LTL Syntax and Semantics

Luca Tesei
Reactive Systems Verification
MSc in Computer Science
University of Camerino

Topics

- Syntax of Linear Time Logic (LTL). Basic and derived operators. Examples.
- Semantics of LTL: satisfaction of a formula by an infinite word. Examples.
- Semantics of LTL: satisfaction of a formula by a maximal path fragment of a transition system. Examples.
- Semantics of LTL: satisfaction of a formula by a transition system.
- Exercises on LTL formula semantics and satisfaction relations.

Material

Reading:

Chapter 5 of the book, Sections 5.1.1, 5.1.2, 5.1.3

More:

The slides in the following pages are taken from the material of the course "Introduction to Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic
Equivalences and Abstraction

Temporal logics

extend propositional or predicate logic by temporal modalities

Temporal logics

extend propositional or predicate logic by temporal modalities, e.g.
$\square \varphi \quad$ " φ holds always", i.e., now and forever in the future
$\Delta \varphi \quad$ " φ holds now or eventually in the future"

Temporal logics

extend propositional or predicate logic by
temporal modalities, e.g.
$\square \varphi \quad$ " φ holds always", i.e., now and forever in the future
$\Delta \varphi \quad$ " φ holds now or eventually in the future"
here: two propositional temporal logics:
LTL: linear temporal logic
CTL: computation tree logic

Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
syntax and semantics of LTL automata-based LTL model checking complexity of LTL model checking
Computation-Tree Logic
Equivalences and Abstraction

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL)

$$
\varphi::=\text { true }|a| \varphi_{1} \wedge \varphi_{2} \mid \neg \varphi
$$

where $a \in A P$

Linear Temporal Logic (LTL)

$$
\varphi::=\text { true }|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi
$$

where $a \in A P \quad O \hat{=}$ next

Linear Temporal Logic (LTL)

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \cup \varphi_{2}
$$

where $a \in A P \quad O \hat{=}$ next $\quad \mathbf{U} \hat{=}$ until

Linear Temporal Logic (LTL)

$$
\varphi::=\text { true }|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \cup \varphi_{2}
$$

where $a \in A P \quad O$ 人

atomic
proposition
$a \in A P$
a

Linear Temporal Logic (LTL)

$$
\varphi::=\text { true } \mid \text { a }\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
$$

where $a \in A P \quad O$ 人

atomic
proposition $a \in A P$

next operator ○a

Linear Temporal Logic (LTL)

$$
\varphi::=\text { true }|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \cup \varphi_{2}
$$

where $a \in A P \quad O$ 人 next U 人 until

atomic
proposition
$a \in A P$
a
next operator ○a

until operator $a \cup b$

Derived operators in LTL

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

derived operators:
$\vee, \rightarrow, \ldots$ as usual

Derived operators in LTL

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

derived operators:
$\Delta \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathbf{U} \varphi$ eventually $\vee, \rightarrow, \ldots$ as usual

Derived operators in LTL

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

derived operators:
$\diamond \varphi \stackrel{\text { def }}{=} \operatorname{true} U \varphi$ eventually $\mathrm{V}, \rightarrow, \ldots$ as usual

eventually
b $\diamond b$

Derived operators in LTL

$$
\varphi::=\text { true }|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

derived operators:
$\mathrm{V}, \rightarrow, \ldots$ as usual
$\diamond \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathrm{U} \varphi$ eventually
$\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi \quad$ always
until operator $a \cup b$

eventually
b
$\diamond b$
 always
$\square a$

Next \bigcirc, until U and eventually \diamond

\square (try_to_send $\rightarrow \bigcirc$ delivered)

Next \bigcirc, until U and eventually \diamond

\square (try_to_send \rightarrow try_to_send \mathbf{U} delivered)

Next \bigcirc, until U and eventually \diamond

\square (try_to_send \rightarrow try_to_send \mathbf{U} delivered)

\square (try_to_send $\rightarrow \diamond$ delivered)

Examples for LTL formulas

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

eventually
$\Delta \varphi \stackrel{\text { def }}{=} \operatorname{true} U \varphi$
always
$\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$

Examples for LTL formulas

$\varphi::=$ true $|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}$

eventually
$\Delta \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathrm{U} \varphi$
always
$\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$

Examples for LTL formulas: mutual exclusion: $\square\left(\neg\right.$ crit $_{1} \vee \neg$ crit $\left._{2}\right)$

Examples for LTL formulas

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

eventually
$\Delta \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathrm{U} \varphi$
always
$\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$

Examples for LTL formulas: mutual exclusion: $\square\left(\neg\right.$ crit $_{1} \vee \neg$ crit $\left._{2}\right)$ railroad-crossing: \square (train_is_near \rightarrow gate_is_closed)

Examples for LTL formulas

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

eventually
$\Delta \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathrm{U} \varphi$
always
$\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$

Examples for LTL formulas: mutual exclusion: $\square\left(\neg\right.$ crit $_{1} \vee \neg$ crit $\left._{2}\right)$ railroad-crossing: \square (train_is_near \rightarrow gate_is_closed) progress property: \square (request \rightarrow ©response)

Examples for LTL formulas

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

eventually
$\Delta \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathrm{U} \varphi$
always
$\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$

Examples for LTL formulas: mutual exclusion: $\square\left(\neg\right.$ crit $_{1} \vee \neg$ crit $\left._{2}\right)$ railroad-crossing: \square (train_is_near \rightarrow gate_is_closed) progress property: \square (request \rightarrow ©response) traffic light:
$\square($ yellow $\vee \bigcirc \neg r e d)$

Infinitely often and eventually forever

$$
\varphi::=\text { true }|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

eventually $\diamond \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathrm{U} \varphi$
always $\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$

Infinitely often and eventually forever

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

eventually $\Delta \varphi \stackrel{\text { def }}{=}$ true $U \varphi$
always $\quad \square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$ infinitely often $\quad \square \Delta \varphi$

Infinitely often and eventually forever

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

eventually $\Delta \varphi \stackrel{\text { def }}{=} \operatorname{true} U \varphi$
always $\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$ infinitely often $\quad \square \Delta \varphi$
e.g., unconditional fairness $\square \diamond$ crit $_{i}$ strong fairness $\quad \square \diamond$ wait $_{i} \rightarrow \square \diamond$ crit $_{i}$

Infinitely often and eventually forever

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

eventually $\Delta \varphi \stackrel{\text { def }}{=} \operatorname{true} U \varphi$
always $\square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi$
infinitely often $\quad \square \diamond \varphi$
eventually forever $\diamond \square \varphi$
e.g., unconditional fairness $\square \diamond$ crit $_{i}$
strong fairness $\quad \square \diamond$ wait $_{i} \rightarrow \square \diamond$ crit $_{i}$
weak fairness
$\diamond \square$ wait $_{i} \rightarrow \square \diamond$ crit $_{i}$

LTL-semantics

LTL-semantics

interpretation of LTL formulas over traces, i.e., infinite words over $2^{A P}$
interpretation of LTL formulas over traces, i.e., infinite words over $2^{A P}$
formalized by a satisfaction relation \vDash for

- LTL formulas and
- infinite words $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$

Semantics of LTL over infinite words

for $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$:

Semantics of LTL over infinite words

$$
\text { for } \sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}:
$$

$$
\sigma \models \text { true }
$$

Semantics of LTL over infinite words

$$
\begin{aligned}
& \text { for } \sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}: \\
& \begin{array}{l}
\sigma \models \text { true } \\
\sigma \models a \quad \text { iff } \quad A_{0} \models a \text {,i.e., } a \in A_{0}
\end{array}
\end{aligned}
$$

Semantics of LTL over infinite words

$$
\text { for } \sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}:
$$

$\sigma \models$ true
$\sigma \models a \quad$ iff $\quad A_{0} \models a$,i.e., $a \in A_{0}$
$\sigma \models \varphi_{1} \wedge \varphi_{2} \quad$ iff $\quad \sigma \models \varphi_{1}$ and $\sigma \models \varphi_{2}$

Semantics of LTL over infinite words

$$
\text { for } \sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}:
$$

$\sigma \models$ true
$\sigma \models a \quad$ iff $\quad A_{0} \models a$,i.e., $a \in A_{0}$
$\sigma \models \varphi_{1} \wedge \varphi_{2} \quad$ iff $\quad \sigma \models \varphi_{1}$ and $\sigma \models \varphi_{2}$
$\sigma \models \neg \varphi \quad$ iff $\sigma \not \models \varphi$

Semantics of LTL over infinite words

$$
\text { for } \sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}:
$$

$\sigma \models$ true
$\sigma \models a \quad$ iff $\quad A_{0} \models a$,i.e., $a \in A_{0}$
$\sigma \models \varphi_{1} \wedge \varphi_{2} \quad$ iff $\quad \sigma \models \varphi_{1}$ and $\sigma \models \varphi_{2}$
$\sigma \models \neg \varphi \quad$ iff $\sigma \notin \varphi$
$\sigma \models \bigcirc \varphi$
iff $\operatorname{suffix}(\sigma, 1)=A_{1} A_{2} A_{3} \ldots \models \varphi$

Semantics of LTL over infinite words

for $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$:
$\sigma \models$ true
$\sigma \models a \quad$ iff $\quad A_{0} \models a$,ie., $a \in A_{0}$
$\sigma \models \varphi_{1} \wedge \varphi_{2} \quad$ iff $\quad \sigma \models \varphi_{1}$ and $\sigma \models \varphi_{2}$
$\sigma \models \neg \varphi \quad$ iff $\sigma \notin \varphi$
$\sigma \models \bigcirc \varphi \quad$ iff $\operatorname{suffix}(\sigma, 1)=A_{1} A_{2} A_{3} \ldots \models \varphi$
$\sigma \models \varphi_{1} \mathrm{U} \varphi_{2} \quad$ iff there exists $j \geq 0$ such that $\operatorname{suffix}(\sigma, j)=\boldsymbol{A}_{j} \boldsymbol{A}_{j+1} \boldsymbol{A}_{j+2} \ldots \models \varphi_{2} \quad$ and $\operatorname{suffix}(\sigma, i)=A_{i} A_{i+1} A_{i+2} \ldots \models \varphi_{1} \quad$ for $0 \leq i<j$

Semantics of LTL over infinite words

for $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$:
$\sigma \models$ true
$\sigma \models a \quad$ iff $\quad A_{0} \models a$,ie., $a \in A_{0}$
$\sigma \models \varphi_{1} \wedge \varphi_{2} \quad$ iff $\quad \sigma \models \varphi_{1}$ and $\sigma \models \varphi_{2}$
$\sigma \models \neg \varphi \quad$ iff $\sigma \not \models \varphi$
$\sigma \models \bigcirc \varphi \quad$ iff $\operatorname{suffix}(\sigma, 1)=A_{1} A_{2} A_{3} \ldots \models \varphi$
$\sigma \models \varphi_{1} \cup \varphi_{2} \quad$ ff there exists $j \geq 0$ such that $\operatorname{suffix}(\sigma, j)=\boldsymbol{A}_{j} \boldsymbol{A}_{j+1} \boldsymbol{A}_{j+2} \ldots \models \varphi_{2} \quad$ and $\operatorname{suffix}(\sigma, i)=A_{i} A_{i+1} A_{i+2} \ldots \models \varphi_{1} \quad$ for $0 \leq i<j$

LT property of LTL formulas

interpretation of LTL formulas over traces, i.e., infinite words over $2^{A P}$
formalized by a satisfaction relation \vDash for

- LTL formulas and
- infinite words $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$
interpretation of LTL formulas over traces, i.e., infinite words over $2^{A P}$
formalized by a satisfaction relation \vDash for
- LTL formulas and
- infinite words $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$

LT property of formula φ :

$$
W \operatorname{lords}(\varphi) \stackrel{\text { def }}{=}\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \sigma \models \varphi\right\}
$$

LTL-semantics of derived operators \diamond and \square

$$
\text { for } \sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}:
$$

$\sigma \models \varphi_{1} \mathbf{U} \varphi_{2}$ of there exists $\boldsymbol{j} \geq \mathbf{0}$ such that

$$
\begin{array}{ll}
A_{j} A_{j+1} A_{j+2} \ldots=\varphi_{2} & \text { and } \\
A_{i} A_{i+1} A_{i+2} \ldots=\varphi_{1} & \text { for } 0 \leq i<j
\end{array}
$$

LTL-semantics of derived operators \diamond and \square

$$
\text { for } \sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}:
$$

$\sigma \models \varphi_{1} \mathbf{U} \varphi_{2}$ iff there exists $\boldsymbol{j} \geq \mathbf{0}$ such that

$$
\begin{array}{ll}
A_{j} A_{j+1} A_{j+2} \ldots=\varphi_{2} & \text { and } \\
A_{i} A_{i+1} A_{i+2} \ldots=\varphi_{1} & \text { for } 0 \leq i<j
\end{array}
$$

$\sigma \models \diamond \varphi \quad$ iff there exists $\boldsymbol{j} \geq 0$ such that

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

LTL-semantics of derived operators \diamond and \square

$$
\text { for } \sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \text { : }
$$

$\sigma \models \varphi_{1} \mathbf{U} \varphi_{2}$ iff there exists $\boldsymbol{j} \geq \mathbf{0}$ such that

$$
\begin{aligned}
& A_{j} A_{j+1} A_{j+2} \ldots=\varphi_{2} \quad \text { and } \\
& A_{i} A_{i+1} A_{i+2} \ldots=\varphi_{1} \quad \text { for } 0 \leq i<j
\end{aligned}
$$

$\sigma \models \diamond \varphi \quad$ iff there exists $\boldsymbol{j} \geq 0$ such that

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

$\sigma \models \square \varphi \quad$ iff for all $\mathbf{j} \geq \mathbf{0}$ we have:

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

LTL semantics over TS

given a TS $\mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$
define satisfaction relation \models for

- LTL formulas over AP
- the maximal path fragments and states of \mathcal{T}

LTL semantics over TS

given a TS $\mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$
define satisfaction relation \models for

- LTL formulas over $A P$
- the maximal path fragments and states of \mathcal{T}
assumption: \mathcal{T} has no terminal states, i.e., all maximal path fragments in \mathcal{T} are infinite

LTL semantics over paths of TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$

LTL semantics over paths of TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$
interpretation of φ over infinite path fragments

$$
\pi=s_{0} s_{1} s_{2} \ldots \models \varphi \text { iff } \quad \operatorname{trace}(\pi) \models \varphi
$$

LTL semantics over paths of TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$
interpretation of φ over infinite path fragments

$$
\begin{array}{ll}
\pi=s_{0} s_{1} s_{2} \ldots \models \varphi & \text { iff } \quad \operatorname{trace}(\pi) \models \varphi \\
& \text { iff } \operatorname{trace}(\pi) \in \operatorname{Words}(\varphi)
\end{array}
$$

LTL semantics over paths of TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$
interpretation of φ over infinite path fragments

$$
\begin{array}{ll}
\pi=s_{0} s_{1} s_{2} \ldots \models \varphi & \text { iff } \quad \operatorname{trace}(\pi) \models \varphi \\
& \text { iff } \operatorname{trace}(\pi) \in \operatorname{Words}(\varphi)
\end{array}
$$

remind: LT property of an LTL formula:

$$
W \operatorname{ords}(\varphi)=\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \sigma \models \varphi\right\}
$$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$
$\pi \models a$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\pi \vDash a$, but $\pi \not \models b \quad$ as $L\left(s_{0}\right)=\{a\}$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\pi \vDash a$, but $\pi \not \models b \quad$ as $L\left(s_{0}\right)=\{a\}$
$\pi \vDash \bigcirc(\neg a \wedge \neg b)$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\pi \vDash a$, but $\pi \not \models b$
as $L\left(s_{0}\right)=\{a\}$
$\pi \vDash \bigcirc(\neg a \wedge \neg b)$
as $L\left(s_{1}\right)=\varnothing$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\pi \vDash a$, but $\pi \not \models b$
as $L\left(s_{0}\right)=\{a\}$
$\pi \vDash \bigcirc(\neg a \wedge \neg b)$
as $L\left(s_{1}\right)=\varnothing$
$\pi \vDash \bigcirc \bigcirc(a \wedge b)$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\pi \vDash a$, but $\pi \not \models b$
as $L\left(s_{0}\right)=\{a\}$
$\pi \vDash \bigcirc(\neg a \wedge \neg b)$
as $L\left(s_{1}\right)=\varnothing$
$\pi \vDash \bigcirc \bigcirc(a \wedge b)$
as $L\left(s_{2}\right)=\{a, b\}$

Example: LTL-semantics over paths

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\pi \models a$, but $\pi \not \vDash b$
as $L\left(s_{0}\right)=\{a\}$
$\pi \models \bigcirc(\neg a \wedge \neg b)$
as $L\left(s_{1}\right)=\varnothing$
$\pi \vDash \bigcirc \bigcirc(a \wedge b)$
as $L\left(s_{2}\right)=\{a, b\}$
$\pi \vDash(\neg b) \cup(a \wedge b)$

Example: LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\pi \models a$, but $\pi \not \vDash b$
as $L\left(s_{0}\right)=\{a\}$
$\pi \models \bigcirc(\neg a \wedge \neg b)$
as $L\left(s_{1}\right)=\varnothing$
$\pi \vDash \bigcirc \bigcirc(a \wedge b)$
as $L\left(s_{2}\right)=\{a, b\}$
$\pi \vDash(\neg b) \cup(a \wedge b)$
as $s_{0}, s_{1} \models \neg b$
and $s_{2} \models a \wedge b$

Example: LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\pi \models a$, but $\pi \not \vDash b$
as $L\left(s_{0}\right)=\{a\}$
$\pi \models \bigcirc(\neg a \wedge \neg b)$
as $L\left(s_{1}\right)=\varnothing$
$\pi \vDash \bigcirc \bigcirc(a \wedge b)$
as $L\left(s_{2}\right)=\{a, b\}$
$\pi \vDash(\neg b) \cup(a \wedge b)$
as $s_{0}, s_{1} \models \neg b$
$\pi \models(\neg b) \cup \square(a \wedge b)$
and $s_{2} \models a \wedge b$

Correct or wrong ?

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots$

Correct or wrong ?

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots$

$$
A P=\{a, b\}
$$

$\operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$

Correct or wrong ?

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots$

$$
A P=\{a, b\}
$$

$\pi \vDash a \mathbf{U} b ?$

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \notin a \mathbf{U} b$
as $\boldsymbol{s}_{0} \not \models b$ and $s_{1} \not \models \boldsymbol{a} \vee b$

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots$ $\operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \not \vDash \boldsymbol{a} \mathbf{U} b \quad$ as $\boldsymbol{s}_{0} \not \models \boldsymbol{b}$ and $s_{1} \not \models \boldsymbol{a} \vee \boldsymbol{b}$ $\pi \vDash \diamond b \rightarrow(a \cup b) ?$

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \notin a \mathbf{U} b$
as $s_{0} \not \models b$ and $s_{1} \notin a \vee b$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \vDash \diamond b$

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \notin a \mathbf{U} b$
as $s_{0} \not \models b$ and $s_{1} \notin a \vee b$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \vDash \diamond b$
$\pi \models \bigcirc \bigcirc \neg b$?

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \not \vDash \boldsymbol{a} \mathbf{U} b \quad$ as $\boldsymbol{s}_{0} \not \models \boldsymbol{b}$ and $s_{1} \not \models \boldsymbol{a} \vee \boldsymbol{b}$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \vDash \diamond b$
$\pi \models \bigcirc \bigcirc \neg b \quad$ as $s_{0} \models \neg b$

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \notin a \mathbf{U} b$
as $s_{0} \not \models b$ and $s_{1} \notin a \vee b$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \models \diamond b$
$\pi \models \bigcirc \bigcirc \neg b$
$\pi \vDash \square a$?

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \not \vDash \boldsymbol{a} \mathbf{U} b \quad$ as $\boldsymbol{s}_{0} \not \models \boldsymbol{b}$ and $s_{1} \not \models \boldsymbol{a} \vee \boldsymbol{b}$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \vDash \diamond b$
$\pi \models \bigcirc \bigcirc \neg b \quad$ as $s_{0} \models \neg b$
$\pi \not \vDash \square a$

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \not \vDash \boldsymbol{a} \mathbf{U} b \quad$ as $\boldsymbol{s}_{0} \not \models \boldsymbol{b}$ and $s_{1} \not \models \boldsymbol{a} \vee \boldsymbol{b}$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \vDash \diamond b$
$\pi \models \bigcirc \bigcirc \neg b \quad$ as $s_{0} \models \neg b$
$\pi \not \vDash \square a$ as $s_{1} \not \vDash a$
$\pi \models \square \diamond \mathbf{a} ?$

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

$$
\text { path } \pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}
$$

as $s_{0} \not \vDash b$ and $s_{1} \notin \boldsymbol{a} \vee b$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \vDash \diamond b$
$\pi \models \bigcirc \bigcirc \neg b \quad$ as $s_{0} \models \neg b$
$\pi \not \vDash \square a$
as $s_{1} \not \vDash=a$
as $\square \diamond \widehat{=}$ infinitely often

Correct or wrong ?

LTLSF3.1-7

$$
\{a\} \quad \varnothing \quad\{a, b\}
$$

$$
A P=\{a, b\}
$$

path $\pi=s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots \quad \operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \vDash \diamond b$
$\pi \models \bigcirc \bigcirc \neg b$
as $s_{0} \models \neg b$
$\pi \not \vDash \square a$
as $s_{1} \not \vDash a$
as $\square \diamond \widehat{=}$ infinitely often

Correct or wrong ?

LTLSF3.1-7

$$
A P=\{a, b\}
$$

$$
\{a\} \quad \varnothing \quad\{a, b\}
$$

$\operatorname{trace}(\pi)=(\{a\} \varnothing)^{\omega}$
$\pi \not \vDash a \mathbf{U} b$
as $s_{0} \not \vDash b$ and $s_{1} \notin \boldsymbol{a} \vee b$
$\pi \models \diamond b \rightarrow(a \cup b) \quad$ as $\pi \not \vDash \diamond b$
$\pi \models \bigcirc \bigcirc \neg b$
$\pi \not \vDash \square a$
$\pi \models \square \diamond a$
$\pi \not \models \diamond \square a$
as $s_{0} \models \neg b$
as $s_{1} \not \vDash a$
as $\square \diamond \widehat{=}$ infinitely often
as $\diamond \square \widehat{=}$ eventually forever

LTL-semantics of derived operators

for $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$:

LTL-semantics of derived operators

for $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$:
$\sigma \models \diamond \varphi \quad$ iff there exists $\boldsymbol{j} \geq 0$ such that

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

$\boldsymbol{\sigma} \vDash \square \varphi \quad$ iff for all $\mathbf{j} \geq \mathbf{0}$ we have:

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

LTL-semantics of derived operators

for $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$:
$\sigma \models \diamond \varphi \quad$ iff there exists $\boldsymbol{j} \geq 0$ such that
$A_{j} A_{j+1} A_{j+2} \ldots \models \varphi$
$\boldsymbol{\sigma} \vDash \square \varphi \quad$ iff for all $\mathbf{j} \geq \mathbf{0}$ we have:

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

$\sigma \models \square \Delta \varphi$ iff there are infinitely many $\mathrm{j} \geq 0$ s.t.
$A_{j} A_{j+1} A_{j+2} \ldots \models \varphi$

LTL-semantics of derived operators

for $\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$:
$\sigma \models \diamond \varphi \quad$ iff \quad there exists $\boldsymbol{j} \geq 0$ such that
$A_{j} A_{j+1} A_{j+2} \ldots \models \varphi$
$\boldsymbol{\sigma} \vDash \square \varphi \quad$ iff for all $\mathbf{j} \geq \mathbf{0}$ we have:

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

$\sigma \models \square \Delta \varphi$ iff there are infinitely many $\mathrm{j} \geq 0$ st.

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

$\sigma \models \diamond \square \varphi$ if for almost all $\mathbf{j} \geq \mathbf{0}$ we have:

$$
A_{j} A_{j+1} A_{j+2} \ldots \models \varphi
$$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots \quad \operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\pi \vDash \bigcirc((\neg a \wedge \neg b) \cup(a \wedge b)) \quad ?
$$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\left.\left.\begin{array}{rl}
\pi \models \bigcirc((\neg a \wedge \neg b) \cup(a \wedge b)) & \text { as } s_{1}
\end{array}\right) \neg a \wedge \neg b\right)
$$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\begin{aligned}
& \pi \models \bigcirc((\neg a \wedge \neg b) \cup(a \wedge b)) \text { as } s_{1} \\
& \models \neg a \wedge \neg b \\
& s_{2} \models a \wedge b
\end{aligned}
$$

$\pi \vDash \bigcirc \square(a \leftrightarrow b) ?$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\begin{aligned}
& \pi \models \bigcirc((\neg a \wedge \neg b) \mathrm{U}(a \wedge b)) \text { as } s_{1} \models \neg a \wedge \neg b \\
& s_{2} \models a \wedge b \\
& \pi \models \bigcirc \square(a \leftrightarrow b) \\
& \text { as } s_{1}, s_{2} \models \boldsymbol{a} \leftrightarrow \boldsymbol{b}
\end{aligned}
$$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\begin{aligned}
& \pi \models \bigcirc((\neg a \wedge \neg b) \mathrm{U}(a \wedge b)) \text { as } s_{1} \models \neg a \wedge \neg b \\
& s_{2} \models a \wedge b \\
& \pi \models \bigcirc \square(a \leftrightarrow b) \\
& \text { as } s_{1}, s_{2} \models \boldsymbol{a} \leftrightarrow \boldsymbol{b} \\
& \pi \vDash a \mathrm{U}(\neg b \mathrm{U} a) \text { ? }
\end{aligned}
$$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\begin{array}{ll}
\pi \models \bigcirc((\neg a \wedge \neg b) \mathrm{U}(a \wedge b)) & \text { as } s_{1} \models \neg a \wedge \neg b \\
s_{2} \models a \wedge b \\
\pi \models \bigcirc \square(a \leftrightarrow b) & \text { as } s_{1}, s_{2} \models a \leftrightarrow b \\
\pi \models a \mathrm{U}(\neg b \mathrm{U} a) & \text { as } s_{0}, s_{2} \models a, s_{1} \models \neg b
\end{array}
$$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots$
$\operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\begin{array}{rlrl}
\pi & \vDash \bigcirc((\neg a \wedge \neg b) \cup(a \wedge b)) & \text { as } s_{1} & \models \neg a \wedge \neg b \\
s_{2} & \models a \wedge b
\end{array}
$$

$\pi \models \bigcirc \square(a \leftrightarrow b)$
as $s_{1}, s_{2} \models a \leftrightarrow b$
$\pi \vDash a \mathrm{U}(\neg b \mathrm{U} a)$ as $\boldsymbol{s}_{0}, \boldsymbol{s}_{2} \models \boldsymbol{a}, \boldsymbol{s}_{1} \models \neg b$
$\pi \models \diamond \square(\neg a \rightarrow \diamond \neg b) ?$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots \quad \operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\begin{array}{ll}
\pi & \vDash O((\neg a \wedge \neg b) \cup(a \wedge b)) \\
& \text { as } s_{1} \models \neg a \wedge \neg b \\
& s_{2} \models a \wedge b \\
\pi \models ○ \square(a \leftrightarrow b) & \text { as } s_{1}, s_{2} \models a \leftrightarrow b \\
\pi \models a \cup(\neg b \cup a) & \text { as } s_{0}, s_{2} \models a, s_{1} \models \neg b \\
\pi \models \diamond \square(\neg a \rightarrow \diamond \neg b) & \text { as } s_{2} s_{2} s_{2} \ldots \models \neg a \rightarrow \diamond \neg b
\end{array}
$$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots \quad \operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\begin{array}{ll}
\pi \vDash \bigcirc((\neg a \wedge \neg b) \mathrm{U}(a \wedge b)) & \text { as } s_{1} \models \neg a \wedge \neg b \\
s_{2} \models a \wedge b \\
\pi \vDash \bigcirc \square(a \leftrightarrow b) & \text { as } s_{1}, s_{2} \vDash a \leftrightarrow b \\
\pi \vDash a \mathrm{~V}(\neg b \cup a) & \text { as } s_{0}, s_{2} \vDash a, s_{1} \models \neg b \\
\pi \vDash \diamond \square(\neg a \rightarrow \diamond \neg b) & \text { as } s_{2} s_{2} s_{2} \ldots \vDash \neg a \rightarrow \diamond \neg b \\
\pi \vDash \square(\neg b \rightarrow \bigcirc a) ? & \\
\hline
\end{array}
$$

LTL-semantics over paths

path $\pi=s_{0} s_{1} s_{2} s_{2} s_{2} s_{2} \ldots \quad \operatorname{trace}(\pi)=\{a\} \varnothing\{a, b\}^{\omega}$

$$
\begin{aligned}
& \pi \vDash O((\neg a \wedge \neg b) U(a \wedge b)) \text { as } s_{1} \models \neg a \wedge \neg b \\
& s_{2} \vDash a \wedge b \\
& \pi \vDash \bigcirc \square(a \leftrightarrow b) \\
& \pi \vDash a \mathrm{U}(\neg b \mathrm{U} a) \\
& \pi \vDash \diamond \square(\neg a \rightarrow \diamond \neg b) \\
& \pi \not \vDash \square(\neg b \rightarrow \bigcirc a) \\
& \text { as } s_{0} \vDash \neg b, s_{1} \not \models \boldsymbol{a}
\end{aligned}
$$

LTL semantics over the states of a TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$
interpretation of φ over infinite path fragments

$$
\pi=s_{0} s_{1} s_{2} \ldots \models \varphi \quad \text { iff } \quad \operatorname{trace}(\pi) \models \varphi
$$

interpretation of φ over states:
$s \models \varphi$ iff $\quad \operatorname{trace}(\pi) \models \varphi$ for all $\pi \in \operatorname{Paths}(s)$

LTL semantics over the states of a TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$
interpretation of φ over infinite path fragments

$$
\pi=s_{0} s_{1} s_{2} \ldots \models \varphi \quad \text { iff } \quad \operatorname{trace}(\pi) \models \varphi
$$

interpretation of φ over states:
$s \models \varphi$ iff $\quad \operatorname{trace}(\pi) \models \varphi$ for all $\pi \in \operatorname{Paths}(s)$
iff $\boldsymbol{s} \models \operatorname{Words}(\varphi)$

LTL semantics over the states of a TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$
without terminal states
LTL formula φ over $\boldsymbol{A P}$
interpretation of φ over infinite path fragments

$$
\pi=s_{0} s_{1} s_{2} \ldots \models \varphi \quad \text { iff } \quad \operatorname{trace}(\pi) \models \varphi
$$

interpretation of φ over states:
$s \models \varphi$ iff $\quad \operatorname{trace}(\pi) \models \varphi$ for all $\pi \in \operatorname{Paths}(s)$
iff $\boldsymbol{s} \models \operatorname{Words}(\varphi)$
satisfaction relation for LT properties

LTL semantics over the states of a TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$
interpretation of φ over infinite path fragments

$$
\pi=s_{0} s_{1} s_{2} \ldots \models \varphi \quad \text { iff } \quad \operatorname{trace}(\pi) \models \varphi
$$

interpretation of φ over states:
$s \models \varphi$ iff $\quad \operatorname{trace}(\pi) \models \varphi$ for all $\pi \in \operatorname{Paths}(s)$
iff $\boldsymbol{s} \models \operatorname{Words}(\varphi)$
iff $\operatorname{Traces}(s) \subseteq \operatorname{Words}(\varphi)$

Interpretation of LTL formulas over TS

Interpretation of LTL formulas over TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$

$$
\mathcal{T} \models \varphi \text { iff } s_{0} \models \varphi \text { for all } s_{0} \in S_{0}
$$

Interpretation of LTL formulas over TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$

$$
\begin{array}{lll}
\mathcal{T} \models \varphi & \text { iff } & s_{0} \models \varphi \text { for all } s_{0} \in S_{0} \\
& \text { iff } & \operatorname{trace}(\pi) \models \varphi \text { for all } \pi \in \operatorname{Paths}(\mathcal{T})
\end{array}
$$

Interpretation of LTL formulas over TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$

$$
\begin{array}{lll}
\mathcal{T} \models \varphi & \text { iff } & s_{0} \models \varphi \text { for all } s_{0} \in S_{0} \\
& \text { iff } \operatorname{trace}(\pi) \models \varphi \text { for all } \pi \in \operatorname{Paths}(\mathcal{T}) \\
& \text { iff } & \operatorname{Traces}(\mathcal{T}) \subseteq W \operatorname{Words}(\varphi)
\end{array}
$$

Interpretation of LTL formulas over TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$
$\mathcal{T} \models \varphi \quad$ iff $\quad s_{0} \models \varphi$ for all $s_{0} \in S_{0}$
iff $\operatorname{trace}(\pi) \models \varphi$ for all $\pi \in \operatorname{Paths}(\mathcal{T})$
iff $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$
iff $\mathcal{T} \models \operatorname{Words}(\varphi)$

Interpretation of LTL formulas over TS

given: $\mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ without terminal states

LTL formula φ over $\boldsymbol{A P}$
$\mathcal{T} \models \varphi \quad$ iff $\quad s_{0} \models \varphi$ for all $s_{0} \in S_{0}$
iff $\operatorname{trace}(\pi) \models \varphi$ for all $\pi \in \operatorname{Paths}(\mathcal{T})$
iff $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$ iff $\mathcal{T} \models \operatorname{Words}(\varphi)$
satisfaction relation for LT properties

$$
A P=\{a, b\}
$$

$$
A P=\{a, b\}
$$

$\mathcal{T} \vDash a$

$$
A P=\{a, b\}
$$

$$
\mathcal{T} \vDash a
$$

$$
\text { as } s_{0} \models \boldsymbol{a} \text { and } s_{2} \models \boldsymbol{a}
$$

$$
A P=\{a, b\}
$$

$$
\mathcal{T} \vDash a
$$

$$
\text { as } s_{0} \models \boldsymbol{a} \text { and } s_{2} \models \boldsymbol{a}
$$

$\tau \vDash \diamond \square a$

$$
A P=\{a, b\}
$$

$\mathcal{T} \vDash a$

as $s_{0} \models \boldsymbol{a}$ and $s_{2} \models \boldsymbol{a}$

$\tau \notin \diamond \square a$

$$
A P=\{a, b\}
$$

$\tau \vDash a$
$\tau \notin \diamond \square a$
as $\boldsymbol{s}_{0} \models \boldsymbol{a}$ and $s_{2} \models \boldsymbol{a}$ as $\boldsymbol{s}_{0} \boldsymbol{s}_{1} \boldsymbol{s}_{0} s_{1} \ldots \not \models \diamond \square a$

$$
A P=\{a, b\}
$$

$$
\mathcal{T} \vDash a
$$

$$
\text { as } s_{0} \models \boldsymbol{a} \text { and } s_{2} \models \boldsymbol{a}
$$

$$
\mathcal{T} \not \vDash \diamond \square a
$$

$$
\text { as } s_{0} s_{1} s_{0} s_{1} \ldots \nmid \nmid \diamond \square a
$$

$$
\mathcal{T} \vDash \diamond \square b \vee \square \diamond(\neg a \wedge \neg b)
$$

$$
\begin{array}{ll}
\mathcal{T} \models a & A P=\{a, b\} \\
\mathcal{T} \not \vDash \diamond \square a & \text { as } s_{0} \models a \text { and } s_{2} \models a \\
\mathcal{T} \models \diamond \square b \vee \square \diamond(\neg a \wedge \neg b) & \text { as } s_{2} \models b, s_{1} \neq a, b, b
\end{array}
$$

$$
A P=\{a, b\}
$$

$\mathcal{T} \vDash a$
as $s_{0} \models \boldsymbol{a}$ and $s_{2} \models \boldsymbol{a}$
$\mathcal{T} \not \vDash \diamond \square a$ as $s_{0} s_{1} s_{0} s_{1} \ldots \mid \forall \diamond \square a$
$\mathcal{T} \vDash \diamond \square b \vee \square \diamond(\neg a \wedge \neg b)$ as $s_{2} \models b, s_{1} \not \vDash a, b$
$\mathcal{T} \vDash \square(a \rightarrow(\bigcirc \neg a \vee b))$

$$
A P=\{a, b\}
$$

$\mathcal{T} \vDash a$
as $s_{0} \models \boldsymbol{a}$ and $s_{2} \models \boldsymbol{a}$
$\tau \not \equiv \diamond \square a$ as $s_{0} s_{1} s_{0} s_{1} \ldots \mid \neq \Delta \square a$
$\mathcal{T} \vDash \diamond \square b \vee \square \diamond(\neg a \wedge \neg b)$ as $s_{2} \models b, s_{1} \not \vDash a, b$
$\mathcal{T} \vDash \square(a \rightarrow(\bigcirc \neg a \vee b)) \quad$ as $s_{2} \models b, s_{0} \models \bigcirc \neg a$

Correct or wrong?

For each path π we have: $\pi \models \varphi$ or $\pi \models \neg \varphi$

Correct or wrong?

For each path π we have: $\pi \models \varphi$ or $\pi \models \neg \varphi$ correct, since $\pi \models \neg \varphi$ iff $\pi \not \vDash \varphi$

Correct or wrong?

For each path π we have: $\pi \models \varphi$ or $\pi \models \neg \varphi$ correct, since $\pi \models \neg \varphi$ iff $\pi \not \models \varphi$

For each state \boldsymbol{s} we have: $\boldsymbol{s} \models \varphi$ or $\boldsymbol{s} \models \neg \varphi$

Correct or wrong?

For each path π we have: $\pi \models \varphi$ or $\pi \models \neg \varphi$ correct, since $\pi \models \neg \varphi$ iff $\pi \not \models \varphi$

For each state \boldsymbol{s} we have: $\boldsymbol{s} \models \varphi$ or $\boldsymbol{s} \models \neg \varphi$

wrong.

$$
\boldsymbol{s} \not \models \diamond a \text { and } \boldsymbol{s} \not \models \neg \diamond a
$$

LTL-formulas for MUTEX protocols

LTL formulas over $A P=\left\{\right.$ wait $_{1}$, crit $_{1}$, wait $_{2}$, crit $\left._{2}\right\}$

- the mutual exclusion property

$$
\varphi_{\text {mutex }}=?
$$

LTL-formulas for MUTEX protocols

LTL formulas over $A P=\left\{\right.$ wait $_{1}$, crit $_{1}$, wait $_{2}$, crit $\left._{2}\right\}$

- the mutual exclusion property

$$
\varphi_{\text {mutex }}=\square\left(\neg \text { crit }_{1} \vee \neg \text { crit }_{2}\right)
$$

LTL-formulas for MUTEX protocols

LTL formulas over $\boldsymbol{A P}=\left\{\right.$ wait $_{1}$, crit $_{1}$, wait $_{2}$, crit $\left._{2}\right\}$

- the mutual exclusion property

$$
\varphi_{\text {mutex }}=\square\left(\neg \text { crit }_{1} \vee \neg \text { crit }_{2}\right)
$$

- "every process enters the critical section infinitely often"

$$
\varphi_{\text {live }}=?
$$

LTL-formulas for MUTEX protocols

LTL formulas over $\boldsymbol{A P}=\left\{\right.$ wait $_{1}$, crit $_{1}$, wait $_{2}$, crit $\left._{2}\right\}$

- the mutual exclusion property

$$
\varphi_{\text {mutex }}=\square\left(\neg \text { crit }_{1} \vee \neg \text { crit }_{2}\right)
$$

- "every process enters the critical section infinitely often"

$$
\varphi_{\text {live }}=\square \diamond \text { crit }_{1} \wedge \square \diamond \text { crit }_{2}
$$

LTL-formulas for MUTEX protocols

LTL formulas over $\boldsymbol{A P}=\left\{\right.$ wait $_{1}$, crit $_{1}$, wait $_{2}$, crit $\left._{2}\right\}$

- the mutual exclusion property

$$
\varphi_{\text {mutex }}=\square\left(\neg \text { crit }_{1} \vee \neg \text { crit }_{2}\right)
$$

- "every process enters the critical section infinitely often"

$$
\varphi_{\text {live }}=\square \diamond \text { crit }_{1} \wedge \square \diamond \text { crit }_{2}
$$

- starvation freedom
"every waiting process finally enters its critical section"

$$
\varphi_{s f}=?
$$

LTL-formulas for MUTEX protocols

LTL formulas over $\boldsymbol{A P}=\left\{\right.$ wait $_{1}$, crit $_{1}$, wait $_{2}$, crit $\left._{2}\right\}$

- the mutual exclusion property

$$
\varphi_{\text {mutex }}=\square\left(\neg \text { crit }_{1} \vee \neg \text { crit }_{2}\right)
$$

- "every process enters the critical section infinitely often"

$$
\varphi_{\text {live }}=\square \diamond \text { crit }_{1} \wedge \square \diamond \text { crit }_{2}
$$

- starvation freedom
"every waiting process finally enters its critical section"

$$
\varphi_{s f}=\square\left(\text { wait }_{1} \rightarrow \diamond \text { crit }_{1}\right) \wedge \square\left(\text { wait }_{2} \rightarrow \diamond \text { crit }_{2}\right)
$$

Provide an LTL formula over $A P=\{a, b\}$ for \ldots

- set of all words $A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$ such that:

$$
\forall i \geq 0 .\left(a \in A_{i} \Longrightarrow i \geq 1 \wedge b \in A_{i-1}\right)
$$

Provide an LTL formula over $A P=\{a, b\}$ for \ldots

- set of all words $A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$ such that:

$$
\begin{aligned}
& \forall i \geq 0 .\left(a \in A_{i} \Longrightarrow i \geq 1 \wedge b \in A_{i-1}\right) \\
& \forall j \geq 0 .\left(b \in A_{j} \vee a \notin A_{j+1}\right)
\end{aligned}
$$

Provide an LTL formula over $A P=\{a, b\}$ for \ldots

- set of all words $A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$ such that:

$$
\begin{aligned}
& \forall i \geq 0 .\left(a \in A_{i} \Longrightarrow i \geq 1 \wedge b \in A_{i-1}\right) \\
& \forall j \geq 0 .\left(b \in A_{j} \vee a \notin A_{j+1}\right) \\
& \hat{=} \operatorname{Words}(\square(b \vee \bigcirc \neg a))
\end{aligned}
$$

Provide an LTL formula over $A P=\{a, b\}$ for \ldots

- set of all words $A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$ such that:

$$
\begin{aligned}
& \forall i \geq 0 .\left(a \in A_{i} \Longrightarrow i \geq 1 \wedge b \in A_{i-1}\right) \\
& \forall j \geq 0 .\left(b \in A_{j} \vee a \notin A_{j+1}\right) \\
& \hat{=} \operatorname{Words}(\square(b \vee \bigcirc \neg a))
\end{aligned}
$$

- set of all words of the form

$$
\{b\}^{n_{1}}\{a\}\{b\}^{n_{2}}\{a\}\{b\}^{n_{3}}\{a\} \ldots
$$

where $n_{1}, n_{2}, n_{3}, \ldots \geq 0$

Provide an LTL formula over $A P=\{a, b\}$ for \ldots

- set of all words $A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$ such that:

$$
\begin{aligned}
& \forall i \geq 0 .\left(a \in A_{i} \Longrightarrow i \geq 1 \wedge b \in A_{i-1}\right) \\
& \forall j \geq 0 .\left(b \in A_{j} \vee a \notin A_{j+1}\right) \\
& \hat{=} \operatorname{Words}(\square(b \vee \bigcirc \neg a))
\end{aligned}
$$

- set of all words of the form

$$
\{b\}^{n_{1}}\{a\}\{b\}^{n_{2}}\{a\}\{b\}^{n_{3}}\{a\} \ldots
$$

where $n_{1}, n_{2}, n_{3}, \ldots \geq 0$
$\hat{=} \operatorname{Words}(\square((b \wedge \neg a) U(a \wedge \neg b)))$

