
Systems Verification Lab
Exercises on Models and Modelling with (some) Solutions

Teacher: Luca Tesei

Master of Science in Computer Science - University of Camerino

Contents

1 Transition systems and Program Graphs 2

2 Channel Systems and nano Promela 17

1

1 Transition systems and Program Graphs

Exercise 1.1. Consider the following sequential hardware circuit:

Give the transition system representation of C.

Exercise 1.2. Consider the following street junction with the specification of a traffic light as outlined
on the right.

1. Choose appropriate actions and label the transitions of the traffic light transition system ac-
cordingly.

2. Give the transition system representation of a (reasonable) controller C that switches the green
signal lamps in the following order: A1, A2, A3, A1, A2, A3,...
(Hint: Choose an appropriate communication mechanism.)

3. Outline the transition system A1||A2||A3||C.

Exercise 1.3. A concurrent system comprises P1,...,Pn competing processes (without shared memory)
that access common resource within their critical sections. We assume that the resources may only
be accessed exclusively and that £k equivalent instances are available.
Further, let n, k ∈ N with 2 ≤ k ≤ n.
Process Pi can be described by a transition system Ti with three states and the actions request, enter
and release as indicated below: a) Develop a transition system representation of an arbiter that

communicates with the processes using actions request and release. The arbiter should assure that
there are no more than k processes within their critical section at the same time.

b) Sketch the transition system of the parallel composition

(T1 ||| T2 ||| T3) ||Syn Arbiter

with Syn = {request,release} for k = 2. You need not consider the states waiti

Exercise 1.4. Recall the Peterson’s algorithm for mutual exclusion (Example 2.25 of the book, page
45). Consider the following variant (for process P1):

loop forever

(* non-critical section *)

x := 2;

b1 := true;

wait until (x = 1 or not b2);

(*critical section *)

b1 := false;

(* non-critical section *)

end loop

In particular, note that the assignments x := 2; and b1 := true; are not surrounded by the
atomic operator < > and are in reverse order with respect to the original formulation.

1. Formalize the behaviour of processes P1 and P2 as program graphs.

2. Show that there is the possibility that both processes are in the critical section at the same
moment. Hint: you don’t need to derive the whole transition system of the parallel composition
of the two program graphs, but only the part that is needed to show that the wrong state can be
reached from the initial state

Exercise 1.5. Consider the train crossing example (Example 2.29 of the book, page 50). There, it is
possible that a train enters a crossing while the gate is open! Alter this system in the following ways:

• A signal is added for the train. The signal can be green or red. The controller changes the signal
to green when and only when the track gates are closed. The controller changes the signal to
red before opening the gates again.

• The train does not enter the crossing when the signal is red.

• The controller still does not synchronize with the train on an enter action.

1. Give the transition system representation of controller, gates, signal and train (separately).

2. Give the transition system representation of the combined system.

3. Argue why the train never crosses the road when the train gates are still open.

Exercise 1.6. The following 3 processes describe the actions that students undertake. The PLAY
process can go to pub, or go to clubbing or go to football and then it goes back to the process PLAY.
The WORK process can go to lectures or laboratory or library or assessment and then it goes back to
the process WORK. The DAY process makes the following actions in the specified order: wake, eat,
dress, undress, sleep and then it goes back to the DAY process.

1. Draw three Transition Systems describing the behaviour of each process independently from the
others. Use meaningful action names (e.g. go to pub). Show that the pure interleaving parallel
composition of the three TS allows a student to go to lectures undressed.

2. Modify the three TS, introducing a set Syn of shared actions for hand-shacking synchronization,
so that the parallel composition with synchronization of the three new TS does not produce silly
action sequences, e.g. going to lectures undressed or performing PLAY actions before WORK
actions are completed.

Exercise 1.7. Consider the two following transition systems.

1. Draw the transition system resulting from their product using handshaking with the handshake
action set H = {a, b}.

Exercise 1.8. Consider the following program graph

where x is a variable such that dom(x) = {0, 1, 2}, g0 ≡ (x = 1), Loc0 = {A}, Effect(α, η) = η[x :=
0], Effect(β, η) = η[x := η(x)− 1] and Effect(δ, η) = η[x := η(x) + 1].

1. Draw the transition system that is the semantics of the given program graph.

Exercise 1.9. Consider the following scheme of a circuit.

1. Model the behaviour of the circuit as a transition system assuming that the initial state of the
registers is 0.

Exercise 1.10. Consider the following two hardware circuits.

1. Draw the two transitions systems T1 and T2 describing the behaviour of circuits C1 and C2

considering AP = {y1, y2}.

2. Draw the synchronous product T1 ⊗ T2.

3. Determine if T1 ⊗ T2 |= E where

E = {A0A1A2 · · · ∈ (2AP)ω | ∃i ∈ N : ∀j ≥ i {y1, y2} 6∈ Aj}

Solutions

Solution of Exercise 1.1
The logical formulas expressing the connections of the wires and the logical gates are the following:

y = r1 ∧ r2
r1 = (x ∧ ¬r1) ∨ (¬x ∧ r1)
r2 = (¬x ∧ r2) ∨ (r1 ∧ x)
The set AP = {y} is considered.

Initially, all registers are set to zero and input ce be zero or one.

The states < x = 0, r1 = 1, r2 = 1 > and < x = 1, r1 = 1, r2 = 1 > are not reachable.

Solution of Exercise 1.2
(1)

(2)

(3)

Solution of Exercise 1.3

Solution of Exercise 1.4

We consider the set var = {x, b1, b2} where dom(x) = {1, 2}, dom(b1) = dom(b1) = {true, false}.
The initial condition is b1 = false and b2 = false.
The program graphs for preocess P1 and P2 are the following:

The following is a portion of the transition system derived from the program graph PG1|||PG3 that
share the variables var.

The paths from the initial state to the state ” ∗ ” shows that a state in which both P1 and P2 are in
the critical section at the same time is reachable.

Solution of Exercise 1.5
The new signal is controlled by the controller that adds a synchronization with the train (green) before
the train could enter.

The gate is unchanged. Note that the only two non-synchronizing actions are enter and red. The
transition system Train||Gate||Controller is the following one.

There is not any reachable state in which the train crosses while the gates are open.

Solution of Exercise 1.6

1. To avoid a proliferation of states and since specific information about the state of the student
while working and while playing is not specified, we model the PLAY and WORK processes as two
transition systems with only two states as follows

In each of them the initial state represents the potential initiation of an activity and the other
state stands for the execution of the chosen activity. Note that only the name of the actions gives
the information about the activity that is being done. The labelling function of the states can be
considered empty for these two transition systems.

The transition system for the process DAY is as follows

Note that in this case we have a deterministic cycle passing through all the required actions. We
suppose that the labelling function of the states associate to each state its name, which is considered
an atomic proposition.

By considering pure interleaving, the parallel composition DAY |||WORK |||PLAY permits the
execution of all possible traces composed of the actions of the three transition systems, in any order
respecting the orders enforced by the components. In particular, the following partial execution is
possible:

(DAY,WORK,PLAY)
wake−−→ (Awake,WORK,PLAY)

go to lecture−−−−−−−→ (Awake,Working,PLAY) −→ · · ·

in which the student goes to lecture before he/she gets dressed.

2. To avoid the execution of silly actions we can modify the three transition systems by introducing
synchronization actions. The modified transition system for the process PLAY is the following

It is an extension of the old TS in which an additional state PLAY’ has been introduced and made
initial. From PLAY’ there is an outgoing synchronization action (start play) that permits the initi-
ation of playing activities. After this action the process can undertake any number (including zero)
of playing activities and then it can decide to stop with another synchronization action (stop play).

The modified process WORK, with modifications analogous to those of PLAY is the following

Finally, the TS for the modified DAY process, called DAY’, is the following

The initial sequence of actions remained the same, but after getting dressed (and only at that
moment) a student can possibly perform working activities between the two handshake synchro-
nizations of actions start work and stop work. Moreover, only after having worked the student can
possibly enjoy playing activities between the two synchronization actions start play and stop play.
To conclude, note that the student can get undressed and go to sleep only after working and playing
activities, in the same day. Thus, he/she will never perform any WORK or PLAY activity undressed
and every playing activity can initiate only after the student undertook a working phase (which,
however, could be composed of zero activities).

Solution of Exercise 1.7

Solution of Exercise 1.10

1. The two transition systems are the following ones. In T1 (T2) the first bit is the value of x1 (x2)
and the second bit is the value of r1 (r2).

2. The transition system T1⊗ T2 resulting from the synchronous product of T1 and T2 is the following
one. The first bit of the first row is the value of x1 and the second bit of the first row is the value
of r1. The first bit of the second row is the value of x2 and the second bit of the second row is the
value of r2.

3. The property E requires that {y1, y2} occurs only finitely many times. It holds that T1 ⊗ T2 6|= E
because there is at least a trace in T1 ⊗ T2 such that {y1, y2} occurs infinitely many times. An

example of such a trace is {{y1}{y1, y2}}ω resulting from the path

{(
00

00

) (
01

01

)}ω

.

2 Channel Systems and nano Promela

Exercise 2.1. Consider the following generalization of Peterson’s mutual exclusion algorithm that
is aimed at an arbitrary number n(n ≥ 2) processes. The basic concept of the algorithm is that each
process passes through n “levels” before acquiring access to the critical section.

The concurrent processes share the bounded integer arrays:

• y[0..n− 1] with y[k] ∈ {1, ..., n} such that y[j] = i means that process i has the lowest priority
at level j.

• p[1..n] with p[i] ∈ {0, ..., n− 1} such that p[i] = j expresses that process i is currently at level j.

Each process starts at level 0; before entering the critical secrion, it has to pass through levels 1
to n− 1. Process i waits at level j until either all other processes are at a lower level (i.e., p[k] < j
for all k 6= i) or another process grants process i access to its critical section (i.e., y[j] 6= i). The
behaviour of process i is given by the following algorithm:

while true do
‘...noncritical section...’;
forall j = 1 to n− 1 do
p[i] := j;
y[j] := i;
wait until (y[j] 6= i)∨ (

∧
0<k≤n,k 6=1 p[k] < j)

od
‘...critical section...’;
p[i] := 0;
od

Questions:

1. Formally define the program graph for process i.

2. Determine the number of states (including the unreachable states) in the parallel composition
of n processes.

3. Prove that this algorithm ensures mutual exclusion for n processes.

Exercise 2.2. Consider the following leader election algorithm: For n ∈ N , n processes P1, ..., Pn
are located in a ring topology where each process is connected by an unidirectional channel to its
neighbor in a clockwise manner.
To distinguish the processes, each process is assigned a unique identifier id ∈ 1, ..., n. The aimis
to elect the process with the highest identifier as the leader within the ring. Therefore each process
executes the following algorithm:

send (id);
while (true) do

Receive (m);
if (m=id) then

stop;
end
if (m>id) then

send(m);
end

end

1. Model the leader election protocol for n processes as a channel system.

2. Give an initial execution fragment of TS([P1|P2|P3]) such that at least one process has executed
the send statement within the body of the while loop. Assume for 0 < i ≤ 3, that process Pi
has identifier idi = i.

Exercise 2.3. Consider a system consisting of n processes P0, ..., Pn − 1 and a central moderator
M in a fully connected network.
Each process Pi(for0 ≤ i < n) executes the same algorithm and stores a unique identifier idi ∈ N .
Further, we assume that n is known a priori.
In order to elect a leader, the system is supposed to determine the process with the highest id and
communicate it to every process.

• Informally describe how to solve the leader election problem in the above setting.

• Write nanoPromela models for the algorithm of the process and the moderator. Add comments!

• Formally derive the program graphs for a process and the moderator.

Exercise 2.4. Consider a system composed of the following components: Machine, Executor and
Queue.

• The Machine can be in running or in standby mode.

• The Executor can be in idling or in executing mode.

• Whenever the Machine is running and the Executor is idling, then the latter can accept tasks
from the Queue, to be executed.

• After executing a task, the Executor can terminate it and go back to the idling state.

• The Queue collects, from an external source, tasks to be executed in a buffer of maximum length
2. The source of the tasks should not be modeled, but it must be assumed that it can produce
infinitely many tasks.

• Whenever the Machine is running, the Queue is empty and the Executor is idling, then the
Machine can switch to the standby mode to save energy.

• Whenever the Machine is in standby, the Queue is not empty and the Executor is idling, then
the Machine can switch to the running mode in order to start processing tasks again.

• Initially, the Machine is in standby, the Queue is empty and the Executor is idling.

1. Model the scenario sketched above as a Channel System. Define clearly all channels with their
type and capacity and define clearly all the shared variables with their type and initial values.

2. Draw the Transition System resulting from the defined Channel System by the standard seman-
tics.

3. Argue, justifying your answer, that your model is deadlock-free.

Exercise 2.5. Consider the Hyman’s mutual exclusion algorithm for two processes P1 and P2. It
uses a shared integer variable k ∈ {1, 2} and 2 boolean variables bi, i ∈ {1, 2}. Each process Pi

executes the algorithm below, where i is the index of the process and j is used as the index of the
other process:

while (true) do

begin

‘noncritical section’;

b_i := true;

while (k != j) do

begin

while (b_j) do skip;

k := i;

end

‘critical section’;

b_i := false;

end

1. Model the behavior of the generic process Pi in nanoPromela. Define clearly all channels with
their type and capacity and define clearly all the shared variables with their type and initial
values.

2. Specify if you want to use the test-and-set semantics or the two-steps one. Argue whether or not
this choice could have any effect on the correctness of your implementation of the algorithm.

Exercise 2.6. Consider the following two sequential hardware circuits C1 and C2:

1. Give the transition system representation TS(C1) of the circuit C1.

2. Let TS(C2) be the transition system of the circuit C2. Draw the transition system TS(C1) ⊗
TS(C2), i.e., the synchronous product between TS(C1) and TS(C2).

Exercise 2.7. Consider a channel system [Controller | Monitor1 | Monitor2] with two variables
x ∈ {0, 1, 2} and y ∈ {0, 1} and two channels m1 and m2 both of capacity 0. For simplicity we will
suppose that m1 and m2 are pure synchronization channels, i.e. no value is exchanged during the
synchronization. Perform the following tasks:

1. Using the graphical formalism of channel systems, model the Controller process. It initializes
the two variables (in any possible way), then activates the processes Monitor1 (through channel
m1) and Monitor2 (through channel m2) and then terminates.

2. Model the process Monitor1. It initially waits for activation through the channel m1 and then
starts monitoring the value of the variables. In this state, if the condition x < 2 is true then it
performs action a1 and returns back to the monitor state. Otherwise, if the condition x == 2

is true then it performs action e1 and terminates. The effect of action a1 must be the execution
of the command atomic{x := x+ 1; y := (y+ 1)%2} and the effect of action e1 is skip, i.e.
the empty command.

3. Model the process Monitor2. It initially waits for activation through the channel m2 and then
starts monitoring the value of the variables. In this state, if the condition y == 1 and x > 0

is true then it performs action a2 and returns back to the monitor state. Otherwise, if the
condition y == 0 or x == 0 is true then it performs action e2 and terminates. The effect of
action a1 must be the execution of the command atomic{y := 0; x := x− 1} and the effect of
action e2 is skip, i.e. the empty command.

4. Derive and draw (for the sake of clarity, possibly in different parts) the full transition system
associated to the channel system [Controller | Monitor1 | Monitor2] where the initial condition
is g0 ≡ x == 0 and y == 0. Assume that AP = {} and that the labelling function is empty as
well.

5. Determine, justifying your answers!, whether or not the obtained transition system satisfies the
following properties:

• Termination: for any initial assignment of the variables a state in which all three processes
are terminated is always reached.

• Confluence: for any initial assignment of the variables there is only a possible terminal
state, i.e. there are no different possible outcomes as effects of the actions of the monitors.

• Weak Termination: there exists an assignment of the variables for which a state in which
all three processes are terminated is reached.

• Weak Confluence: there exists an assignment of the variables for which one and only one
state in which all three processes are terminated is reached1.

1Note that the two weak properties are not linear time properties.

Solutions

Solution of Exercise 2.1

1. The program graph PGi of process i is given as:

Note that we consider i as a constant here and that the variables ji are not shared.

2. The cardinality of the set of states of TS(PG1|||...PGn) can be deduced as follows:
Let PG = (Loc,Act, Effect,→, loc0, g0) be the formal representation of the program from part
(1) where:

• Loc = {1, 2, 3, 4, 5}
• Act = {ji := 1, p[i] := ji, y[ji] := i, ji := ji + 1, enter, p[i] := 0|i ∈ {1, ..., n}}

According to the algorithm, we have:

dom(y[k]) = {1, ..., n} for all k ∈ {0, ..., n− 1}
dom(ji) = dom(p[k]) = {0, ..., n− 1} for all k, i ∈ {1, ..., n}

Therefore it follows |dom(y[k])| = |dom(ji)| = |dom(p[k])| = n.
The arrays y and p have capacity n:
The state space of the transition system is

S = Loc1× ...× Locn× Eval({p[k], y[l], ji|i, k ∈ {1, ..., n}andl ∈ {0, ..., n− 1}}).

Therefore we get |S| = 5n × n3n

3. We prove a stronger statement that implies mutual exclusion:
For level j ∈ {0, ..., n−1}, there are at most n− j processes on levels ≥ j. By definition, a process
Pi is in level j iff p[i] = j. We proceed by induction over j:

• basis (j = 0): The statement holds, as n − j = n − 0 = n and there are no more than n
processes in the system.

• induction step (j j + 1): The induction hypothesis implies that there are at most n − j
processes on levels ≥ j. We show that there is at least one process that cannot move from
level j to level j+1. By contradiction, assume there also were n−j processes on levels ≥ j+1
(i.e. no process is stuck at level j).
Let i be the last process that writes to y[j]. Therefore the old value of y[j] that corresponds
to the previous process k at level j is overwritten and we have y[j] = i. Hence the condition
y[j] 6= i cannot be true.
According to the algorithm,

– process k writes p[k] before it writes y[j]

– process i reads p[k] only after it wrote to y[j].

Therefore every time process i reads p[k], process k already set p[k] = j and for process i, the
second condition p[k] < j is not fulfilled either.
We assumed that process i enters level j +1. This yields a contradiction since it cannot leave
the wait–loop.

According to the idea of the algorithm, a process enters the critical section when it leaves the
wait–loop in level n− 1. As we proved, in level n− 1, there may only be n− (n− 1) = 1 processes
in levels ≥ (n− 1). Therefore we have the desired mutual exclusion property.

Solution of Exercise 2.2

1. Channel system of process i:
Pi

ci−→ Pi+1

Cap(ci) = 0

Behaviour of process i:

ci!i
ci−1?mi
do
:: mi > i =⇒ ci!mi; ci−1?mi

:: mi < i =⇒ ci−1?mi

od

2. .

Solution of Exercise 2.3

• The protocol is trivial: Each process informs the moderator of its unique identifier. In a second
round, the moderator sends messages to all processes that include the highest process identifier
received in the first round.

• In nanoPromela, this can be formalized as follows:

• The program graph of the moderator M and process Pi are:

The transitions above are defined by the inference rules for nanoPromela.
For example:

Solution of Exercise 2.4

1. let V ar = {running, idling, empty} where dom(x) = {true, false} ∀ x ∈ V ar
let Chan = {s} with cap(s) = 0, handshaking channel.

The initial condition
g0 ≡ running = false ∧ idling = true ∧ empty = true
≡ ¬running ∧ idling ∧ empty

Machine, Executor and Queue are modelled as follows:

(Executor: ”Task-taken” state is needed because it is not possible to execute with ”s?”
Queue: ”Emptying” state is needed because in Channel Systems the execution of a communication
is disjoint from the updating of variables)

2. The transition system resulting from the Channel System is the following:

where

• S = Standby

• R = Running

• I = Idling

• E = Executing

• [] = Empty

• E = Emptying

• T = Task-Taken

• i = idling

• r = running

• e = empty

• i = idling

• r = running

• e = empty

3. All the states in the generated TS have at least one outgoing transition, then there cannot be any
deadlock.

Solution of Exercise 2.5

1. There are no channels. The variables are k, b1, b2 with dom(x) = {1, 2}, dom(bi) = {true, false}
for all i ∈ {1, 2}.

The nano Promela code corresponding to the given algorithm is the following:

The code for P2 is symmetric, it can be obtained exchanging 1 with 2 and 2 with 1 in the code
above.

2. In general it is more convenient to use test − and − set semantics because it guarantees more
atomicity between the evaluation of guards and the execution of the relative guarded commands.
However, in this particular case, we can see that the atomicity between the guards k! = 2 and b2
with respect to the first basic command executable skip; is not influent at all in the behaviour of
the algorithm.
Thus, in this particular case, the choice between test − and − set or two − steps semantic is
irrelevant.

Solution of Exercise 2.6

1. TS(C1)

TS(C2)

2. TS(C2)⊗ TS(C2)

Solution of Exercise 2.7

1. The Controller non-deterministically initializes the variables x and y with all possible values (which
are 6 combinations). Then, it lets Monitor1 and Monitor2 start by communicating with channels
m1 and m2, respectively. Being these two actions independent and with no precedence between
each other, the correct way to express their “parallel” execution is through the diamond of the
two possible interleavings: first m1 and then m2 or first m2 and then m1. As we said in the text of
the exercise, we assume that no datum is passed through the channels m1 and m2 of capacity zero
(synchronization channels), expressed as m1! and m2!. The corresponding program graph is as follows

2. The program graph for Monitor1 is as follows

3. The program graph for Monitor2 is as follows

4. For the sake of readability we present the total transition system in pieces, one for each possible
initial assignment of the variables x and y. The part of the transition system for the assignment
x = 0 and y = 0 is as follows. All the transitions without a label are to be considered labelled with
τ , i.e. resulting on a synchronization through channel m1 or m2.

The part of the transition system for the assignment x = 0 and y = 1 is as follows. Again, all the
transitions without a label are to be considered labelled with τ , i.e. resulting from a synchronization
through channel m1 or m2.

The part of the transition system for the assignment x = 1 and y = 0 is as follows. Again, all the
transitions without a label are to be considered labelled with τ , i.e. resulting from a synchronization
through channel m1 or m2.

The part of the transition system for the assignment x = 1 and y = 1 is as follows. Again, all the
transitions without a label are to be considered labelled with τ , i.e. resulting from a synchronization
through channel m1 or m2.

The part of the transition system for the assignment x = 2 and y = 0 is as follows. Again, all the
transitions without a label are to be considered labelled with τ , i.e. resulting from a synchronization
through channel m1 or m2.

The part of the transition system for the assignment x = 2 and y = 1 is as follows. Again, all the
transitions without a label are to be considered labelled with τ , i.e. resulting from a synchronization
through channel m1 or m2.

5. Regarding the properties:

• Termination is FALSE because there are cycles, for instance between states (StopC,M1,M2, 1, 1)
and (StopC,M1,M2, 0, 0) in the part of the transition system for x = 0 and y = 0. The paths
that cycle forever between these two states produce traces that are not part of the termination
linear time property (properly defined putting self-loops on the terminated states), thus the
transition system does not satisfy the property.

• Confluence: is FALSE because there are cases in which two different terminal states are
reached starting from the same assignment, for instance in the case in which x = 0 and y = 1.

• Weak Termination: is TRUE, for instance when x = 0 and y = 0 the paths that do
not cycle forever between states (StopC,M1,M2, 1, 1) and (StopC,M1,M2, 0, 0) satisfy this
(branching-time) property.

• Weak Confluence: is TRUE, for instance when x = 0 and y = 0 only one terminal state can
be reached.

