=\{\ell\} \cup\{g \in \operatorname{Cond}(\text { Var }): \eta \models g\}
$$

