
Systems Verification Lab
Exercises on Regular Properties, Linear Time Logic and

Computation Tree Logic with (Some) Solutions

Teacher: Luca Tesei

Master of Science in Computer Science - University of Camerino

Contents

1 Regular Properties 2

2 Linear Temporal Logic 7

3 LTL Exercises from Book 16

4 CTL Exercises from Book 17

1

1 Regular Properties

Exercise 1.1. Consider the following transition system TS:

and the regular safety property

As an example, it holds:

Questions:

(a) Define an NFA A such that L(A) = MinBadPref(Psafe)

(b) Decide whether TS |= Psafe using the TS ⌦ A construction. Provide a counterexample if
TS 2 Psafe

Exercise 1.2. Consider the following transition system TS:

and the regular safety property
Psafe = “always if b is holding and a was held somewhere before, then c must not hold in the

position just after the current b”

1. Define an NFA A such that L(A) = MinBadPref(Psafe)

2. Decide whether TS |= Psafe using the TS⌦A construction. Provide a counterexample if TS 6|=
Psafe

Solutions

Solution of Exercise 1.1

Solution of Exercise 1.2

1. An NFA accepting the minimal bad prefixes for the property is
A:

where:
¬a ⌘ {{}, {b}, {c}, {b, c}}
a ⌘ {{a}, {a, b}, {a, c}, {a, b, c}}
The union of ¬a and a is 2AP

¬b ⌘ {{}, {a}, {c}, {a, c}}
b ⌘ {{b}, {a, b}, {b, c}, {a, b, c}}
The union of ¬b and b is 2AP

c ⌘ {{c}, {a, c}, {b, c}, {a, b, c}}
b ^ ¬c ⌘ {{b}, {a, b}}
¬b ^ ¬c ⌘ {{}, {a}}
The union of c, b ^ ¬c and ¬b ^ ¬c is 2AP

So the NFA is non-blocking apart from state q3.

2. To apply the product TS ⌦ A, A should be non-blocking. Our A is deterministic and becomes
non-blocking if we add a state q4 and let

or alternatively we can add a self-loop on q3. In this case the automaton would recognize all bad
prefixes, not just the minimal ones. Let us consider A0 made on one of these two ways.

Let’s construct the product:
L(s0) = {b, c} �(q0, {b, c}) = {q0}
So the unique initial state of TS ⌦A0 is < s0, q0 >

From < s0, q0 >:

• s0 �! s1 L(s1) = {a}
�(q0, {a}) = {q1}.

• s0 �! s2 L(s2) = {a, b}
�(q0, {a, b}) = {q1}.

From < s1, q1 >:

• s1 �! s3 L(s3) = {b}
�(q1, {b}) = {q2}.

From < s3, q2 >:

• s3 �! s5 L(s5) = {a, c}
�(q2, {a, c}) = {q3}.

we can stop constructing TS ⌦A0 because we can already decide that TS 2 Psafe.
Indeed in TS⌦A0 a state in which q3 is present is reachable *. The path gives us a counter-example
for the property:
s0s1s3s5... whose trace is {b, c}{a}{b}{a, c}...2 Psafe

2 Linear Temporal Logic

Exercise 2.1. Consider the following transition system TS on AP = {a, b}:

and the following LTL formula ' = 23¬a.

1. Derive an NBAs A for the formula ¬', i.e. such that L!(A) = L!(¬').

2. Tell whether or not it holds TS |= ' by constructing TS⌦A and checking the proper persistence
property related to the accepting states of A. If TS 6|= ' then provide a counterexample, i.e.
give a path ⇡ 2 Paths(TS) such that ⇡ 6|= '.
Hint: it is not required to construct all the transition system TS ⌦ A, but only the reachable
portion that is needed to answer to the question.

Exercise 2.2. Consider the following transition system TS on AP = {a, b, c}.

1. Decide, for each LTL formula 'i below, whether or not TS |= 'i. Justify your answers! If
TS 6|= 'i provide a path ⇡ 2 Paths(TS) such that ⇡ 6|= 'i.

'1 = 3b '2 = �� (c _ b)
'3 = 3(a ^ b ^ c) '4 = (���a) _ (32a)
'5 = (a _ b)U (a _ c) '6 = 2(b �! (�3c))

2. Consider the following fairness assumptions written as LTL formulas:

 fair
1 = 23c �! 23b fair

2 = 23a fair
3 = 23b �! ((23a) ^ (23c))

(a) (2 points) Decide whether or not TS |=fair '1 under the three di↵erent fairness conditions
 i
fair, i 2 {1, 2, 3}, separately. Whenever TS 6|=fair '1 provide a path ⇡ 2 Paths(TS) such

that ⇡ 6|= '1 and arguing that ⇡ is fair with respect to i
fair.

(b) (2 points) Decide whether or not TS |=fair '6 under the three di↵erent fairness conditions
 i
fair, i 2 {1, 2, 3}, separately. Whenever TS 6|=fair '6 provide a path ⇡ 2 Paths(TS) such

that ⇡ 6|= '6 and arguing that ⇡ is fair with respect to i
fair.

Exercise 2.3. Consider the transition system TS over the set of atomic proposition AP = {a, b, c}:
Decide for each of the LTL formulas 'i holds. Justify your answer!

If TS 2 'i, provide a path ⇡ 2 paths(TS) such that ⇡ 2 'i.

'1 = 32c '4 = 2a
'2 = 23c '5 = aU2(b _ c)
'3 = �¬c �! �� c '6 = (�� b)U(b _ c)

Exercise 2.4. Let AP = {a, b, c}. Consider the transition system TS over AP outlined below

and the LTL fairness assumption fair = (23(a ^ b) �! 23¬c) ^ (23(a ^ b) �! 23¬b).
a) Specify the fair paths of TS!
b) Decide for each of the following LTL formulas 'i whether it holds TS |=fair 'i:

'1 = �¬a �! 32a '2 = bU2¬b '3 = bW2¬b

In case TS 2fair 'i, indicate a path ⇡ 2 2 FairPaths(TS) for which ⇡ 2 ' holds.

Exercise 2.5. Consider the following LTL formula:

' = 2(b �! (bU (a ^ ¬b)))

1. Put the formula ¬' in Positive Normal Form containing the weak until operator W as dual of
the until.

2. Convert ¬' into an equivalent LTL formula that is constructed according to the following
grammar:

� ::= true | false | � ^ � | ¬� | �� | �U �

then, construct the set closure() and derive at least one set B that is elementary set with
respect to closure().

Exercise 2.6. Transform the LTL–formula ' = ¬3(¬(aUc) �! ((b ^ ¬d)Ua)) in positive normal
form, once using the W–operator and once using the R–operator.

Exercise 2.7. We consider model checking of !�regular LT properties which are defined by LTL
formulas. Therefore let '1 and '2 be as follows:

'1 = 23a �! 23b

'2 = 3(a ^�a)

Further, our model is represented by the transition system TS over AP = {a, b} which is given
as outlined on the right. We check whether TS| = 'i for i = 1, 2 using the nested depth–first search
algorithm from the lecture. Therefore proceed as follows:

a) Derive an NBA Ai for the LTL formula ¬'i (for i = 1, 2). More precisely, for Ai it must hold
L!(Ai) = L!(¬'i).
Hint: Four, respectively three states su�ce.

b) Outline the reachable fragment of the product transition system TS ⌦ Ai.

c) Sketch the main steps of the nested depth–first search algorithm for the persistency check on
TS ⌦ Ai.

d) Provide the counterexample computed by the algorithm if TS 2 'i.

Solutions

Solution of Exercise 2.1

1. We first note the ¬' ⌘ ¬23¬a ⌘ 32a
An NBA A for 32a is the following

where:
a ⌘ {{a}, {a, b}}
¬a ⌘ {{}, {b}}
true ⌘ {{a}, {b}, {a, b}, {}}
F = {q1}

2. Let’s start constructing the product TS ⌦ A

The initial state are those (s0, x) where
x 2 �(q0, L(s0)) =
�(q0, {a}) =
{q0, q1}
that is, there are two initial states: (s0, q0) and (s0, q1)

from(s0, q0):
s0 ! s1, �(q0, L(s1)) =
�(q0, {a}) = {q0, q1}

s0 ! s2, �(q0, L(s2)) =
�(q0, {b}) = {q0}

from(s1, q1):
s1 ! s1, �(q1, L(s1)) =
�(q1, {a}) = {q1}

from(s1, q0):
s1 ! s1, �(q0, L(s1)) =
�(q0, {a}) = {q0, q1}

We can stop constructing the product because it is now clear that there is a reachable strongly
connected component (SCC) in which q1 is visited infinitely often.

This means that L!(TS ⌦ A) 6= ;, thus there is a behaviour in TS that violates the formula
' = 23¬a.
Thus TS 2 ' and a counterexample is the path ⇡ : s0(s1)!

Solution of Exercise 2.2

1. TS 2 3b

Counterexample: ⇡ = (s0s1)!

TS ✏ �� (c _ b)

Because the following are the all the possible prefixes of paths of TS:
s0 s1 s0...
s0 s2 s3...
s3 s4 s3
s3 s5 s3
third state of each paths (s0 and s3) satisfies (c _ b)

TS 2 3(a ^ b ^ c)

Because all the runs that start in s3 never reach the state s2 that is the only one in which a^ b^ c
is true

TS 2 (���a) _ (32a)

Because of the run s3 s4 s3 s5 (s3 s5)! in which the first ”s5” 2 a and (s3 s5)! 2 (32a)

TS ✏ (a _ b)U (a _ c)

In all runs:
s0... , s0 ✏ (a _ b)U (a _ c)
s3 s4 ... s3 ✏ (a _ b) , s4 ✏ (a _ b)
s3 s5 ... s3 ✏ (a _ b) , s5 ✏ (a _ b)

TS 2 2(b �! (�3c))

Because of the runs s0 ... s0 s2 s3 s4 (s3 s4)! in which: s2 = b s3 = 3c and (s3 s4)! is never c

2. • In case of fairness fair
1 = 23c �! 23b

the path (s0 s1)! is not fair, thus TS |=fair '1 under the fairness condition fair
1 .

In case of fairness fair
2 = 23a

the runs s0 ... s0 s2 s3 ... s3 (s3 s4)! are not fair.
This does not e↵ect the satisfaction of '1:
TS 2fair '1 because the run (s0 s1)! is fair for fair

2

In case of fair
3 : 23b �! ((23a) ^ (23c))

the runs s0 ... s0 s2 s3 ... s3 (s3 s4)! , s0 ... s0 s2 s3 ... s3 (s3 s5)! are not fair.
This, again, does not e↵ect the satisfaction of '1.
TS 2fair '1 under fair

3 because (s0 s1)! is fair in fair
3

• In the previous case we discussed the runs that are not fair under fair
1 , fair

2 , fair
3 .

TS 2fair '6 with fair
1 because the paths s0 ... s0 s2 (s3 s4)! are fair for fair

1

TS 2fair '6 with fair
2 because the paths s0 ... s0 s2 (s3 s4)! are fair for fair

2

TS ✏fair '6 with fair
3 because the paths s0 ... s0 s2 (s3 s4)! are not fair for fair

3

Solution of Exercise 2.3
We have to decide the validity of the given LTL formulas wrt.
the transition system on the right. This yields:

'1 = 32c no s2s4s2s4...
'2 = 23c yes
'3 = �¬c �! �� c yes
'4 = 2a no s2...
'5 = aU2(b _ c) yes
'6 = (�� b)U(b _ c) no s1s4s2...

Solution of Exercise 2.4

a) The fair paths of TS are defined by

fair = (23(a ^ b) �! 23¬c) ^ (23(a ^ b) �! 23¬b) :

The conclusion in the first conjunction (23(a ^ b) �! 23¬c) is fulfilled by every path, since no
state in TS is labeled with c. Formally, we have 2¬c �! 23¬c and therefore our claim holds. Consider
the second part (23(a ^ b) �! 23¬b) of fair: Its premise is fulfilled only on the path ⇡ = s!3 . But
⇡ 2 23¬b. Therefore ⇡ is the only unfair path in TS:

FairPaths(TS) = L!((s0s1)
! + (s0s1)

+s!2 + s+3 s4s
!
5)

b)

• '1 = �¬a �! 32a
Consider the path ⇡1 = s3s4s!5 2 FairPaths(TS). For its corresponding trace

trace(⇡1) = �1 = {a, b}{b};!

it holds �1 2 Words(�¬a), but �1 /2 Words(32a).
) �1 /2 Words(�¬a �! 32a)
) TS 2fair �¬a �! 32a

• '2 = bU2¬b
Consider the path ⇡2 = (s0s1)! 2 FairPaths(TS). Here, we have

trace(⇡2) = �2 = ({a, b}{b})!

and �2 2fair bU2¬b since there exists no i � s.t. �2[i...] ✏ 2¬b.
) TS 2fair bU2¬b

• '3 = bW2¬b
It holds TS ✏fair '1

Solution of Exercise 2.5

1. ¬' = ¬2(b �! (bU (a ^ ¬b))) ⌘
⌘ ⇧¬(b �! (bU (a ^ ¬b))) ⌘
⌘ ⇧¬(¬b _ (bU (a ^ ¬b))) ⌘
⌘ ⇧(¬¬b ^ ¬(bU (a ^ ¬b))) ⌘
⌘ ⇧(b ^ (b ^ ¬(a ^ ¬b))W(¬b ^ ¬(a ^ ¬b))) ⌘
⌘ ⇧(b ^ (b ^ (¬a _ b))W(¬b ^ (¬a _ b)))
the last form is in PNF.

2. As in the previous case ¬' ⌘ ⇧(b ^ ¬(bU(a ^ ¬b)))
So ¬' ⌘ trueU (b ^ ¬(bU (a ^ ¬b)))
Let ' ⌘ trueU(b ^ ¬(bU (a ^ ¬b)))
closure() = {true, a, b, a ^ ¬b, (bU(a ^ ¬b)), b ^ ¬((bU (a ^ ¬b))),'} [
{false,¬a,¬b,¬(a ^ ¬b),¬(bU (a ^ ¬b)),¬(b ^ ¬((bU (a ^ ¬b)))),¬'}
an example of elementary set is B = {true, a,¬b, (bU (a ^ ¬b)),¬(b ^ ¬((bU (a ^ ¬b)))),'}

Solution of Exercise 2.6
We have the following LTL formula:

Solution of Exercise 2.7

a) The automata accepting the complement languages of '1 and '2 are:

b) The reachable fragments of T ⌦ Ai for i = 1, 2 are as follows:

c) Sketch the main steps of the nested depth-first search algorithm for the persistency check on T⌦Ai:
We check for the persistence property “eventually forever ¬F”.

1. Constructed the product T⌦A1, we can see that there is a reachable strongly connected component
(SCC) in which q1 is visited infinitely often.

This means that L!(TS ⌦ A1) 6= ;, thus there is a behaviour in TS that violates the formula '1.
So, TS 2 '1

2. Constructed the product T⌦A2, we can see that there not a reachable strongly connected component
(SCC) in which q0 is visited infinitely often.

This means that L!(TS ⌦ A2) = ;, thus there is not a behaviour in TS that violates the formula
'2.
So, TS ✏ '2

d)
TS 2 '1. counterexample: < s0, q0 >,< s1, q1 >,< s3, q1 >,< s2, q1 >,< s1, q2 >,< s3, q1 >
TS ✏ '2.

3 LTL Exercises from Book

4 CTL Exercises from Book

