Model Checking I
alias
Reactive Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics
e Program Graphs

e Semantics of Program Graphs as Transition Systems

Material
Reading:

Chapter 2 of the book, pages 29-35.

More:

The slides in the following pages are taken from the material of the course “Introduction to Model Check-
ing” held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Data-dependent systems 181413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

80/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

example: sequential program
WHILE x> 0DO0
x = x—1;

=y+1
ODy y

81/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifXSO

example: sequential program _
WHILE x > 0 DO yi=y+1 @ _

X = X—].; .
y:=y+l
0D if x > 0 then

x = x-—1

82/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

example: sequential program l _
WHILE x>0D0 y:i=y41 @

X = X—].; .
y = y+1
0D if x > 0 then

x = x-—1

program graph

83/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

example: sequential program l _
{1— WHILE x > 0DO0 y:y-|—]_ @ _

x = x—1: .
lr— y = y_|_]_
0D ‘ if x > 0 then

l3— x :=x—1

program graph

l1, 45, {3 are locations,
i.e., control states

84/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

example: sequential program l _
{1— WHILE x > 0DO0 y:y-|—]_ ‘ _

x 1= x—1: .
b= oD =y If x > 0 then

l3— x :=x—1

program graph

states of the transition system:

locations + relevant data (here: values for x and y)

85762

Example: TS for sequential program

initially: x=2,y =0
¢;— WHILE x > 0 DO
x = x—1

lr— y:=y+1
0D
@3—)

program graph

|f x>0 the

x = x—1

Ts1.4-14

86 /628

Example: TS for sequential program 181414

initially: x=2,y =0
{1— WHILE x >0 DO
x = x—1

lr— y:=y+1
0D
63—)

program graph

|fx >0 the

x = x—1

(ly x=2y=0)
(lhx=1y=0)
Lx=1y=1)
(lrx=0y=1)
(lLix=0y=2)
(lzx=0y=2)

87/628

Example: TS for sequential program 181414

initially: x =2, y =0 (£1x>2y=0)
¢i— WHILE x > 0D0
ximx-1 «factona] Gx=Ty=D

ly— y :=y+1 <« action 3 3
0D
l3— ... (le:l.}':l)

«

program graph

bhx=0y=1
‘ if x <0 then (& ﬂy)
B~ loop_exit

|fx 50 loop_exit
then « (lsx=0y=2)

88/628

Ty p ed Va ri a b I es TRANSSYS/PC2.2-TYPED-VARIABLES

typed variable: variable x + data domain Dom(x)

89/628

Typ ed Varia b I es TRANSSYS/PC2.2-TYPED-VARIABLES

typed variable: variable x + data domain Dom(x)

e Boolean variable: variable x with Dom(x) = {0, 1}
e integer variable: variable y with Dom(y) =N
e variable z with Dom(z) = {yellow, red, blue}

90/628

Ty p ed Va ri a b I es TRANSSYS/PC2.2-TYPED-VARIABLES

typed variable: variable x + data domain Dom(x)

e Boolean variable: variable x with Dom(x) = {0, 1}
e integer variable: variable y with Dom(y) = N
e variable z with Dom(z) = {yellow, red, blue}

evaluation for a set Var of typed variables:

type-consistent function n : Var — Values

91/628

Typed Variables TRANSSYS/PC2.2-TYPED: -VARL. ABLES

typed variable: variable x + data domain Dom(x)

e Boolean variable: variable x with Dom(x) = {0, 1}
e integer variable: variable y with Dom(y) = N
e variable z with Dom(z) = {yellow, red, blue}

evaluation for a set Var of typed variables:

type-consistent function n : Var — Values

i 1
'r’(x) € Dom(x) Values = U Dom(x)
for all x € Var x€Var

92/628

Typed Varia bles TRANSSYS/PC2.2-TYPED: -VARIABLE; S

typed variable: variable x + data domain Dom(x)

e Boolean variable: variable x with Dom(x) = {0, 1}

e integer variable: variable y with Dom(y) = N

e variable z with Dom(z) = {yellow, red, blue}

evaluation for a set Var of typed variables:
type-consistent function n : Var — Values

T T
n(x) c Dom(x) Values = U Dom(x)
for all x € Var x€Var

Notation: Eval(Var) = set of evaluations for Var

93/628

Conditions On typed Variables PC2.2-TYPED-COND

If Var is a set of typed variables then

Cond(Var) = set of Boolean conditions
on the variables in Var

94/628

Conditions on typed variables ro2.rvpe-conm

If Var is a set of typed variables then

Cond(Var) = set of Boolean conditions
on the variables in Var

Example: (—nx A y<z+3) V w=red

where Dom(x) = {0,1}, Dom(y) = Dom(z) = N,
Dom(w) = {yellow, red, blue}

95 /628

Conditions on typed variables ro2.rvpe-conm

If Var is a set of typed variables then

Cond(Var) = set of Boolean conditions
on the variables in Var

Example: (—nx A y<z+3) V w=red

where Dom(x) = {0,1}, Dom(y) = Dom(z) = N,

Dom(w) = {yellow, red, blue}

satisfaction relation |= for evaluations and conditions

96 /628

Conditions on typed variables ro2.rvpe-conm

If Var is a set of typed variables then

Cond(Var) = set of Boolean conditions
on the variables in Var

Example: (—nx A y<z+3) V w=red
where Dom(x) = {0,1}, Dom(y) = Dom(z) = N,
Dom(w) = {yellow, red, blue}
satisfaction relation |= for evaluations and conditions

Example:
[x=0, y=3, z=6] E —x A y<z

[x=0, y=3, z=6] £ x V y=z

97 /628

Effect-functi()n for actions PC2.2-TYPED-EFFECT

Given a set Act of actions that operate on the variables
in Var, the effect of the actions is formalized by:

98/628

Effect-function for actions PC2.2-TYPED-EFFECT

Given a set Act of actions that operate on the variables
in Var, the effect of the actions is formalized by:

Effect : Actx Eval(Var) — Eval(Var)

99/628

Effect-function for actions PP

Given a set Act of actions that operate on the variables
in Var, the effect of the actions is formalized by:

Effect : Actx Eval(Var) — Eval(Var)

if a is “x:=2x+y" then:
Effect(a, [x=1,y=3,...]) = [x=5,y=3,...]

100/

28

Effect-function for actions PP

Given a set Act of actions that operate on the variables

in Var, the effect of the actions is formalized by:

Effect : Actx Eval(Var) — Eval(Var)

if a is “x:=2x+y" then:

Effect(a, [x=1,y=3,...]) = [x=5,y=3,...]
if Bis “x:=2x+y; y:=1—x" then:

Effect(3, [x=1,y=3,...]) = [x=5,y=—4,...]

101/

28

Effect-function for actions PP

Given a set Act of actions that operate on the variables
in Var, the effect of the actions is formalized by:

Effect : Actx Eval(Var) — Eval(Var)

if a is “x:=2x+y" then:

Effect(a, [x=1,y=3,...]) = [x=5,y=3,...]
if Bis “x:=2x+y; y:=1—x" then:

Effect(3, [x=1,y=3,...]) = [x=5,y=—4,...]
if v is “(x,y) :=(2x+y,1—x)" then:

Effect(y, [x=1,y=3,...]) = [x=5,y=0,...]

102/

28

Program graph (PG) R

103 /628

Program graph (PG) SR

Let Var be a set of typed variables.
A program graph over Var is a tuple

P = (Loc, Act, Effect,—, Locy, gy) where

104 /628

Program graph (PG) SR

Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

105 /628

Program graph (PG) SR
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,

106 / 628

Program graph (PG) S
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where
e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)

107 /628

Program graph (PG) SR
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where
e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)

1

function that formalizes the effect of the actions

108 /628

Program graph (PG) SR
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where
e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)

1

function that formalizes the effect of the actions

example: if a is the assignment x:=x+y then

Effect(c, [x=1,y=T]) = [x=8, y=T]

109 /628

Program graph (PG) S
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,

e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

110 /628

Program graph (PG) S
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,

e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

- . . 8-«
specifies conditional transitions of the form £ —— ¢

¢, ¢’ are locations, g € Cond(Var), o € Act

111/628

Program graph (PG) S

Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,

e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

- . . 8-«
specifies conditional transitions of the form £ —— ¢

e Locy C Loc is the set of initial locations,

112 /628

Program graph (PG) S

Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where
e Loc is a (finite) set of locations, i.e., control states,
e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

- g . 8-«
specifies conditional transitions of the form £ —— ¢
e Locy C Loc is the set of initial locations,
e gy € Cond(Var) initial condition on the variables

113 /628

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, go) where

e Loc is a (finite) set of locations, i.e., control states,
e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

specifies conditional transitions of the form ¢ ﬂ 4
e Locy C Loc is the set of initial locations,
e gy € Cond(Var) initial condition on the variables.

114 /628

TS-semantics of a program graph 15-PGsi

115 /628

TS-semantics of a program graph 15-PCsen

program graph P over Var

U

transition system 7p

116 /628

TS-semantics of a program graph PG

program graph P over Var

U

transition system 7p

states in 7p have the form

(¢,)
/N

location variable evaluation

117 /628

TS-semantics of a program graph

Let P = (Loc, Act, Effect,—, Loy, gy) be a PG.
The transition system of P is:

Tp = (S,Act,—, Sy, AP, L)

118 /628

TS-semantics of a program graph

Let P = (Loc, Act, Effect,—, Loy, gy) be a PG.
The transition system of P is:

Tp = (S,Act,—, Sy, AP, L)

e state space: S = Loc x Eval(Var)

119/628

TS-semantics of a program graph

Let P = (Loc, Act, Effect,—, Loy, gy) be a PG.
The transition system of P is:

Tp = (S, Act,—>, S0, AP, L)
e state space: S = Loc x Eval(Var)
e initial states: Sp = {(¢,n) : £ € Locy,n |= g0}

120 /628

TS-semantics of a program graph

Let P = (Loc, Act, Effect,—, Loy, gy) be a PG.
The transition system of P is:

Tp = (S,Act,—, S, AP, L)
e state space: S = Loc x Eval(Var)
e initial states: Sp = {(¢,n) : £ € Locy,n |= g0}
The transition relation — is given by the following rule:
¢ ﬂ ¢ Ankg
(€,m) = (€, Effect(c, 7))

121/628

Structured operational semantics (SOS) S
The transition system of a program graph P is
Tp = (S,Act,—,Sp, AP, L) where
the transition relation — is given by the following rule
e ES 0 A nkEg
(0, n) - (¢, Effect(c, 1))

is a shortform notation in SOS-style.

premise
conclusion

122 /628

Structured operational semantics (SOS) S
The transition system of a program graph P is
Tp = (S,Act,—,Sp, AP, L) where
the transition relation — is given by the following rule
e ES 0 A nkEg
(0, n) - (¢, Effect(c, 1))

is a shortform notation in SOS-style.

It means that — is the smallest relation such that:

if ¢ £ ¢ A 1= g then {£,n) — (', Effect(a,n))

123 /628

TS-semantics of a program graph e

Let P = (Loc, Act, Effect,—, Loy, gy) be a PG.
transition system Tp = (S, Act,—, S, AP, L)

e state space: S = Loc x Eval(Var)
e initial states: Sp = {(¢,n) : £ € Locy,n |= g0}
e — is given by the following rule:
/4 ﬁ ! ANnEg
(€,n) — (¢, Effect(c:, n))

124 /628

Labeling of the states P Gaan

Let P = (Loc, Act, Effect,—, Locy, g) be a PG.
transition system Tp = (S, Act,—, Sy, AP, L)

state space: S = Loc x Eval(Var)
initial states: Sop = {(¢,n) : £ € Locy,n |= g0}
— is given by the following rule:
¢ & ! ANnkg
(€,n) — (¢, Effect(a, n))

atomic propositions: AP = Loc U Cond(Var)

125 /628

Labeling of the states P Gaan

Let P = (Loc, Act, Effect,—, Locy, g) be a PG.
transition system Tp = (S, Act,—, Sy, AP, L)

state space: S = Loc x Eval(Var)

initial states: Sop = {(¢,n) : £ € Locy,n |= g0}
— is given by the following rule:

¢ & ! ANnkg
(€,m) — (¢, Effect(a,))

atomic propositions: AP = Loc U Cond(Var)

labeling function:

L({¢,n)) = {€}u {g € Cond(Var): 1y = g}

126 / 628

TS-semantics of a program graph ..ccocumsonsoms

Let P = (Loc, Act, Effect,—, Loy, gy) be a PG.
transition system 7p = (S, Act,—, S, AP, L)

state space: S = Loc x Eval(Var)

initial states: Sop = {(¢,n) : £ € Locy,n |= g0}
— is given by the following rule:

/4 & ! ANnEg
(€,m) — (€', Effect(n, @))

atomic propositions: AP = Loc U Cond(Var)

labeling function:

L({¢,n)) = {€}uU {g € Cond(Var): 7 = g}

127/628

	Introduction
	Modeling of Parallel Systems

