Systems Verification Lab Exercises on Regular Properties, Linear Time Logic and Computation Tree Logic with (Some) Solutions

Teacher: Luca Tesei

Master of Science in Computer Science - University of Camerino

Contents

1	Regular Properties	2
2	Linear Temporal Logic	7
3	LTL Exercises from Book	16
4	CTL Exercises from Book	17

1 Regular Properties

Exercise 1.1. Consider the following transition system TS:

and the regular safety property

 $P_{safe} = \begin{array}{l} \text{``always if a is valid and $b \land \neg c$ was valid somewhere before,} \\ \text{then a and b do not hold thereafter at least until c holds"} \end{array}$

As an example, it holds:

$$\{b\}\emptyset\{a,b\}\{a,b,c\} \in pref(P_{safe}) \\ \{a,b\}\{a,b\}\emptyset\{b,c\} \in pref(P_{safe}) \\ \{b\}\{a,c\}\{a\}\{a,b,c\} \in BadPref(P_{safe}) \\ \{b\}\{a,c\}\{a,c\}\{a\} \in BadPref(P_{safe}) \\ \}\{a,c\}\{a,c\}\{a\} \\ \}\{a,c\}\{a\} \\ \}\{a,c\}\{a\} \\ \}\{a,c\}\{a\} \\ \}\{a,c\}\{a\} \\ \}\{a,c\}\{a\} \\ \}\{a,c\}\{a\} \\ \}\{a,c\} \\ \}\{a,c\} \\ \}\{a,c\}\{a\} \\ \}\{a,c\} \\ \}\{$$

Questions:

(a) Define an NFA A such that $L(A) = MinBadPref(P_{safe})$

(b) Decide whether $TS \models P_{safe}$ using the $TS \otimes A$ construction. Provide a counterexample if $TS \nvDash P_{safe}$

and the regular safety property

 P_{safe} = "always if b is holding and a was held somewhere before, then c must **not** hold in the position just after the current b"

- 1. Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = \text{MinBadPref}(P_{\text{safe}})$
- 2. Decide whether $TS \models P_{safe}$ using the $TS \otimes A$ construction. Provide a counterexample if $TS \not\models P_{safe}$

Solutions

Solution of Exercise 1.1

• The NFA that accepts the set of minimal bad prefixes:

• First we apply the $TS \otimes A$ construction which yields:

A counterexample to $TS \models P_{safe}$ is given by the following initial path fragment in $TS \otimes \mathcal{A}$:

 $\pi_{\otimes} = \left\langle s_{0}, q_{1} \right\rangle \left\langle s_{3}, q_{2} \right\rangle \left\langle s_{1}, q_{2} \right\rangle \left\langle s_{4}, q_{2} \right\rangle \left\langle s_{5}, q_{3} \right\rangle$

By projection on the state component, we get a path in the underlying transition system:

$$\pi = s_0 s_3 s_1 s_4 s_5$$
 with trace $(\pi) = \{a, b\} \{a, c\} \{a, b, c\} \{a, c\} \{a, c\} \{a, b\}$

Obviously, $trace(\pi) \in BadPref(P_{safe})$, so we have $Traces_{fin}(TS) \cap BadPref(P_{safe}) \neq \emptyset$. By lemma 3.25, this is equivalent to $TS \not\models P_{safe}$.

Solution of Exercise 1.2

1. An NFA accepting the minimal bad prefixes for the property is \mathcal{A} :

where:

 $\begin{aligned} \neg a &\equiv \{\{\}, \{b\}, \{c\}, \{b, c\}\} \\ a &\equiv \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\} \\ \text{The union of } \neg a \text{ and } a \text{ is } 2^{AP} \end{aligned}$

$$\begin{split} \neg b &\equiv \{\{\}, \{a\}, \{c\}, \{a, c\}\} \\ b &\equiv \{\{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\} \\ \text{The union of } \neg b \text{ and } b \text{ is } 2^{AP} \end{split}$$

$$\begin{split} c &\equiv \{\{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\\ b \wedge \neg c &\equiv \{\{b\}, \{a, b\}\}\\ \neg b \wedge \neg c &\equiv \{\{\}, \{a\}\}\\ \\ \text{The union of } c, \ b \wedge \neg c \text{ and } \neg b \wedge \neg c \text{ is } 2^{AP} \end{split}$$

So the NFA is non-blocking apart from state q_3 .

2. To apply the product $TS \otimes A$, A should be non-blocking. Our A is deterministic and becomes non-blocking if we add a state q_4 and let

or alternatively we can add a self-loop on q_3 . In this case the automaton would recognize all bad prefixes, not just the minimal ones. Let us consider \mathcal{A}' made on one of these two ways.

Let's construct the product: $L(s_0) = \{b, c\} \ \delta(q_0, \{b, c\}) = \{q_0\}$ So the unique initial state of $TS \otimes \mathcal{A}'$ is $\langle s_0, q_0 \rangle$

From $< s_0, q_0 >$:

- $s_0 \longrightarrow s_1 L(s_1) = \{a\}$ $\delta(q_0, \{a\}) = \{q_1\}.$
- $s_0 \longrightarrow s_2 L(s_2) = \{a, b\}$ $\delta(q_0, \{a, b\}) = \{q_1\}.$

From $< s_1, q_1 >:$

• $s_1 \longrightarrow s_3 L(s_3) = \{b\}$ $\delta(q_1, \{b\}) = \{q_2\}.$

From $< s_3, q_2 >:$

• $s_3 \longrightarrow s_5 \ L(s_5) = \{a, c\}$ $\delta(q_2, \{a, c\}) = \{q_3\}.$

we can stop constructing $TS \otimes \mathcal{A}'$ because we can already decide that $TS \nvDash P_{safe}$. Indeed in $TS \otimes \mathcal{A}'$ a state in which q_3 is present is reachable *. The path gives us a counter-example for the property:

 $s_0s_1s_3s_5... \notin P_{safe}$ whose trace is $\{b,c\}\{a\}\{b\}\{a,c\}... \not\models P_{safe}$

2 Linear Temporal Logic

Exercise 2.1. Consider the following transition system TS on $AP = \{a, b\}$:

and the following LTL formula $\varphi = \Box \diamondsuit \neg a$.

- 1. Derive an NBAs \mathcal{A} for the formula $\neg \varphi$, i.e. such that $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\neg \varphi)$.
- 2. Tell whether or not it holds $TS \models \varphi$ by constructing $TS \otimes A$ and checking the proper persistence property related to the accepting states of A. If $TS \not\models \varphi$ then provide a counterexample, i.e. give a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi$. Hint: it is not required to construct all the transition system $TS \otimes A$, but only the reachable portion that is needed to answer to the question.

Exercise 2.2. Consider the following transition system TS on $AP = \{a, b, c\}$.

1. Decide, for each LTL formula φ_i below, whether or not $TS \models \varphi_i$. Justify your answers! If $TS \not\models \varphi_i$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.

2. Consider the following fairness assumptions written as LTL formulas:

 $\psi_1^{\text{fair}} = \Box \diamondsuit c \longrightarrow \Box \diamondsuit b \qquad \psi_2^{\text{fair}} = \Box \diamondsuit a \qquad \psi_3^{\text{fair}} = \Box \diamondsuit b \longrightarrow ((\Box \diamondsuit a) \land (\Box \diamondsuit c))$

- (a) (2 points) Decide whether or not $TS \models_{\text{fair}} \varphi_1$ under the three different fairness conditions $\psi^i_{\text{fair}}, i \in \{1, 2, 3\}$, separately. Whenever $TS \not\models_{\text{fair}} \varphi_1$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_1$ and arguing that π is fair with respect to ψ^i_{fair} .
- (b) (2 points) Decide whether or not $TS \models_{\text{fair}} \varphi_6$ under the three different fairness conditions $\psi^i_{\text{fair}}, i \in \{1, 2, 3\}$, separately. Whenever $TS \not\models_{\text{fair}} \varphi_6$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_6$ and arguing that π is fair with respect to ψ^i_{fair} .

Exercise 2.3. Consider the transition system TS over the set of atomic proposition $AP = \{a, b, c\}$: Decide for each of the LTL formulas φ_i holds. Justify your answer!

If $TS \nvDash \varphi_i$, provide a path $\pi \in paths(TS)$ such that $\pi \nvDash \varphi_i$.

$\varphi_1 = \Diamond \Box c$	$\varphi_4 = \Box a$
$\varphi_2 = \Box \diamondsuit c$	$\varphi_5 = a\mathcal{U}\Box(b \lor c)$
$\varphi_3 = \bigcirc \neg c \longrightarrow \bigcirc \bigcirc c$	$\varphi_6 = (\bigcirc \bigcirc b)\mathcal{U}(b \lor c)$

Exercise 2.4. Let $AP = \{a, b, c\}$. Consider the transition system TS over AP outlined below

and the LTL fairness assumption $fair = (\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg c) \land (\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg b).$ a) Specify the fair paths of TS!

b) Decide for each of the following LTL formulas φ_i whether it holds $TS \models_{fair} \varphi_i$:

 $\varphi_1 = \bigcirc \neg a \longrightarrow \Diamond \Box a \qquad \varphi_2 = b\mathcal{U} \Box \neg b \qquad \varphi_3 = b\mathcal{W} \Box \neg b$

In case $TS \nvDash_{fair} \varphi_i$, indicate a path $\pi \in \in FairPaths(TS)$ for which $\pi \nvDash \varphi$ holds.

Exercise 2.5. Consider the following LTL formula:

$$\varphi = \Box(b \longrightarrow (b \mathcal{U} (a \land \neg b)))$$

1. Put the formula $\neg \varphi$ in Positive Normal Form containing the weak until operator \mathcal{W} as dual of the until.

2. Convert $\neg \varphi$ into an equivalent LTL formula ψ that is constructed according to the following grammar:

 $\Phi ::= true \mid false \mid \Phi \land \Phi \mid \neg \Phi \mid \bigcirc \Phi \mid \Phi \mathcal{U} \Phi$

then, construct the set $closure(\psi)$ and derive at least one set B that is elementary set with respect to $closure(\psi)$.

Exercise 2.6. Transform the LTL-formula $\varphi = \neg \Diamond (\neg (a\mathcal{U}c) \longrightarrow ((b \land \neg d)\mathcal{U}a))$ in positive normal form, once using the W-operator and once using the R-operator.

Exercise 2.7. We consider model checking of ω -regular LT properties which are defined by LTL formulas. Therefore let φ_1 and φ_2 be as follows:

 $\varphi_1 = \Box \diamondsuit a \longrightarrow \Box \diamondsuit b$

 $\varphi_2 = \diamondsuit(a \land \bigcirc a)$

Further, our model is represented by the transition system TS over $AP = \{a, b\}$ which is given as outlined on the right. We check whether $TS = \varphi_i$ for i = 1, 2 using the nested depth-first search algorithm from the lecture. Therefore proceed as follows:

a) Derive an NBA A_i for the LTL formula $\neg \varphi_i$ (for i = 1, 2). More precisely, for A_i it must hold $L_{\omega}(A_i) = L_{\omega}(\neg \varphi_i)$. Hint: Four, respectively three states suffice.

b) Outline the reachable fragment of the product transition system $TS \otimes A_i$.

c) Sketch the main steps of the nested depth-first search algorithm for the persistency check on $TS \otimes A_i$.

d) Provide the counterexample computed by the algorithm if $TS \nvDash \varphi_i$.

Solutions

Solution of Exercise 2.1

1. We first note the $\neg \varphi \equiv \neg \Box \Diamond \neg a \equiv \Diamond \Box a$ An NBA \mathcal{A} for $\Diamond \Box a$ is the following

where:

 $a \equiv \{\{a\}, \{a, b\}\} \\ \neg a \equiv \{\{\}, \{b\}\} \\ true \equiv \{\{a\}, \{b\}, \{a, b\}, \{\}\} \\ F = \{q_1\}$

2. Let's start constructing the product $TS\otimes A$

The initial state are those (s_0, x) where $x \in \delta(q_0, L(s_0)) = \delta(q_0, \{a\}) = \{q_0, q_1\}$

that is, there are two initial states: (s_0, q_0) and (s_0, q_1)

 $from(s_0, q_0): \\ s_0 \to s_1, \delta(q_0, L(s_1)) = \\ \delta(q_0, \{a\}) = \{q_0, q_1\}$

$$s_{0} \rightarrow s_{2}, \delta(q_{0}, L(s_{2})) = \\ \delta(q_{0}, \{b\}) = \{q_{0}\}$$

$$from(s_{1}, q_{1}):$$

$$s_{1} \rightarrow s_{1}, \delta(q_{1}, L(s_{1})) = \\ \delta(q_{1}, \{a\}) = \{q_{1}\}$$

$$from(s_{1}, q_{0}):$$

$$s_{1} \rightarrow s_{1}, \delta(q_{0}, L(s_{1})) = \\ \delta(q_{0}, \{a\}) = \{q_{0}, q_{1}\}$$

We can stop constructing the product because it is now clear that there is a reachable strongly connected component (SCC) in which q_1 is visited infinitely often.

This means that $L_{\omega}(TS \otimes A) \neq \emptyset$, thus there is a behaviour in TS that violates the formula $\varphi = \Box \Diamond \neg a$.

Thus $TS \nvDash \varphi$ and a counterexample is the path $\pi: s_0(s_1)^\omega$

Solution of Exercise 2.2

1. $TS \nvDash \diamondsuit b$

Counterexample: $\pi = (s_0 s_1)^{\omega}$

 $TS \vDash \bigcirc \bigcirc (c \lor b)$

Because the following are the all the possible prefixes of paths of TS:

 $s_0 \ s_1 \ s_0 \dots$ $s_0 \ s_2 \ s_3 \dots$ $s_3 \ s_4 \ s_3$ $s_3 \ s_5 \ s_3$ third state of each paths (s_0 and s_3) satisfies ($c \lor b$)

$TS \nvDash \diamondsuit (a \land b \land c)$

Because all the runs that start in s_3 never reach the state s_2 that is the only one in which $a \wedge b \wedge c$ is true

 $TS \nvDash (\bigcirc \bigcirc \bigcirc a) \lor (\diamondsuit \Box a)$

Because of the run $s_3 s_4 s_3 s_5 (s_3 s_5)^{\omega}$ in which the first " s_5 " $\nvDash a$ and $(s_3 s_5)^{\omega} \nvDash (\Diamond \Box a)$

 $TS \vDash (a \lor b) \mathcal{U} (a \lor c)$ In all runs: $s_0 \dots, s_0 \vDash (a \lor b) \mathcal{U} (a \lor c)$ $s_3 s_4 \dots s_3 \vDash (a \lor b), s_4 \vDash (a \lor b)$ $s_3 s_5 \dots s_3 \vDash (a \lor b), s_5 \vDash (a \lor b)$

 $TS \nvDash \Box(b \longrightarrow (\bigcirc \Diamond c))$

Because of the runs $s_0 \dots s_0 s_2 s_3 s_4 (s_3 s_4)^{\omega}$ in which: $s_2 = b s_3 = \Diamond c$ and $(s_3 s_4)^{\omega}$ is never c

2. • In case of fairness $\psi_1^{\text{fair}} = \Box \diamondsuit c \longrightarrow \Box \diamondsuit b$ the path $(s_0 \ s_1)^{\omega}$ is not fair, thus $TS \models_{\text{fair}} \varphi_1$ under the fairness condition ψ_1^{fair} .

In case of fairness $\psi_2^{\text{fair}} = \Box \diamondsuit a$ the runs $s_0 \dots s_0 s_2 s_3 \dots s_3 (s_3 s_4)^{\omega}$ are not fair. This does not effect the satisfaction of φ_1 : $TS \nvDash_{\text{fair}} \varphi_1$ because the run $(s_0 s_1)^{\omega}$ is fair for ψ_2^{fair}

In case of ψ_3^{fair} : $\Box \diamondsuit b \longrightarrow ((\Box \diamondsuit a) \land (\Box \diamondsuit c))$ the runs $s_0 \ldots s_0 s_2 s_3 \ldots s_3 (s_3 s_4)^{\omega}$, $s_0 \ldots s_0 s_2 s_3 \ldots s_3 (s_3 s_5)^{\omega}$ are not fair. This, again, does not effect the satisfaction of φ_1 . $TS \nvDash_{\text{fair}} \varphi_1$ under ψ_3^{fair} because $(s_0 s_1)^{\omega}$ is fair in ψ_3^{fair}

In the previous case we discussed the runs that are not fair under ψ₁^{fair}, ψ₂^{fair}, ψ₃^{fair}.
 TS ⊭_{fair} φ₆ with ψ₁^{fair} because the paths s₀ ... s₀ s₂ (s₃ s₄)^ω are fair for ψ₁^{fair}
 TS ⊭_{fair} φ₆ with ψ₂^{fair} because the paths s₀ ... s₀ s₂ (s₃ s₄)^ω are fair for ψ₁^{fair}
 TS ⊨_{fair} φ₆ with ψ₃^{fair} because the paths s₀ ... s₀ s₂ (s₃ s₄)^ω are fair for ψ₁^{fair}

Solution of Exercise 2.3

We have to decide the validity of the given LTL formulas wrt. the transition system on the right. This yields:

$\varphi_1 = \Diamond \Box c$	$no \ s_2 s_4 s_2 s_4 \dots$
$\varphi_2 = \Box \diamondsuit c$	yes
$\varphi_3 = \bigcirc \neg c \longrightarrow \bigcirc \bigcirc c$	yes
$\varphi_4 = \Box a$	$no \ s_2$
$\varphi_5 = a\mathcal{U}\Box(b \lor c)$	yes
$\varphi_6 = (\bigcirc \bigcirc b) \mathcal{U}(b \lor c)$	$no \ s_1 s_4 s_2 \dots$

Solution of Exercise 2.4

a) The fair paths of TS are defined by

$$fair = (\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg c) \land (\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg b) :$$

The conclusion in the first conjunction $(\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg c)$ is fulfilled by every path, since no state in TS is labeled with c. Formally, we have $\Box \neg c \longrightarrow \Box \diamondsuit \neg c$ and therefore our claim holds. Consider the second part $(\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg b)$ of fair: Its premise is fulfilled only on the path $\pi = s_3^{\omega}$. But $\pi \nvDash \Box \diamondsuit \neg b$. Therefore π is the only unfair path in TS:

$$FairPaths(TS) = \mathcal{L}_{\omega}((s_0s_1)^{\omega} + (s_0s_1)^+ s_2^{\omega} + s_3^+ s_4 s_5^{\omega})$$

b)

• $\varphi_1 = \bigcirc \neg a \longrightarrow \Diamond \Box a$ Consider the path $\pi_1 = s_3 s_4 s_5^{\omega} \in FairPaths(TS)$. For its corresponding trace

$$trace(\pi_1) = \sigma_1 = \{a, b\}\{b\}\emptyset^{\omega}$$

it holds $\sigma_1 \in Words(\bigcirc \neg a)$, but $\sigma_1 \notin Words(\Diamond \Box a)$. $\Rightarrow \sigma_1 \notin Words(\bigcirc \neg a \longrightarrow \Diamond \Box a)$ $\Rightarrow TS \nvDash_{fair} \bigcirc \neg a \longrightarrow \Diamond \Box a$ • $\varphi_2 = b\mathcal{U} \Box \neg b$ Consider the path $\pi_2 = (s_0 s_1)^{\omega} \in FairPaths(TS)$. Here, we have

$$trace(\pi_2) = \sigma_2 = (\{a, b\}\{b\})^{\omega}$$

and $\sigma_2 \nvDash_{fair} b\mathcal{U} \Box \neg b$ since there exists no $i \ge \text{s.t.} \sigma_2[i...] \vDash \Box \neg b$. $\Rightarrow TS \nvDash_{fair} b\mathcal{U} \Box \neg b$

• $\varphi_3 = bW \Box \neg b$ It holds $TS \vDash_{fair} \varphi_1$

Solution of Exercise 2.5

- 1. $\neg \varphi = \neg \Box (b \longrightarrow (b\mathcal{U} (a \land \neg b))) \equiv \\ \equiv \diamond \neg (b \longrightarrow (b\mathcal{U} (a \land \neg b))) \equiv \\ \equiv \diamond \neg (\neg b \lor (b\mathcal{U} (a \land \neg b))) \equiv \\ \equiv \diamond (\neg \neg b \land \neg (b\mathcal{U} (a \land \neg b))) \equiv \\ \equiv \diamond (b \land (b \land \neg (a \land \neg b))\mathcal{W} (\neg b \land \neg (a \land \neg b))) \equiv \\ \equiv \diamond (b \land (b \land (\neg a \lor b))\mathcal{W} (\neg b \land (\neg a \lor b))) \equiv \\ \equiv \diamond (b \land (b \land (\neg a \lor b))\mathcal{W} (\neg b \land (\neg a \lor b))) \\ \text{the last form is in PNF.}$
- 2. As in the previous case $\neg \varphi \equiv \diamond (b \land \neg (b\mathcal{U}(a \land \neg b)))$ So $\neg \varphi \equiv true\mathcal{U}(b \land \neg (b\mathcal{U}(a \land \neg b)))$ Let $\varphi \equiv true\mathcal{U}(b \land \neg (b\mathcal{U}(a \land \neg b)))$ closure(ψ) = { $true, a, b, a \land \neg b, (b\mathcal{U}(a \land \neg b)), b \land \neg ((b\mathcal{U}(a \land \neg b))), \varphi$ } \cup { $false, \neg a, \neg b, \neg (a \land \neg b), \neg (b\mathcal{U}(a \land \neg b)), \neg (b \land \neg ((b\mathcal{U}(a \land \neg b)))), \neg \varphi$ } an example of elementary set is $B = \{true, a, \neg b, (b\mathcal{U}(a \land \neg b)), \neg (b \land \neg ((b\mathcal{U}(a \land \neg b)))), \varphi\}$

Solution of Exercise 2.6

We have the following LTL formula:

$$\begin{split} \varphi &= \neg \diamondsuit \left(\neg (a \mathsf{U} c) \to ((b \land \neg d) \mathsf{U} a) \right) \equiv \Box \neg \left((a \mathsf{U} c) \lor ((b \land \neg d) \mathsf{U} a) \right) & (* \diamondsuit \varphi \equiv \neg \Box \neg \varphi \text{ and } \varphi \to \psi \equiv \neg \varphi \lor \psi^*) \\ &\equiv \Box \left(\neg (a \mathsf{U} c) \land \neg ((b \land \neg d) \mathsf{U} a) \right) & (* \operatorname{deMorgan} *) \end{split}$$

a) PNF with W–operator (weak until): Rewrite rule for until: $\neg(\varphi \cup \psi) \rightsquigarrow (\varphi \land \neg \psi) W(\neg \varphi \land \neg \psi)$. We obtain for φ as above:

$$\begin{split} \varphi &\equiv \Box \big((a \wedge \neg c) \mathsf{W} (\neg a \wedge \neg c) \wedge (b \wedge \neg d \wedge \neg a) \mathsf{W} (\neg (b \wedge \neg d) \wedge \neg a) \big) \\ &\equiv \big((a \wedge \neg c) \mathsf{W} (\neg a \wedge \neg c) \wedge (b \wedge \neg d \wedge \neg a) \mathsf{W} ((\neg b \lor d) \wedge \neg a) \big) \mathsf{W} \mathsf{false} \end{split}$$

b) PNF with R–operator (release): Rewrite rule for until: $\neg(\varphi U\psi) \rightsquigarrow \neg \varphi R \neg \psi$. We obtain for φ as above:

$$\begin{split} \varphi &\equiv \Box \left(\neg a \mathsf{R} \neg c \land \neg (b \land \neg d) \mathsf{R} \neg a \right) \\ &\equiv \mathsf{falseR} (\neg a \mathsf{R} \neg c \land (\neg b \lor d) \mathsf{R} \neg a) \end{split}$$

Solution of Exercise 2.7

a) The automata accepting the complement languages of φ_1 and φ_2 are:

b) The reachable fragments of $T \otimes A_i$ for i = 1, 2 are as follows:

c) Sketch the main steps of the nested depth-first search algorithm for the persistency check on $T \otimes A_i$: We check for the persistence property "eventually forever $\neg F$ ".

1. Constructed the product $T \otimes A_1$, we can see that there is a reachable strongly connected component (SCC) in which q_1 is visited infinitely often.

This means that $L_{\omega}(TS \otimes A_1) \neq \emptyset$, thus there is a behaviour in TS that violates the formula φ_1 . So, $TS \nvDash \varphi_1$

2. Constructed the product $T \otimes A_2$, we can see that there not a reachable strongly connected component (SCC) in which q_0 is visited infinitely often.

This means that $L_{\omega}(TS \otimes A_2) = \emptyset$, thus there is not a behaviour in TS that violates the formula φ_2 .

```
So, TS \vDash \varphi_2
```

d)

```
TS \nvDash \varphi_1. counterexample: \langle s_0, q_0 \rangle, \langle s_1, q_1 \rangle, \langle s_3, q_1 \rangle, \langle s_2, q_1 \rangle, \langle s_1, q_2 \rangle, \langle s_3, q_1 \rangle
TS \vDash \varphi_2.
```

3 LTL Exercises from Book

EXERCISE 5.1. Consider the following transition system over the set of atomic propositions $\{a, b\}$:

Indicate for each of the following LTL formulae the set of states for which these formulae are

EXERCISE 5.2. Consider the transition system TS over the set of atomic propositions $AP = \{a, b, c\}$:

Decide for each of the LTL formulae φ_i below, whether $TS \models \varphi_i$ holds. Justify your answers! If $TS \not\models \varphi_i$, provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.

$$\begin{array}{ll} \varphi_1 &= \Diamond \Box c \\ \varphi_2 &= \Box \Diamond c \\ \varphi_3 &= \bigcirc \neg c \to \bigcirc \bigcirc c \\ \varphi_4 &= \Box a \\ \varphi_5 &= a \, \bigcup \Box (b \lor c) \\ \varphi_6 &= (\bigcirc \bigcirc b) \, \bigcup (b \lor c) \end{array}$$

EXERCISE 5.4. Suppose we have two users, *Peter* and *Betsy*, and a single printer device *Printer*. Both users perform several tasks, and every now and then they want to print their results on the *Printer*. Since there is only a single printer, only one user can print a job at a time. Suppose we have the following atomic propositions for *Peter* at our disposal:

- *Peter.request* ::= indicates that *Peter* requests usage of the printer;
- *Peter.use* ::= indicates that *Peter* uses the printer;
- *Peter.release* ::= indicates that *Peter* releases the printer.

For *Betsy*, similar predicates are defined. Specify in LTL the following properties:

- (a) Mutual exclusion, i.e., only one user at a time can use the printer.
- (b) Finite time of usage, i.e., a user can print only for a finite amount of time.
- (c) Absence of individual starvation, i.e., if a user wants to print something, he/she eventually is able to do so.
- (d) Absence of blocking, i.e., a user can always request to use the printer
- (e) Alternating access, i.e., users must strictly alternate in printing.

EXERCISE 5.6. Which of the following equivalences are correct? Prove the equivalence or provide a counterexample that illustrates that the formula on the left and the formula on the right are not equivalent.

(a) $\Box \varphi \to \Diamond \psi \equiv \varphi \cup (\psi \lor \neg \varphi)$ (b) $\Diamond \Box \varphi \to \Box \Diamond \psi \equiv \Box (\varphi \cup (\psi \lor \neg \varphi))$ (c) $\Box \Box (\varphi \lor \neg \psi) \equiv \neg \Diamond (\neg \varphi \land \psi)$ (d) $\Diamond(\varphi \land \psi) \equiv \Diamond \varphi \land \Diamond \psi$ (e) $\Box \varphi \land \bigcirc \Diamond \varphi \equiv \Box \varphi$ (f) $\Diamond \varphi \land \bigcirc \Box \varphi \equiv \Diamond \varphi$ (g) $\Box \Diamond \varphi \to \Box \Diamond \psi \equiv \Box (\varphi \to \Diamond \psi)$ (h) $\neg(\varphi_1 \cup \varphi_2) \equiv \neg\varphi_2 \cup (\neg\varphi_1 \land \neg\varphi_2)$ (i) $\bigcirc \diamondsuit \varphi_1 \equiv \diamondsuit \bigcirc \varphi_2$ (j) $(\Diamond \Box \varphi_1) \land (\Diamond \Box \varphi_2) \equiv \Diamond (\Box \varphi_1 \land \Box \varphi_2)$ (k) $(\varphi_1 \cup \varphi_2) \cup \varphi_2 \equiv \varphi_1 \cup \varphi_2$

EXERCISE 5.11. Consider the transition system TS in Figure 5.25 with the set $AP = \{a, b, c\}$ of atomic propositions. Note that this is a single transition system with two initial states. Consider the LTL fairness assumption

$$fair = (\Box \Diamond (a \land b) \rightarrow \Box \Diamond \neg c) \land (\Diamond \Box (a \land b) \rightarrow \Box \Diamond \neg b).$$

Questions:

(a) Determine the fair paths in TS, i.e., the initial, infinite paths satisfying *fair*(b) For each of the following LTL formulae:

$$\begin{array}{rcl} \varphi_1 &=& \Diamond \Box a \\ \varphi_2 &=& \bigcirc \neg a & \longrightarrow & \Diamond \Box a \\ \varphi_3 &=& \Box a \\ \varphi_4 &=& b \, \bigcup \, \Box \neg b \\ \varphi_5 &=& b \, \boxtimes \, \Box \neg b \\ \varphi_6 &=& \bigcirc & \bigcirc & b \, \bigcup \, \Box \neg b \end{array}$$

Figure 5.25: Transition system for Exercise 5.11.

determine whether $TS \models_{fair} \varphi_i$.	In case $TS \not\models_{fair} \varphi_i$, indicate a path $\pi \in Paths(TS)$ for
which $\pi \not\models \varphi_i$.	

EXERCISE 5.13. Provide an NBA for each of the following LTL formulae:

$\Box(a \lor \neg \bigcirc b) \quad \text{and} \quad \Diamond a \lor \Box \Diamond (a \leftrightarrow b) \quad \text{and} \quad \bigcirc \bigcirc (a \lor \Diamond \Box b).$

EXERCISE 5.17. Let $\psi = \Box \ (a \leftrightarrow \bigcirc \neg a)$ and $AP = \{a\}$.

(a) Show that ψ can be transformed into the following equivalent basic LTL formula

$$\varphi = \neg \left[\operatorname{true} \mathsf{U} \left(\neg \left(a \land \bigcirc \neg a \right) \land \neg \left(\neg a \land \neg \bigcirc \neg a \right) \right) \right].$$

4 CTL Exercises from Book

EXERCISE 6.1. Consider the following transition system over $AP = \{b, g, r, y\}$:

The following atomic propositions are used: r (red), y (yellow), g (green), and b (black). The model is intended to describe a traffic light that is able to blink yellow. You are requested to indicate for each of the following CTL formulae the set of states for which these formulae hold:

(a)
$$\forall \Diamond y$$
 (g) $\exists \Box \neg g$

- (b) $\forall \Box y$ (h) $\forall (b \cup \neg b)$
- (c) $\forall \Box \forall \Diamond y$ (i) $\exists (b \cup \neg b)$
- (d) $\forall \Diamond g$ (j) $\forall (\neg b \cup \exists \Diamond b)$
- (e) $\exists \Diamond g$ (k) $\forall (g \cup \forall (y \cup r))$
 - (f) $\exists \Box g$ (l) $\forall (\neg b \cup b)$

EXERCISE 6.2. Consider the following CTL formulae and the transition system TS outlined on the right:

 $\Phi_1 = \forall (a \cup b) \lor \exists \bigcirc (\forall \Box b)$ $\Phi_2 = \forall \Box \forall (a \cup b)$ $\Phi_3 = (a \land b) \to \exists \Box \exists \bigcirc \forall (b \lor a)$ $\Phi_4 = (\forall \Box \exists \Diamond \Phi_3)$

Determine the satisfaction sets $Sat(\Phi_i)$ and decide whether $TS \models \Phi_i$ $(1 \le i \le 4)$.

EXERCISE 6.3. Which of the following assertions are correct? Provide a proof or a counterexample.

(a) If $s \models \exists \Box a$, then $s \models \forall \Box a$. (b) If $s \models \forall \Box a$, then $s \models \exists \Box a$. (c) If $s \models \forall \Diamond a \lor \forall \Diamond b$, then $s \models \forall \Diamond (a \lor b)$. (d) If $s \models \forall \Diamond (a \lor b)$, then $s \models \forall \Diamond a \lor \forall \Diamond b$.

EXERCISE 6.4. Let Φ and Ψ be arbitrary CTL formulae. Which of the following equivalences for CTL formulae are correct?

- (a) $\forall \bigcirc \forall \Diamond \Phi \equiv \forall \Diamond \forall \bigcirc \Phi$
- (b) $\exists \bigcirc \exists \Diamond \Phi \equiv \exists \Diamond \exists \bigcirc \Phi$
- (c) $\forall \bigcirc \forall \Box \Phi \equiv \forall \Box \forall \bigcirc \Phi$
- (d) $\exists \bigcirc \exists \Box \Box \Phi \equiv \exists \Box \exists \bigcirc \Phi$
- (e) $\exists \Diamond \exists \Box \Phi \equiv \exists \Box \exists \Diamond \Phi$
- (f) $\forall \Box (\Phi \Rightarrow (\neg \Psi \land \exists \bigcirc \Phi)) \equiv (\Phi \Rightarrow \neg \forall \Diamond \Psi)$

(i) $\exists ((\Phi \land \Psi) \cup (\neg \Phi \land \Psi)) \equiv \exists (\Phi \cup (\neg \Phi \land \Psi))$

(l) $\exists (\Psi \ W \ \neg \Psi) \lor \forall (\Psi \ U \ \text{false}) \equiv \exists \bigcirc \Phi \lor \forall \bigcirc \neg \Phi$

(n) $\forall \Box \forall \Diamond \Phi \equiv \Phi \land (\forall \bigcirc \forall \Box \forall \Diamond \Phi) \lor \forall \bigcirc (\forall \Diamond \Phi \land \forall \Box \forall \Diamond \Phi)$

(m) $\forall \Box \Phi \land (\neg \Phi \lor \exists \bigcirc \exists \Diamond \neg \Phi) \equiv \exists X \neg \Phi \land \forall \bigcirc \Phi$

- (g) $\forall \Box (\Phi \Rightarrow \Psi) \equiv (\exists \bigcirc \Phi \Rightarrow \exists \bigcirc \Psi)$

(j) $\forall (\Phi \ \mathsf{W} \ \Psi) \equiv \neg \exists (\neg \Phi \ \mathsf{W} \ \neg \Psi)$

(o) $\forall \Box \Phi \equiv \Phi \lor \forall \bigcirc \forall \Box \Phi$

(k) $\exists (\Phi \cup \Psi) \equiv \exists (\Phi \cup \Psi) \land \exists \Diamond \Psi$

- (h) $\neg \forall (\Phi \ \mathsf{U} \ \Psi) \equiv \exists (\Phi \ \mathsf{U} \ \neg \Psi)$

EXERCISE 6.7. Transform the following CTL formulae into ENF and PNF. Show all intermediate steps.

$\Phi_1 = \forall ((\neg a) \mathsf{W} (b \to \forall \bigcirc c))$

 $\Phi_2 = \forall \bigcirc \left(\exists ((\neg a) \, \mathsf{U} \, (b \land \neg c)) \lor \exists \Box \forall \bigcirc a \right)$

EXERCISE 6.9. Consider the CTL formula

$$\Phi = \forall \Box \left(a \to \forall \Diamond \left(b \land \neg a \right) \right)$$

and the following CTL fairness assumption:

$$fair = \forall \Diamond \forall \bigcirc (a \land \neg b) \to \forall \Diamond \forall \bigcirc (b \land \neg a) \land \Diamond \Box \exists \Diamond b \to \Box \Diamond b.$$

Prove that $TS \models_{fair} \Phi$ where transition system TS is depicted below.

EXERCISE 6.14. Check for each of the following formula pairs (Φ_i, φ_i) whether the CTL formula Φ_i is equivalent to the LTL formula φ_i . Prove the equivalence or provide a counterexample that illustrates why $\Phi_i \neq \varphi_i$.

Exercises

(a)
$$\Phi_1 = \forall \Box \forall \bigcirc a$$
. and $\varphi_1 = \Box \bigcirc a$
(b) $\Phi_2 = \forall \Diamond \forall \bigcirc a$ and $\varphi_2 = \Diamond \bigcirc a$.
(c) $\Phi_3 = \forall \Diamond (a \land \exists \bigcirc a)$ and $\varphi_3 = \Diamond (a \land \bigcirc a)$.
(d) $\Phi_4 = \forall \Diamond a \lor \forall \Diamond b$ and $\varphi_4 = \Diamond (a \lor b)$.
(e) $\Phi_5 = \forall \Box (a \rightarrow \forall \Diamond b)$ and $\varphi_5 = \Box (a \rightarrow \Diamond b)$.
(f) $\Phi_6 = \forall (b \cup (a \land \forall \Box b))$ and $\varphi_6 = \Diamond a \land \Box b$.

EXERCISE 6.16.

Consider the following CTL formulae

$$\Phi_1 = \exists \Diamond \forall \Box c \quad \text{and} \quad \Phi_2 = \forall (a \, \mathsf{U} \, \forall \Diamond c)$$

and the transition system TS outlined on the right. Decide whether $TS \models \Phi_i$ for i = 1, 2 using the CTL model-checking algorithm. Sketch its main steps.

EXERCISE 6.21. Consider the CTL formula Φ and the strong fairness assumption *sfair*:

$$\Phi = \forall \Box \forall \Diamond a
sfair = \Box \Diamond \underbrace{(b \land \neg a)}_{\Phi_1} \to \Box \Diamond \underbrace{\exists (b \cup (a \land \neg b))}_{\Psi_1}$$

and transition system TS over $AP = \{a, b\}$ which is given by

Questions:

- (a) Determine $Sat(\Phi_1)$ and $Sat(\Psi_1)$ (without fairness).
- (b) Determine $Sat_{sfair}(\exists \Box \text{ true})$.
- (c) Determine $Sat_{sfair}(\Phi)$.

EXERCISE 6.23. Consider the following transition system TS over $AP = \{a_1, \ldots, a_6\}$.

Let $\Phi = \exists \bigcirc (a_1 \rightarrow \exists (a_1 \cup a_2))$ and $sfair = sfair_1 \wedge sfair_2 \wedge sfair_3$ a strong CTL fairness assumption where

$$\begin{array}{rcl} sfair_{1} & = & \Box \Diamond \forall \Diamond (a_{1} \lor a_{3}) \longrightarrow \Box \Diamond a_{4} \\ sfair_{2} & = & \Box \Diamond (a_{3} \land \neg a_{4}) \longrightarrow \Box \Diamond a_{5} \\ sfair_{3} & = & \Box \Diamond (a_{2} \land a_{5}) \longrightarrow \Box \Diamond a_{6} \end{array}$$

Sketch the main steps for computing the satisfaction sets $Sat_{sfair}(\exists \Box true)$ and $Sat_{sfair}(\Phi)$.