# Systems Verification Lab Exercises on Regular Properties, Linear Time Logic and Computation Tree Logic with (Some) Solutions 

Teacher: Luca Tesei<br>Master of Science in Computer Science - University of Camerino

Contents
1 Regular Properties ..... 2
2 Linear Temporal Logic ..... 7
3 LTL Exercises from Book ..... 16
4 CTL Exercises from Book ..... 17

## 1 Regular Properties

Exercise 1.1. Consider the following transition system TS:

and the regular safety property

$$
P_{\text {safe }}=\begin{aligned}
& \text { "always if } a \text { is valid and } b \wedge \neg c \text { was valid somewhere before, } \\
& \text { then } a \text { and } b \text { do not hold thereafter at least until } c \text { holds" }
\end{aligned}
$$

As an example, it holds:

$$
\begin{aligned}
\{b\} \emptyset\{a, b\}\{a, b, c\} & \in \operatorname{pref}\left(P_{\text {safe }}\right) \\
\{a, b\}\{a, b\} \emptyset\{b, c\} & \in \operatorname{pref}\left(P_{\text {safe }}\right) \\
\{b\}\{a, c\}\{a\}\{a, b, c\} & \in \operatorname{BadPref}\left(P_{\text {safe }}\right) \\
\{b\}\{a, c\}\{a, c\}\{a\} & \in \operatorname{BadPref}\left(P_{\text {safe }}\right)
\end{aligned}
$$

Questions:
(a) Define an NFA $A$ such that $L(A)=\operatorname{MinBadPref}\left(P_{\text {safe }}\right)$
(b) Decide whether $T S \models P_{\text {safe }}$ using the $T S \otimes A$ construction. Provide a counterexample if $T S \not \vDash P_{\text {safe }}$

Exercise 1.2. Consider the following transition system TS:

and the regular safety property
$P_{\text {safe }}=$ "always if $b$ is holding and a was held somewhere before, then $c$ must not hold in the position just after the current b"

1. Define an NFA $\mathcal{A}$ such that $\mathcal{L}(\mathcal{A})=\operatorname{MinBadPref}\left(P_{\text {safe }}\right)$
2. Decide whether $\mathrm{TS} \vDash P_{\text {safe }}$ using the $\mathrm{TS} \otimes \mathcal{A}$ construction. Provide a counterexample if $\mathrm{TS} \not \vDash$ $P_{\text {safe }}$

## Solutions

## Solution of Exercise 1.1

- The NFA that accepts the set of minimal bad prefixes:

- First we apply the $T S \otimes \mathcal{A}$ construction which yields:


A counterexample to $T S \models P_{\text {safe }}$ is given by the following initial path fragment in $T S \otimes \mathcal{A}$ :

$$
\pi_{\otimes}=\left\langle s_{0}, q_{1}\right\rangle\left\langle s_{3}, q_{2}\right\rangle\left\langle s_{1}, q_{2}\right\rangle\left\langle s_{4}, q_{2}\right\rangle\left\langle s_{5}, q_{3}\right\rangle
$$

By projection on the state component, we get a path in the underlying transition system:

$$
\pi=s_{0} s_{3} s_{1} s_{4} s_{5} \text { with trace }(\pi)=\{a, b\}\{a, c\}\{a, b, c\}\{a, c\}\{a, b\}
$$

Obviously, trace $\left.(\pi) \in \operatorname{BadPref}^{( } P_{\text {safe }}\right)$, so we have $\operatorname{Traces}_{\text {fin }}(T S) \cap \operatorname{BadPref}\left(P_{\text {safe }}\right) \neq \emptyset$. By lemma 3.25 , this is equivalent to $T S \nLeftarrow P_{\text {safe }}$.

## Solution of Exercise 1.2

1. An NFA accepting the minimal bad prefixes for the property is $\mathcal{A}$ :

where:
$\neg a \equiv\{\},\{b\},\{c\},\{b, c\}\}$
$a \equiv\{\{a\},\{a, b\},\{a, c\},\{a, b, c\}\}$
The union of $\neg a$ and $a$ is $2^{A P}$
$\neg b \equiv\{\},\{a\},\{c\},\{a, c\}\}$
$b \equiv\{\{b\},\{a, b\},\{b, c\},\{a, b, c\}\}$
The union of $\neg b$ and $b$ is $2^{A P}$
$c \equiv\{\{c\},\{a, c\},\{b, c\},\{a, b, c\}\}$
$b \wedge \neg c \equiv\{\{b\},\{a, b\}\}$
$\neg b \wedge \neg c \equiv\{\},\{a\}\}$
The union of $c, b \wedge \neg c$ and $\neg b \wedge \neg c$ is $2^{A P}$

So the NFA is non-blocking apart from state $q_{3}$.
2. To apply the product $T S \otimes \mathcal{A}, \mathcal{A}$ should be non-blocking. Our $\mathcal{A}$ is deterministic and becomes non-blocking if we add a state $q_{4}$ and let

or alternatively we can add a self-loop on $q_{3}$. In this case the automaton would recognize all bad prefixes, not just the minimal ones. Let us consider $\mathcal{A}^{\prime}$ made on one of these two ways.

Let's construct the product:
$L\left(s_{0}\right)=\{b, c\} \delta\left(q_{0},\{b, c\}\right)=\left\{q_{0}\right\}$
So the unique initial state of $T S \otimes \mathcal{A}^{\prime}$ is $<s_{0}, q_{0}>$


From $<s_{0}, q_{0}>$ :

- $s_{0} \longrightarrow s_{1} L\left(s_{1}\right)=\{a\}$ $\delta\left(q_{0},\{a\}\right)=\left\{q_{1}\right\}$.
- $s_{0} \longrightarrow s_{2} L\left(s_{2}\right)=\{a, b\}$ $\delta\left(q_{0},\{a, b\}\right)=\left\{q_{1}\right\}$.

From $<s_{1}, q_{1}>$ :

- $s_{1} \longrightarrow s_{3} L\left(s_{3}\right)=\{b\}$ $\delta\left(q_{1},\{b\}\right)=\left\{q_{2}\right\}$.

From $\left.<s_{3}, q_{2}\right\rangle$ :

- $s_{3} \longrightarrow s_{5} L\left(s_{5}\right)=\{a, c\}$ $\delta\left(q_{2},\{a, c\}\right)=\left\{q_{3}\right\}$.
we can stop constructing $T S \otimes \mathcal{A}^{\prime}$ because we can already decide that $T S \not \vDash P_{\text {safe }}$.
Indeed in $T S \otimes \mathcal{A}^{\prime}$ a state in which $q_{3}$ is present is reachable *. The path gives us a counter-example for the property:
$s_{0} s_{1} s_{3} s_{5} \ldots$ whose trace is $\{b, c\}\{a\}\{b\}\{a, c\} \ldots \not \models P_{\text {safe }}$


## 2 Linear Temporal Logic

Exercise 2.1. Consider the following transition system $T S$ on $A P=\{a, b\}$ :

and the following LTL formula $\varphi=\square \diamond \neg a$.

1. Derive an NBAs $\mathcal{A}$ for the formula $\neg \varphi$, i.e. such that $\mathcal{L}_{\omega}(\mathcal{A})=\mathcal{L}_{\omega}(\neg \varphi)$.
2. Tell whether or not it holds $T S \models \varphi$ by constructing $T S \otimes \mathcal{A}$ and checking the proper persistence property related to the accepting states of $\mathcal{A}$. If $T S \not \vDash \varphi$ then provide a counterexample, i.e. give a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \models \varphi$.
Hint: it is not required to construct all the transition system $T S \otimes \mathcal{A}$, but only the reachable portion that is needed to answer to the question.

Exercise 2.2. Consider the following transition system TS on $A P=\{a, b, c\}$.


1. Decide, for each LTL formula $\varphi_{i}$ below, whether or not $T S \vDash \varphi_{i}$. Justify your answers! If $T S \not \vDash \varphi_{i}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{i}$.

$$
\begin{array}{ll}
\varphi_{1}=\diamond b & \varphi_{2}=\bigcirc \bigcirc(c \vee b) \\
\varphi_{3}=\diamond(a \wedge b \wedge c) & \varphi_{4}=(\bigcirc \bigcirc \bigcirc a) \vee(\diamond \square a) \\
\varphi_{5}=(a \vee b) \mathcal{U}(a \vee c) & \varphi_{6}=\square(b \longrightarrow(\bigcirc \diamond c))
\end{array}
$$

2. Consider the following fairness assumptions written as LTL formulas:

$$
\psi_{1}^{\text {fair }}=\square \diamond c \longrightarrow \square \diamond b \quad \psi_{2}^{\text {fair }}=\square \diamond a \quad \psi_{3}^{\text {fair }}=\square \diamond b \longrightarrow((\square \diamond a) \wedge(\square \diamond c))
$$

(a) (2 points) Decide whether or not $T S \models_{\text {fair }} \varphi_{1}$ under the three different fairness conditions $\psi_{\text {fair }}^{i}, i \in\{1,2,3\}$, separately. Whenever $T S \not \vDash_{\text {fair }} \varphi_{1}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{1}$ and arguing that $\pi$ is fair with respect to $\psi_{\text {fair }}^{i}$.
(b) (2 points) Decide whether or not $T S \models_{\text {fair }} \varphi_{6}$ under the three different fairness conditions $\psi_{\text {fair }}^{i}, i \in\{1,2,3\}$, separately. Whenever $T S \not \vDash_{\text {fair }} \varphi_{6}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{6}$ and arguing that $\pi$ is fair with respect to $\psi_{\text {fair }}^{i}$.


Exercise 2.3. Consider the transition system TS over the set of atomic proposition $A P=\{a, b, c\}$ : Decide for each of the LTL formulas $\varphi_{i}$ holds. Justify your answer!

If $T S \not \vDash \varphi_{i}$, provide a path $\pi \in$ paths $(T S)$ such that $\pi \not \models \varphi_{i}$.

$$
\begin{array}{ll}
\varphi_{1}=\diamond \square c & \varphi_{4}=\square a \\
\varphi_{2}=\square \diamond c & \varphi_{5}=a \mathcal{U} \square(b \vee c) \\
\varphi_{3}=\bigcirc \neg c \longrightarrow \bigcirc \bigcirc c & \varphi_{6}=(\bigcirc \bigcirc b) \mathcal{U}(b \vee c)
\end{array}
$$

Exercise 2.4. Let $A P=\{a, b, c\}$. Consider the transition system $T S$ over $A P$ outlined below

TS :

and the LTL fairness assumption fair $=(\square \diamond(a \wedge b) \longrightarrow \square \diamond \neg c) \wedge(\square \diamond(a \wedge b) \longrightarrow \square \diamond \neg b)$.
a) Specify the fair paths of TS!
b) Decide for each of the following LTL formulas $\varphi_{i}$ whether it holds $T S \models_{\text {fair }} \varphi_{i}$ :

$$
\varphi_{1}=\bigcirc \neg a \longrightarrow \diamond \square a \quad \varphi_{2}=b \mathcal{U} \square \neg b \quad \varphi_{3}=b \mathcal{W} \square \neg b
$$

In case $T S \nvdash_{\text {fair }} \varphi_{i}$, indicate a path $\pi \in \in \operatorname{FairPaths}(T S)$ for which $\pi \not \vDash \varphi$ holds.
Exercise 2.5. Consider the following LTL formula:

$$
\varphi=\square(b \longrightarrow(b \mathcal{U}(a \wedge \neg b)))
$$

1. Put the formula $\neg \varphi$ in Positive Normal Form containing the weak until operator $\mathcal{W}$ as dual of the until.
2. Convert $\neg \varphi$ into an equivalent LTL formula $\psi$ that is constructed according to the following grammar:

$$
\Phi::=\text { true } \mid \text { false }|\Phi \wedge \Phi| \neg \Phi|\bigcirc \Phi| \Phi \mathcal{U} \Phi
$$

then, construct the set closure $(\psi)$ and derive at least one set $B$ that is elementary set with respect to closure $(\psi)$.

Exercise 2.6. Transform the LTL-formula $\varphi=\neg \diamond(\neg(a \mathcal{U} c) \longrightarrow((b \wedge \neg d) \mathcal{U} a))$ in positive normal form, once using the $W$-operator and once using the $R$-operator.

Exercise 2.7. We consider model checking of $\omega$-regular LT properties which are defined by LTL formulas. Therefore let $\varphi_{1}$ and $\varphi_{2}$ be as follows:

$$
\begin{aligned}
& \varphi_{1}=\square \diamond a \longrightarrow \square \diamond b \\
& \varphi_{2}=\diamond(a \wedge \bigcirc a)
\end{aligned}
$$



Further, our model is represented by the transition system $T S$ over $A P=\{a, b\}$ which is given as outlined on the right. We check whether $T S \mid=\varphi_{i}$ for $i=1,2$ using the nested depth-first search algorithm from the lecture. Therefore proceed as follows:
a) Derive an NBA $A_{i}$ for the LTL formula $\neg \varphi_{i}($ for $i=1,2)$. More precisely, for $A_{i}$ it must hold $L_{\omega}\left(A_{i}\right)=L_{\omega}\left(\neg \varphi_{i}\right)$.
Hint: Four, respectively three states suffice.
b) Outline the reachable fragment of the product transition system $T S \otimes A_{i}$.
c) Sketch the main steps of the nested depth-first search algorithm for the persistency check on $T S \otimes A_{i}$.
d) Provide the counterexample computed by the algorithm if $T S \nvdash \varphi_{i}$.

## Solutions

## Solution of Exercise 2.1

1. We first note the $\neg \varphi \equiv \neg \square \diamond \neg a \equiv \diamond \square a$

An NBA $\mathcal{A}$ for $\diamond \square a$ is the following

where:
$a \equiv\{\{a\},\{a, b\}\}$
$\neg a \equiv\{\},\{b\}\}$
true $\equiv\{\{a\},\{b\},\{a, b\},\{ \}\}$
$F=\left\{q_{1}\right\}$
2. Let's start constructing the product $T S \otimes A$

The initial state are those $\left(s_{0}, x\right)$ where
$x \in \delta\left(q_{0}, L\left(s_{0}\right)\right)=$
$\delta\left(q_{0},\{a\}\right)=$
$\left\{q_{0}, q_{1}\right\}$
that is, there are two initial states: $\left(s_{0}, q_{0}\right)$ and $\left(s_{0}, q_{1}\right)$

from $\left(s_{0}, q_{0}\right)$ :
$s_{0} \rightarrow s_{1}, \delta\left(q_{0}, L\left(s_{1}\right)\right)=$
$\delta\left(q_{0},\{a\}\right)=\left\{q_{0}, q_{1}\right\}$

$$
s_{0} \rightarrow s_{2}, \delta\left(q_{0}, L\left(s_{2}\right)\right)=
$$

$$
\delta\left(q_{0},\{b\}\right)=\left\{q_{0}\right\}
$$

from $\left(s_{1}, q_{1}\right)$ :
$s_{1} \rightarrow s_{1}, \delta\left(q_{1}, L\left(s_{1}\right)\right)=$
$\delta\left(q_{1},\{a\}\right)=\left\{q_{1}\right\}$
from $\left(s_{1}, q_{0}\right)$ :
$s_{1} \rightarrow s_{1}, \delta\left(q_{0}, L\left(s_{1}\right)\right)=$
$\delta\left(q_{0},\{a\}\right)=\left\{q_{0}, q_{1}\right\}$

We can stop constructing the product because it is now clear that there is a reachable strongly connected component (SCC) in which $q_{1}$ is visited infinitely often.
This means that $L_{\omega}(T S \otimes A) \neq \emptyset$, thus there is a behaviour in TS that violates the formula $\varphi=\square \diamond \neg a$.
Thus $T S \nvdash \varphi$ and a counterexample is the path $\pi: s_{0}\left(s_{1}\right)^{\omega}$

## Solution of Exercise 2.2

1. $T S \nvdash \diamond b$

Counterexample: $\pi=\left(s_{0} s_{1}\right)^{\omega}$
$T S \vDash \bigcirc \bigcirc(c \vee b)$
Because the following are the all the possible prefixes of paths of TS:
$s_{0} s_{1} s_{0} \ldots$
$s_{0} s_{2} s_{3} \ldots$
$s_{3} s_{4} s_{3}$
$s_{3} s_{5} s_{3}$
third state of each paths ( $s_{0}$ and $s_{3}$ ) satisfies $(c \vee b)$
$T S \not \models \diamond(a \wedge b \wedge c)$
Because all the runs that start in $s_{3}$ never reach the state $s_{2}$ that is the only one in which $a \wedge b \wedge c$ is true
$T S \nvdash(\bigcirc \bigcirc \bigcirc a) \vee(\diamond \square a)$
Because of the run $s_{3} s_{4} s_{3} s_{5}\left(s_{3} s_{5}\right)^{\omega}$ in which the first " $s_{5}$ " $\nvdash a$ and $\left(s_{3} s_{5}\right)^{\omega} \not \models(\diamond \square a)$
$T S \vDash(a \vee b) \mathcal{U}(a \vee c)$
In all runs:
$s_{0} \ldots, s_{0} \vDash(a \vee b) \mathcal{U}(a \vee c)$
$s_{3} s_{4} \ldots s_{3} \vDash(a \vee b), s_{4} \vDash(a \vee b)$
$s_{3} s_{5} \ldots s_{3} \vDash(a \vee b), s_{5} \vDash(a \vee b)$
$T S \nvdash \square(b \longrightarrow(\bigcirc \diamond c))$
Because of the runs $s_{0} \ldots s_{0} s_{2} s_{3} s_{4}\left(s_{3} s_{4}\right)^{\omega}$ in which: $s_{2}=b s_{3}=\diamond c$ and $\left(s_{3} s_{4}\right)^{\omega}$ is never $c$
2. - In case of fairness $\psi_{1}^{\text {fair }}=\square \diamond c \longrightarrow \square \diamond b$
the path $\left(s_{0} s_{1}\right)^{\omega}$ is not fair, thus $T S \models_{\text {fair }} \varphi_{1}$ under the fairness condition $\psi_{1}^{\text {fair }}$.
In case of fairness $\psi_{2}^{\text {fair }}=\square \diamond a$
the runs $s_{0} \ldots s_{0} s_{2} s_{3} \ldots s_{3}\left(s_{3} s_{4}\right)^{\omega}$ are not fair.
This does not effect the satisfaction of $\varphi_{1}$ :
$T S \not \nvdash f a i r ~_{\text {fair }} \varphi_{1}$ because the run $\left(s_{0} s_{1}\right)^{\omega}$ is fair for $\psi_{2}^{\text {fair }}$
In case of $\psi_{3}^{\text {fair. }} \square \diamond b \longrightarrow((\square \diamond a) \wedge(\square \diamond c))$
the runs $s_{0} \ldots s_{0} s_{2} s_{3} \ldots s_{3}\left(s_{3} s_{4}\right)^{\omega}, s_{0} \ldots s_{0} s_{2} s_{3} \ldots s_{3}\left(s_{3} s_{5}\right)^{\omega}$ are not fair.
This, again, does not effect the satisfaction of $\varphi_{1}$.
$T S \nvdash_{\text {fair }} \varphi_{1}$ under $\psi_{3}^{\text {fair }}$ because $\left(s_{0} s_{1}\right)^{\omega}$ is fair in $\psi_{3}^{\text {fair }}$

- In the previous case we discussed the runs that are not fair under $\psi_{1}^{\text {fair }}, \psi_{2}^{\text {fair }}, \psi_{3}^{\text {fair }}$.
$T S \not \forall_{\text {fair }} \varphi_{6}$ with $\psi_{1}^{\text {fair }}$ because the paths $s_{0} \ldots s_{0} s_{2}\left(s_{3} s_{4}\right)^{\omega}$ are fair for $\psi_{1}^{\text {fair }}$
$T S \not \forall_{\text {fair }} \varphi_{6}$ with $\psi_{2}^{\text {fair }}$ because the paths $s_{0} \ldots s_{0} s_{2}\left(s_{3} s_{4}\right)^{\omega}$ are fair for $\psi_{2}^{\text {fair }}$
$T S \vDash_{\text {fair }} \varphi_{6}$ with $\psi_{3}^{\text {fair }}$ because the paths $s_{0} \ldots s_{0} s_{2}\left(s_{3} s_{4}\right)^{\omega}$ are not fair for $\psi_{3}^{\text {fair }}$


## Solution of Exercise 2.3

We have to decide the validity of the given LTL formulas wrt.
the transition system on the right. This yields:

$$
\begin{array}{ll}
\varphi_{1}=\diamond \square c & \text { no } s_{2} \\
\varphi_{2}=\square \diamond c & \text { yes } \\
\varphi_{3}=\bigcirc \neg c \longrightarrow \bigcirc \bigcirc c & \text { yes } \\
\varphi_{4}=\square a & \text { no } s_{2} \\
\varphi_{5}=a \mathcal{U} \square(b \vee c) & \text { yes }
\end{array}
$$

$$
\varphi_{4}=\square a \quad \text { no } s_{2} \ldots
$$

$$
\varphi_{6}=(\bigcirc \bigcirc b) \mathcal{U}(b \vee c) \quad \text { no } s_{1} s_{4} s_{2} \ldots
$$

## Solution of Exercise 2.4

a) The fair paths of TS are defined by

$$
\text { fair }=(\square \diamond(a \wedge b) \longrightarrow \square \diamond \neg c) \wedge(\square \diamond(a \wedge b) \longrightarrow \square \diamond \neg b) \text { : }
$$

The conclusion in the first conjunction $(\square \diamond(a \wedge b) \longrightarrow \square \diamond \neg c)$ is fulfilled by every path, since no state in TS is labeled with $c$. Formally, we have $\square \neg c \longrightarrow \square \diamond \neg c$ and therefore our claim holds. Consider the second part $(\square \diamond(a \wedge b) \longrightarrow \square \diamond \neg b)$ of fair: Its premise is fulfilled only on the path $\pi=s_{3}^{\omega}$. But $\pi \not \models \square \diamond \neg b$. Therefore $\pi$ is the only unfair path in TS:

$$
\text { FairPaths }(T S)=\mathcal{L}_{\omega}\left(\left(s_{0} s_{1}\right)^{\omega}+\left(s_{0} s_{1}\right)^{+} s_{2}^{\omega}+s_{3}^{+} s_{4} s_{5}^{\omega}\right)
$$

b)

- $\varphi_{1}=\bigcirc \neg a \longrightarrow \diamond \square a$

Consider the path $\pi_{1}=s_{3} s_{4} s_{5}^{\omega} \in$ FairPaths $(T S)$. For its corresponding trace

$$
\operatorname{trace}\left(\pi_{1}\right)=\sigma_{1}=\{a, b\}\{b\} \emptyset^{\omega}
$$

it holds $\sigma_{1} \in W \operatorname{ords}(\bigcirc \neg a)$, but $\sigma_{1} \notin \operatorname{Words}(\diamond \square a)$.
$\Rightarrow \sigma_{1} \notin W \operatorname{ords}(\bigcirc \neg a \longrightarrow \diamond \square a)$
$\Rightarrow T S \nvdash_{f a i r} \bigcirc \neg a \longrightarrow \diamond \square a$

- $\varphi_{2}=b \mathcal{U} \square \neg b$

Consider the path $\pi_{2}=\left(s_{0} s_{1}\right)^{\omega} \in \operatorname{FairPaths}(T S)$. Here, we have

$$
\operatorname{trace}\left(\pi_{2}\right)=\sigma_{2}=(\{a, b\}\{b\})^{\omega}
$$

and $\sigma_{2} \not \models_{\text {fair }} b \mathcal{U} \square \neg b$ since there exists no $i \geq$ s.t. $\sigma_{2}[i \ldots] \vDash \square \neg b$.
$\Rightarrow T S \nvdash_{\text {fair }} b \mathcal{U} \square \neg b$

- $\varphi_{3}=b \mathcal{W} \square \neg b$

It holds $T S \vDash_{\text {fair }} \varphi_{1}$

## Solution of Exercise 2.5

1. $\neg \varphi=\neg \square(b \longrightarrow(b \mathcal{U}(a \wedge \neg b))) \equiv$
$\equiv \diamond \neg(b \longrightarrow(b \mathcal{U}(a \wedge \neg b))) \equiv$
$\equiv \diamond \neg(\neg b \vee(b \mathcal{U}(a \wedge \neg b))) \equiv$
$\equiv \diamond(\neg \neg b \wedge \neg(b \mathcal{U}(a \wedge \neg b))) \equiv$
$\equiv \diamond(b \wedge(b \wedge \neg(a \wedge \neg b)) \mathcal{W}(\neg b \wedge \neg(a \wedge \neg b))) \equiv$
$\equiv \diamond(b \wedge(b \wedge(\neg a \vee b)) \mathcal{W}(\neg b \wedge(\neg a \vee b)))$
the last form is in PNF.
2. As in the previous case $\neg \varphi \equiv \diamond(b \wedge \neg(b \mathcal{U}(a \wedge \neg b)))$

So $\neg \varphi \equiv \operatorname{true} \mathcal{U}(b \wedge \neg(b \mathcal{U}(a \wedge \neg b)))$
Let $\varphi \equiv \operatorname{true} \mathcal{U}(b \wedge \neg(b \mathcal{U}(a \wedge \neg b)))$
$\operatorname{closure}(\psi)=\{$ true $, a, b, a \wedge \neg b,(b \mathcal{U}(a \wedge \neg b)), b \wedge \neg((b \mathcal{U}(a \wedge \neg b))), \varphi\} \cup$
$\{$ false $, \neg a, \neg b, \neg(a \wedge \neg b), \neg(b \mathcal{U}(a \wedge \neg b)), \neg(b \wedge \neg((b \mathcal{U}(a \wedge \neg b)))), \neg \varphi\}$
an example of elementary set is $B=\{$ true $, a, \neg b,(b \mathcal{U}(a \wedge \neg b)), \neg(b \wedge \neg((b \mathcal{U}(a \wedge \neg b)))), \varphi\}$

## Solution of Exercise 2.6

We have the following LTL formula:

$$
\begin{aligned}
\varphi=\neg \diamond(\neg(a \cup c) \rightarrow((b \wedge \neg d) \cup a)) & \equiv \square \neg((a \cup c) \vee((b \wedge \neg d) \cup a)) & & \left(* \Delta \varphi \equiv \neg \square \neg \text { and } \varphi \rightarrow \psi \equiv \neg \varphi \vee \psi^{*}\right) \\
& \equiv \square(\neg(a \cup c) \wedge \neg((b \wedge \neg d) \cup a)) & & \left({ }^{*} \text { deMorgan }{ }^{*}\right)
\end{aligned}
$$

a) PNF with W-operator (weak until): Rewrite rule for until: $\neg(\varphi \mathrm{U} \psi) \leadsto(\varphi \wedge \neg \psi) \mathrm{W}(\neg \varphi \wedge \neg \psi)$. We obtain for $\varphi$ as above:

$$
\begin{aligned}
\varphi & \equiv \square((a \wedge \neg c) \mathrm{W}(\neg a \wedge \neg c) \wedge(b \wedge \neg d \wedge \neg a) \mathrm{W}(\neg(b \wedge \neg d) \wedge \neg a)) \\
& \equiv((a \wedge \neg c) \mathrm{W}(\neg a \wedge \neg c) \wedge(b \wedge \neg d \wedge \neg a) \mathrm{W}((\neg b \vee d) \wedge \neg a)) \mathrm{Wfalse}
\end{aligned}
$$

b) PNF with R-operator (release): Rewrite rule for until: $\neg(\varphi \mathrm{U} \psi) \leadsto \neg \varphi \mathrm{R} \neg \psi$. We obtain for $\varphi$ as above:

$$
\begin{aligned}
\varphi & \equiv \square(\neg a \mathrm{R} \neg c \wedge \neg(b \wedge \neg d) \mathrm{R} \neg a) \\
& \equiv \text { falseR }(\neg a \mathrm{R} \neg c \wedge(\neg b \vee d) \mathrm{R} \neg a)
\end{aligned}
$$

## Solution of Exercise 2.7

a) The automata accepting the complement languages of $\varphi_{1}$ and $\varphi_{2}$ are:

b) The reachable fragments of $T \otimes A_{i}$ for $i=1,2$ are as follows:
$\mathcal{T} \otimes \mathcal{A}_{1}:$

c) Sketch the main steps of the nested depth-first search algorithm for the persistency check on $T \otimes A_{i}$ : We check for the persistence property "eventually forever $\neg \mathrm{F}$ ".

1. Constructed the product $T \otimes A_{1}$, we can see that there is a reachable strongly connected component (SCC) in which $q_{1}$ is visited infinitely often.
This means that $L_{\omega}\left(T S \otimes A_{1}\right) \neq \emptyset$, thus there is a behaviour in TS that violates the formula $\varphi_{1}$. So, $T S \not \vDash \varphi_{1}$
2. Constructed the product $T \otimes A_{2}$, we can see that there not a reachable strongly connected component (SCC) in which $q_{0}$ is visited infinitely often.
This means that $L_{\omega}\left(T S \otimes A_{2}\right)=\emptyset$, thus there is not a behaviour in TS that violates the formula $\varphi_{2}$.
So, $T S \vDash \varphi_{2}$
d)
$T S \not \models \varphi_{1}$. counterexample: $\left.\left.<s_{0}, q_{0}>,<s_{1}, q_{1}>,<s_{3}, q_{1}>,<s_{2}, q_{1}>,<s_{1}, q_{2}\right\rangle,<s_{3}, q_{1}\right\rangle$ $T S \vDash \varphi_{2}$.

## 3 LTL Exercises from Book

EXERCISE 5.1. Consider the following transition system over the set of atomic propositions $\{a, b\}$ :


Indicate for each of the following LTL formulae the set of states for which these formulae are
fulfilled:

$$
\text { (a) } \bigcirc a
$$

(b) $\bigcirc \bigcirc \bigcirc a$
(c) $\square b$
(d) $\square \diamond a$
(e) $\square(b \cup a)$
(f) $\diamond(a \cup b)$

ExERCISE 5.2. Consider the transition system $T S$ over the set of atomic propositions $A P=$ $\{a, b, c\}$ :


Decide for each of the LTL formulae $\varphi_{i}$ below, whether $T S \models \varphi_{i}$ holds. Justify your answers! If $T S \not \vDash \varphi_{i}$, provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \models \varphi_{i}$.

$$
\begin{aligned}
\varphi_{1} & =\diamond \square c \\
\varphi_{2} & =\square \diamond c \\
\varphi_{3} & =\bigcirc \neg c \rightarrow \bigcirc \bigcirc c \\
\varphi_{4} & =\square a \\
\varphi_{5} & =a \cup \square(b \vee c) \\
\varphi_{6} & =(\bigcirc \bigcirc b) \cup(b \vee c)
\end{aligned}
$$

Exercise 5.4. Suppose we have two users, Peter and Betsy, and a single printer device Printer. Both users perform several tasks, and every now and then they want to print their results on the Printer. Since there is only a single printer, only one user can print a job at a time. Suppose we have the following atomic propositions for Peter at our disposal:

- Peter.request $::=$ indicates that Peter requests usage of the printer;
- Peter.use $::=$ indicates that Peter uses the printer;
- Peter.release $::=$ indicates that Peter releases the printer.

For Betsy, similar predicates are defined. Specify in LTL the following properties:
(a) Mutual exclusion, i.e., only one user at a time can use the printer.
(b) Finite time of usage, i.e., a user can print only for a finite amount of time.
(c) Absence of individual starvation, i.e., if a user wants to print something, he/she eventually is able to do so.
(d) Absence of blocking, i.e., a user can always request to use the printer
(e) Alternating access, i.e., users must strictly alternate in printing.

ExErcise 5.6. Which of the following equivalences are correct? Prove the equivalence or provide a counterexample that illustrates that the formula on the left and the formula on the right are not equivalent.
(a) $\square \varphi \rightarrow \diamond \psi \equiv \varphi \mathrm{U}(\psi \vee \neg \varphi)$
(b) $\diamond \square \varphi \rightarrow \square \diamond \psi \equiv \square(\varphi \mathrm{U}(\psi \vee \neg \varphi))$
(c) $\square \square(\varphi \vee \neg \psi) \equiv \neg \diamond(\neg \varphi \wedge \psi)$
(d) $\diamond(\varphi \wedge \psi) \equiv \diamond \varphi \wedge \diamond \psi$
(e) $\square \varphi \wedge \bigcirc \diamond \varphi \equiv \square \varphi$
(f) $\diamond \varphi \wedge \bigcirc \square \varphi \equiv \diamond \varphi$
(g) $\square \Delta \varphi \rightarrow \square \diamond \psi \equiv \square(\varphi \rightarrow \diamond \psi)$
(h) $\neg\left(\varphi_{1} \cup \varphi_{2}\right) \equiv \neg \varphi_{2} \mathrm{~W}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$
(i) $\bigcirc \diamond \varphi_{1} \equiv \diamond \bigcirc \varphi_{2}$
(j) $\left(\diamond \square \varphi_{1}\right) \wedge\left(\diamond \square \varphi_{2}\right) \equiv \diamond\left(\square \varphi_{1} \wedge \square \varphi_{2}\right)$
(k) $\left(\varphi_{1} \cup \varphi_{2}\right) \cup \varphi_{2} \equiv \varphi_{1} \cup \varphi_{2}$

Exercise 5.11. Consider the transition system $T S$ in Figure 5.25 with the set $A P=\{a, b, c\}$ of atomic propositions. Note that this is a single transition system with two initial states. Consider the LTL fairness assumption

$$
\text { fair }=(\square \diamond(a \wedge b) \rightarrow \square \diamond \neg c) \wedge(\diamond \square(a \wedge b) \rightarrow \square \diamond \neg b)
$$

Questions:
(a) Determine the fair paths in TS, i.e., the initial, infinite paths satisfying fair
(b) For each of the following LTL formulae:

$$
\begin{aligned}
\varphi_{1} & =\diamond \square a \\
\varphi_{2} & =\bigcirc \neg a \longrightarrow \Delta \square a \\
\varphi_{3} & =\square a \\
\varphi_{4} & =b \cup \square \neg b \\
\varphi_{5} & =b \mathrm{~W} \square \neg b \\
\varphi_{6} & =\bigcirc \bigcirc b \cup \square \neg b
\end{aligned}
$$



Figure 5.25: Transition system for Exercise 5.11. which $\pi \not \vDash \varphi_{i}$.

ExErcise 5.13. Provide an NBA for each of the following LTL formulae:

$$
\square(a \vee \neg \bigcirc b) \quad \text { and } \quad \diamond a \vee \square \diamond(a \leftrightarrow b) \quad \text { and } \quad \bigcirc \bigcirc(a \vee \diamond \square b) .
$$

## Exercise 5.17. Let $\psi=\square(a \leftrightarrow \bigcirc \neg a)$ and $A P=\{a\}$.

(a) Show that $\psi$ can be transformed into the following equivalent basic LTL formula

$$
\varphi=\neg[\operatorname{true} \mathrm{U}(\neg(a \wedge \bigcirc \neg a) \wedge \neg(\neg a \wedge \neg \bigcirc \neg a))] .
$$

4 CTL Exercises from Book

Exercise 6.1. Consider the following transition system over $A P=\{b, g, r, y\}$ :


The following atomic propositions are used: $r$ (red), $y$ (yellow), $g$ (green), and $b$ (black). The model is intended to describe a traffic light that is able to blink yellow. You are requested to indicate for each of the following CTL formulae the set of states for which these formulae hold:
(a) $\forall \diamond y$
(g) $\exists \square \neg g$
(b) $\forall \square y$
(h) $\forall(b \cup \neg b)$
(c) $\forall \square \forall \diamond y$
(i) $\exists(b \cup \neg b)$
(d) $\forall \diamond g$
(j) $\quad \forall(\neg b \cup \exists \diamond b)$
(e) $\exists \diamond g$
(k) $\quad \forall(g \cup \forall(y \cup r))$
(f) $\exists \square g$
(1) $\quad \forall(\neg b \cup b)$

ExErcise 6.2. Consider the following CTL formulae and the transition system $T S$ outlined on the right:

$$
\begin{aligned}
& \Phi_{1}=\forall(a \cup b) \vee \exists \bigcirc(\forall \square b) \\
& \Phi_{2}=\forall \square \forall(a \cup b) \\
& \Phi_{3}=(a \wedge b) \rightarrow \exists \square \exists \bigcirc \forall(b \mathrm{~W} a) \\
& \Phi_{4}=\left(\forall \square \exists \diamond \Phi_{3}\right)
\end{aligned}
$$



Determine the satisfaction sets $\operatorname{Sat}\left(\Phi_{i}\right)$ and decide whether $T S \models \Phi_{i}(1 \leqslant i \leqslant 4)$.

EXERCISE 6.3. Which of the following assertions are correct? Provide a proof or a counterexample.
(a) If $s \models \exists \square a$, then $s \models \forall \square a$.
(b) If $s \models \forall \square a$, then $s \models \exists \square a$.
(c) If $s \models \forall \diamond a \vee \forall \diamond b$, then $s \models \forall \diamond(a \vee b)$.
(d) If $s \models \forall \diamond(a \vee b)$, then $s \models \forall \diamond a \vee \forall \diamond b$.

Exercise 6.4. Let $\Phi$ and $\Psi$ be arbitrary CTL formulae. Which of the following equivalences for CTL formulae are correct?
(a) $\forall \bigcirc \forall \diamond \Phi \equiv \forall \diamond \forall \bigcirc \Phi$
(b) $\exists \bigcirc \exists \diamond \Phi \equiv \exists \diamond \exists \bigcirc \Phi$
(c) $\forall \bigcirc \forall \square \Phi \equiv \forall \square \forall \bigcirc \Phi$
(d) $\exists \bigcirc \exists \square \Phi \equiv \exists \square \exists \bigcirc \Phi$
(e) $\exists \diamond \exists \square \Phi \equiv \exists \square \exists \diamond \Phi$
(f) $\forall \square(\Phi \Rightarrow(\neg \Psi \wedge \exists \bigcirc \Phi)) \equiv(\Phi \Rightarrow \neg \forall \diamond \Psi)$
(g) $\forall \square(\Phi \Rightarrow \Psi) \equiv(\exists \bigcirc \Phi \Rightarrow \exists \bigcirc \Psi)$
(h) $\neg \forall(\Phi \cup \Psi) \equiv \exists(\Phi \cup \neg \Psi)$
(i) $\exists((\Phi \wedge \Psi) \cup(\neg \Phi \wedge \Psi)) \equiv \exists(\Phi \cup(\neg \Phi \wedge \Psi))$
(j) $\forall(\Phi \mathrm{W} \Psi) \equiv \neg \exists(\neg \Phi \mathrm{W} \neg \Psi)$
(k) $\exists(\Phi \cup \Psi) \equiv \exists(\Phi \cup \Psi) \wedge \exists \diamond \Psi$
(l) $\exists(\Psi \mathrm{W} \neg \Psi) \vee \forall(\Psi \mathrm{U}$ false $) \equiv \exists \bigcirc \Phi \vee \forall \bigcirc \neg \Phi$
(m) $\forall \square \Phi \wedge(\neg \Phi \vee \exists \bigcirc \exists \diamond \neg \Phi) \equiv \exists X \neg \Phi \wedge \forall \bigcirc \Phi$
(n) $\forall \square \forall \Delta \Phi \equiv \Phi \wedge(\forall \bigcirc \forall \square \forall \triangle \Phi) \vee \forall \bigcirc(\forall \triangle \Phi \wedge \forall \square \forall \Delta \Phi)$
(o) $\forall \square \Phi \equiv \Phi \vee \forall \bigcirc \forall \square \Phi$

$$
\begin{aligned}
& \Phi_{1}=\forall((\neg a) \mathrm{W}(b \rightarrow \forall \bigcirc c)) \\
& \Phi_{2}=\forall \bigcirc(\exists((\neg a) \cup(b \wedge \neg c)) \vee \exists \square \forall \bigcirc a)
\end{aligned}
$$

Exercise 6.9. Consider the CTL formula

$$
\Phi=\forall \square(a \rightarrow \forall \diamond(b \wedge \neg a))
$$

and the following CTL fairness assumption:

$$
\text { fair }=\forall \diamond \forall \bigcirc(a \wedge \neg b) \rightarrow \forall \diamond \forall \bigcirc(b \wedge \neg a) \wedge \diamond \square \exists \diamond b \rightarrow \square \diamond b \text {. }
$$

Prove that $T S \models_{\text {fair }} \Phi$ where transition system $T S$ is depicted below.


ExErcise 6.14. Check for each of the following formula pairs $\left(\Phi_{i}, \varphi_{i}\right)$ whether the CTL formula $\Phi_{i}$ is equivalent to the LTL formula $\varphi_{i}$. Prove the equivalence or provide a counterexample that illustrates why $\Phi_{i} \not \equiv \varphi_{i}$.
(a) $\Phi_{1}=\forall \square \forall \bigcirc a$. and $\varphi_{1}=\square \bigcirc a$
(b) $\Phi_{2}=\forall \diamond \forall \bigcirc a$ and $\varphi_{2}=\diamond \bigcirc a$.
(c) $\Phi_{3}=\forall \diamond(a \wedge \exists \bigcirc a)$ and $\varphi_{3}=\diamond(a \wedge \bigcirc a)$.
(d) $\Phi_{4}=\forall \diamond a \quad \vee \quad \forall \diamond b$ and $\varphi_{4}=\diamond(a \vee b)$.
(e) $\Phi_{5}=\forall \square(a \rightarrow \forall \Delta b)$ and $\varphi_{5}=\square(a \rightarrow \diamond b)$.
(f) $\Phi_{6}=\forall(b \cup(a \wedge \forall \square b))$ and $\varphi_{6}=\diamond a \wedge \square b$.

## EXERCISE 6.16.

Consider the following CTL formulae

$$
\Phi_{1}=\exists \diamond \forall \square c \quad \text { and } \quad \Phi_{2}=\forall(a \cup \forall \diamond c)
$$

and the transition system $T S$ outlined on the right. Decide whether $T S \models \Phi_{i}$ for $i=1,2$ using the CTL model-checking algorithm. Sketch its main steps.


Exercise 6.21. Consider the CTL formula $\Phi$ and the strong fairness assumption sfair:

$$
\begin{array}{ll}
\Phi & =\forall \square \forall \diamond a \\
\text { sfair } & =\square \diamond \underbrace{(b \wedge \neg a)}_{\Phi_{1}} \rightarrow \square \diamond \underbrace{\exists(b \cup(a \wedge \neg b))}_{\Psi_{1}}
\end{array}
$$

and transition system $T S$ over $A P=\{a, b\}$ which is given by


Questions:
(a) Determine $\operatorname{Sat}\left(\Phi_{1}\right)$ and $\operatorname{Sat}\left(\Psi_{1}\right)$ (without fairness).
(b) Determine $\operatorname{Sat}_{\text {sfair }}$ ( $\exists \square$ true).
(c) Determine $\operatorname{Sat}_{\text {sfair }}(\Phi)$.

ExERCISE 6.23. Consider the following transition system $T S$ over $A P=\left\{a_{1}, \ldots, a_{6}\right\}$.


Let $\Phi=\exists \bigcirc\left(a_{1} \rightarrow \exists\left(a_{1} \cup a_{2}\right)\right)$ and sfair $=$ sfair $_{1} \wedge$ sfair $_{2} \wedge$ sfair $_{3}$ a strong CTL fairness assumption where

$$
\begin{aligned}
& \text { sfair }_{1}=\square \diamond \forall \diamond\left(a_{1} \vee a_{3}\right) \longrightarrow \square \diamond a_{4} \\
& \text { sfair }_{2}=\square \diamond\left(a_{3} \wedge \neg a_{4}\right) \longrightarrow \square \diamond a_{5} \\
& \text { sfair }_{3}=\square \diamond\left(a_{2} \wedge a_{5}\right) \longrightarrow \square \diamond a_{6}
\end{aligned}
$$

Sketch the main steps for computing the satisfaction sets $\operatorname{Sat}_{\text {sfair }}\left(\exists \square\right.$ true) and $\operatorname{Sat}_{\text {sfair }}(\Phi)$.

