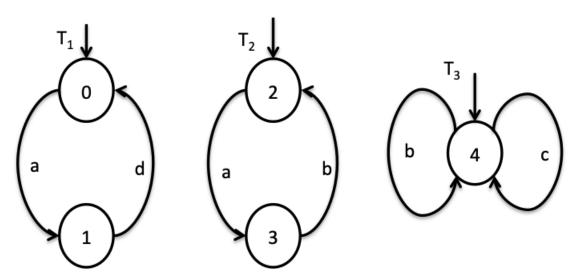
Master of Science in Computer Science - University of Camerino Systems Verification Lab A. Y. 2018/2019 Written Test of 28th June 2019 (Appello IV) Teacher: Luca Tesei

EXERCISE 1 (4 points)

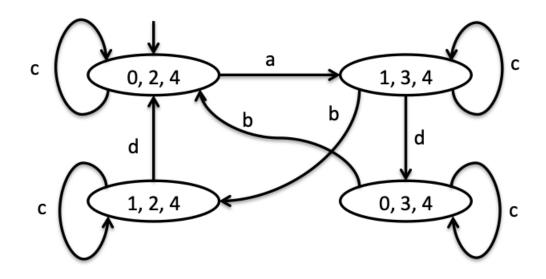
Consider the three following transition systems T_1 , T_2 and T_3 .



Draw the transition system resulting from their product using handshaking with the handshake action set $H = \{a, b\}$, i.e., $T_1 \|_{\{a,b\}} T_2 \|_{\{a,b\}} T_3$.

SOLUTION

The resulting transition system is the following one:



EXERCISE 2 (10 points)

Consider the alphabet $AP = \{A, B, C\}$ and the following linear time properties:

- (a) A holds at least twice
- (b) B holds infinitely many times and whenever B holds then also C holds

(c) Whenever A holds then B does not hold in the next step and whenever B holds then A does not hold in the next step

For each property:

- 1. formalise it using set expressions and first order logic;
- 2. formalise it in LTL (you can use the operators next, until, box and diamond, together with all boolean connectives);
- 3. tell if it is a safety, liveness or mixed property. In case it is a pure safety property provide an NFA for the language of the **minimal bad prefixes**.

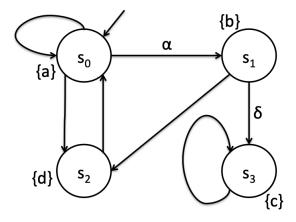
SOLUTION

EX2 a) A holds at least twice $1 - E_{2} = \left\{ X_{0} X_{1} \cdot - \in (2^{AP})^{W} \middle| \exists i \in \mathbb{N} \exists j \in \mathbb{N} : \right\}$ itj A AEXi A AEXj $2-LTL: (A \land O \land A)$ 3- This is a pure livenen property b) Bholds infinitely many times and whenever Bholds Hen also (holds. $1 - E_{L} = \left\{ X_{0} X_{1} \cdots \in (2^{Ap})^{Cu} \middle| \begin{array}{c} U \\ \exists i \in \mathbb{N} \\ \vdots \end{array} \right\} \\ B \in X_{i} \land A$ $\{\forall_{\mathcal{J}\mathcal{E}}|\mathcal{N}. \mathcal{B}\mathcal{E} \times_{\mathcal{J}} \rightarrow \mathcal{C}\mathcal{E} \times_{\mathcal{J}}\}$ 2-LTL: DQB1 DB-DC) 3- This is a mixed property. c) Whenever A holds then B does not hold in the next step and whenever B holds then A docs not hold in the heat step. 1- Ec= 1 XoX2 ... E(2AP) (ViEIN. AEX. -> B&XiII) ~ (VJEIN. BE XJ > A&XIII)

2- LTL $D(B \rightarrow O \neg A) \wedge (A \rightarrow O \neg B)$ 3 - This is a pure selety property, actually an invariant. An NFA accepting the language of minimal bad prefixes is the following: JANJB AA7B S1 TANTB Sa)ANTB BAZA 4 BNJA 5₂ ANB 7A17B AVB 53 7A~7B

EXERCISE 3 (10 points)

Consider the following transition system TS on $AP = \{a, b, c, d\}$.



Decide whether or not the following LTL formulas:

$$\varphi_0 = \Box \diamondsuit (a \lor c) \qquad \varphi_1 = (a \lor d) \mathcal{U} b$$

$$\varphi_2 = \Box (a \to \bigcirc (b \lor d)) \qquad \varphi_3 = \diamondsuit c$$

are satisfied by TS under the following fairness conditions (to be considered separately):

$$\begin{array}{l} \psi_0^{\text{fair}} = (\{\}, \{\}, \{\}) & \psi_1^{\text{fair}} = (\{\}, \{\{\alpha\}, \{\delta\}\}, \{\}) \\ \psi_2^{\text{fair}} = (\{\}, \{\}, \{\{\alpha\}, \{\delta\}\}) & \psi_3^{\text{fair}} = (\{\}, \{\{\alpha, \delta\}\}, \{\}) \end{array}$$

Justify your answers! In case the answer is no, provide a counterexample.

SOLUTION

EX3 Possible poth <u>SCHEMES</u> one: \overline{II}_2 : ... So put frace ... $2a_3^{CV}$ $\Pi_2: \bullet \bullet (S_0^{\dagger} S_2 S_0^{\dagger}) \text{ mp face } \bullet \bullet (\{e_1^{\dagger} \{d_2^{\dagger} \}_{e_1}^{\dagger})^{\omega}$ $\overline{11}_{2}: \cdot \cdot \cdot \left(\begin{array}{c} s_{0}^{\dagger} s_{2} \\ s_{0}^{\dagger} s_{2} \\ s_{0}^{\dagger} \\ s_{2} \\ s_{1} \\ s_{2} \\ s_{2} \\ s_{1} \\ s_{2} \\ s_{2} \\ s_{1} \\ s_{1} \\ s_{1} \\ s_{2} \\ s_{1} \\ s_{$ $Tig: \cdots s_3$ has trace $\cdots \{c\}^{\omega}$ Let us consider the different fairmen conditions. (1) to compty so all paths of sheres II2-2 are fiz (ptair has strong fairness on both & and S 20: - paths TIZ are not fair (fails strong fairness ou &) - paths TIZ are not fair (fails strong fairness ou &) - paths IIz are not foir (fails strag failmen ou d) - besthes TIG are fair Ytair has weak fairness on both 2 and of - paths TI2 are not foir (fails weak fairness on of) - poths TIZ are faiz (week foirmen ou & is not violeted because & is not

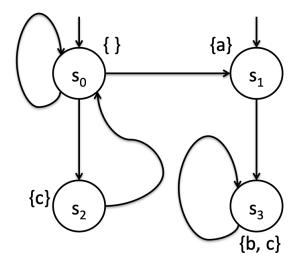
Continuosly enabled - poths II3 are fair (weak fairnen ou of does not feil because of is not continuously enabled) - boths IIG are foil yfair has strong foirmen on the set {d, 5} - paths Tiz one not foir (fails sf. on 12,5?) - paths Tiz one not fir (fails of on 12,5?) - paths II3 are not fair (fails st an 12,53) - paths IIG are foir Thus 4 fair and 4 fair in this example are equivalent. /____ courder now the formules. Let us Q: TS Fyfor DA (avc) because all the paths of TS have a or cinfinitely many times. TS F quiter qo because the paths TIG all have c infinitely many From SINCE Y foir = Upliz we have also TS F y foir Po

TS Fyfer 40 because beths Tize have all a on c infinitely noug times. $\varphi_1: (avd)Mb$ TS # y for 1/2 countrexample TIZ, which are fair $TS \models \varphi_{2}^{\#n} \quad \varphi_{2}$ because all the fair boths TTG have reached (b) (state S2) starting from state Sa and possibly passing through SZ; in both cases a v d is set isped AGAIN we have also TS Fyfer 92 TS # 4 foir 92 because loths TIZ are foir conterexamples: (sots2 sot) w (q = 1)(a -> O (bvd)) is a SAFETY Property, Herefore it is not affected by fairnen TS # 92 under aug of the four fairness assumptions.

a counter example is 5050... pro 203203... is a bod prefix $\varphi_3 = \varphi_c$ TS # yolan P3 because, for instance, paths II2 sue fair : So to put de) to a counterexample IS Eufor 23 because the only fair peths are Ttz and all of them sooher or Eter have 'C' Thus, also TS = yper y3 TS # 4 foir 93 because fooths TIZ are foir. Counterexample: $(S_0^{\dagger}S_z S_0^{\dagger})^{\omega} \mapsto (\gamma_0 S_0^{\dagger} \gamma_0 S_0^{\dagger})^{\omega}$

EXERCISE 4 (8 points)

Consider the following transition system TS on $AP = \{a, b, c\}$.



Decide whether or not the following CTL formulas:

$$\begin{aligned} \phi_0 &= \forall \diamondsuit c \qquad \phi_1 = \exists \Box (\exists \bigcirc a) \\ \phi_2 &= \forall \Box (c \to \exists \diamondsuit b) \qquad \phi_3 = \forall \Box (c \to \forall \diamondsuit b) \end{aligned}$$

are satisfied by $TS.\,$ Justify your answers! When possible, provide a counterexample or a witness.

SOLUTION

 $EXG | \phi_0 = \forall GC$ TS # Vara a counteressample is. So Si Si this path never reacter 5. 52 52 50/ $\phi_1 = \exists D (\exists O \circ)$ $TS \models \phi_1$ a witner is path so So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow So \rightarrow $\phi_{z} = \forall D (c \rightarrow \exists \diamond b)$ $TS \models p_2$ This is an invariant.

c holds in state Sz and in state 53 · in state 53 b is reached immediately. · from state S2 there is the path $S_2 \rightarrow S_0 \rightarrow S_2 \rightarrow S_3 - - -$ 103 153 From initial state so both Sz and Sz con be reached; if they are not reached the implication C-D JQG is trivially satisfied, if they are reached a path to b' can always be found. From initial state sz only state sz can be reached and similar considerations apply. $\phi_3 = \forall \Box (C \rightarrow \forall \Diamond b)$ a Counterexample is Ts $\# \phi_3$