# Master of Science in Computer Science - University of Camerino Systems Verification Lab A. Y. 2018/2019 Written Test of 28th June 2019 (Appello IV) <br> Teacher: Luca Tesei 

EXERCISE 1 (4 points)
Consider the three following transition systems $T_{1}, T_{2}$ and $T_{3}$.



Draw the transition system resulting from their product using handshaking with the handshake action set $H=\{a, b\}$, i.e., $T_{1}\left\|_{\{a, b\}} T_{2}\right\|_{\{a, b\}} T_{3}$.

## SOLUTION

The resulting transition system is the following one:


## EXERCISE 2 (10 points)

Consider the alphabet $A P=\{A, B, C\}$ and the following linear time properties:
(a) $A$ holds at least twice
(b) $B$ holds infinitely many times and whenever $B$ holds then also $C$ holds
(c) Whenever $A$ holds then $B$ does not hold in the next step and whenever $B$ holds then $A$ does not hold in the next step

For each property:

1. formalise it using set expressions and first order logic;
2. formalise it in LTL (you can use the operators next, until, box and diamond, together with all boolean connectives);
3. tell if it is a safety, liveness or mixed property. In case it is a pure safety property provide an NFA for the language of the minimal bad prefixes.

## SOLUTION

Ex 2 a) A holds at least twice
$1-E_{0}=\left\{X_{0} X_{2} \cdot \in\left(2^{A P}\right)^{\omega} \mid \exists i \in \mathbb{N} \quad \exists J \in \mathbb{N}:\right.$

$$
\left.i \neq J \wedge A \in X_{i} \wedge A \in X_{J}\right\}
$$

2- LTL: $\rangle(A \wedge O \Delta A)$
3- This is a pare liveren property
b) B holds infinitely many times and whenever B holds then also C holds.

1. $E_{b}=\left\{X_{0} X_{1} \cdots \in\left(2^{A D}\right)^{\omega} \mid{\underset{\exists}{\exists}}_{i \in \mathbb{N}}: B \in X_{i} \Lambda\right.$

$$
\left.\left(\forall J \in \mathbb{N} . \quad B \in X_{J} \rightarrow C \in X_{J}\right)\right\}
$$

$2-(T L: D \triangleright B \wedge B(B \rightarrow C)$
3- This is a mixed property.
c) Whenwer $A$ holds then $B$ does not hold in the next step and whenever B holds then A does not hold in the hest step.

$$
\begin{aligned}
1-E_{c}= & \left\{X_{0} X_{2} \cdots\left(2^{A \oplus p}\right)^{\omega} \mid\left(\forall_{i} \in \mathbb{N} . A \in X_{i} \rightarrow\right.\right. \\
& \left.\left.B \notin X_{i+1}\right) \wedge\left(\forall j \in \mathbb{N} . B \in X_{J} \rightarrow A \notin X_{J+1}\right)\right\}
\end{aligned}
$$

$$
2-L T L \quad((B \rightarrow O \neg A) \wedge(A \rightarrow O \neg B))
$$

3- This is a pare safety property, actually an invariant.
An NFA accepting the language of minimal bod prefixes is the following:


Consider the following transition system $T S$ on $A P=\{a, b, c, d\}$.


Decide whether or not the following LTL formulas:

$$
\begin{array}{lr}
\varphi_{0}=\square \diamond(a \vee c) \quad \varphi_{1}=(a \vee d) \mathcal{U} b \\
\varphi_{2}=\square(a \rightarrow \bigcirc(b \vee d)) \quad \varphi_{3}=\diamond c
\end{array}
$$

are satisfied by $T S$ under the following fairness conditions (to be considered separately):

$$
\begin{gathered}
\psi_{0}^{\text {fair }}=(\{ \},\{ \},\{ \}) \quad \psi_{1}^{\text {fair }}=(\{ \},\{\{\alpha\},\{\delta\}\},\{ \}) \\
\psi_{2}^{\text {fair }}=(\{ \},\{ \},\{\{\alpha\},\{\delta\}\}) \quad \psi_{3}^{\text {fair }}=(\{ \},\{\{\alpha, \delta\}\},\{ \})
\end{gathered}
$$

Justify your answers! In case the answer is no, provide a counterexample.

## SOLUTION

EX3/Prossible path SCHEMES are:
$\pi_{1}: \ldots s_{0}^{\omega} \leadsto \sim$ trace...$\{a\}^{\omega}$
$\pi_{2}: \ldots\left(S_{0}^{+} s_{2} S_{0}^{+}\right)^{\omega} m$ trace...$\left(\{a\}^{+}\{d\}\{e\}^{+}\right)^{\omega}$
$\pi_{3}: \cdots\left(S_{0}{ }^{+} S_{2} S_{0}{ }^{+} S_{1} S_{2}\right)^{\omega}$ ans trace

$$
\ldots\left(\{a\}^{+}\{d\}\{a\}^{+}\{b\}\{d\}\right)^{\omega}
$$

Th: ... $s_{3}^{\omega}$ mas trace...$\{c\}^{\omega}$
Let us consider the different fairnen conditions.
Up air is empty so all paths of schemes $\pi_{2-n}$ are fair
stair has strong fairness on both $\alpha$ aud $\delta 20$ :

- paths $\pi_{r}$ are not fair (fails strong fairmen on $\alpha$ )
- paths $\Pi_{2}$ are not fair (fails strong faiconen an $\alpha$ )
- paths $\Pi_{3}$ are not fair (fails stray fairmen an $\delta$ )
- beths Ma are fair
$\Psi_{2}^{\text {fair }}$ has weak fairness on both $\alpha$ and $\delta$
- baths $\Pi_{2}$ are not fair (fails wed fairmen on $\alpha$ )
- poohs $\Pi 2$ are fair (weak foirnen on $\alpha$ is not violated because $\alpha$ is not

Coutinuorly enabled

- paths $\pi_{3}$ are fair (wick faizmen on $\delta$ does not fare because $\delta$ is not cont inuously enabled)
- beths $\pi 4$ are for
$\varphi_{3}$ fair has strong faimen on the set $\{\alpha, \delta\}$
- paths $\pi_{1}$ ore not fair (fails sf. on $\{\alpha, \delta\}$ )
- baths $\pi_{2}$ ane not fir (foin of on $\{\alpha, \delta\}$ )
- paths $\pi_{3}$ ore for (sf on $\{\alpha, \delta\}$ does not far
- poohs $\pi_{h}$ are for because $\alpha$ is executed

Let us consider how the formulas.
$\varphi_{0}: T S \not F_{\psi_{0} \text { far }} I \Delta(a \vee c)$ because ace the baths of TS have a O2 C infinitely many times.
TS $\vDash \psi_{1}^{\text {for }} \varphi_{0}$ because the baths $\pi_{4}$ ale have $c$ infintelymany toms
We have alse $T S \not \models_{\varphi_{3}}$ for $\varphi_{0}$

TS $F_{\psi_{2} \text { tar }} \varphi_{0}$ because beths $\pi_{2-4}$ have all a on $C$ infinitely many times.

$$
\varphi_{1}:(a v d) \mu b
$$

TS $\nLeftarrow \psi_{0}$ for $\varphi_{2}$ counterexample $\pi_{1}$, which are fair
TS $=\psi_{1}^{\text {far }} \varphi_{2} \quad$ because all the fair both $\pi /$
hare reached $\{b\}$ (state $s_{2}$ ) starting from state $S_{e}$ and possibly passing through $S_{2}$; in both cases a $v d$ is satisfied

We have also $T S F \psi_{3}$ far $\varphi_{2}$ because paths $\pi_{3}$ reach $\delta_{2}$
IS $H_{2} f_{2} \varphi_{1}$ because lpoths $\pi_{2}$ are for computer examples: $\left(S_{0}^{+} S_{2} S_{0}^{+}\right)^{\omega}$
$\varphi_{2}=J(a \rightarrow O(b v d))$ is a SAFETY property,
therefore it is not affected by fairmen
TS $\not \varphi_{2}$ under any of the four fairness assumptions.
a Counter example is

$$
S_{0} S_{0} \cdots \text { bars }\{a\}\{a\} \cdots
$$

is a bod prefer

$$
\varphi_{3}=\diamond c
$$

TS $\# \psi_{0}$ fair $\varphi_{3} \quad$ because, for instance, baths $\Pi_{2}$ are fair: $S_{0}^{\omega}$ fur $\{e\}^{\omega}$ is a counterexample
TS $\psi_{1}$ far $\varphi_{3}$ because the only fair paths are $\pi_{3}$ aud all of them sooner or Cater have ' $C$ '

IS $\# \psi_{3}^{\text {poi }} \varphi_{3}$ becaun baths $\pi_{3}$ ane fair and so thy are counterexamples.

TS $\# \psi_{2}^{\text {fair }} \varphi_{3}$ because paths $T_{2}$ are for. Counterexample:

$$
\left(S_{0}^{+} S_{2} s_{0}^{+}\right)^{\omega} \nsim\left(\{0\}^{+}\{d\}\{0\}^{+}\right)^{\omega}
$$

Consider the following transition system $T S$ on $A P=\{a, b, c\}$.


Decide whether or not the following CTL formulas:

$$
\begin{array}{cc}
\phi_{0}=\forall \diamond c & \phi_{1}=\exists \square(\exists \bigcirc a) \\
\phi_{2}=\forall \square(c \rightarrow \exists \diamond b) & \phi_{3}=\forall \square(c \rightarrow \forall \diamond b)
\end{array}
$$

are satisfied by $T S$. Justify your answers! When possible, provide a counterexample or a witness.

## SOLUTION

$E \times G \mid \quad \phi_{0}=\forall \diamond c$
TS \# $\forall \leftrightarrow C \quad$ a connterexample is.


TS $=\phi_{2}$ a witmen is path so ${ }^{w}$


$$
\phi_{2}=\forall \Delta(c \rightarrow \exists \Delta b)
$$

Is $\vDash \phi_{2} \quad$ This is au invoriant.
cholbs in state $S_{2}$ and instate $S_{3}$

- in state $S_{3} b$ is reached immediately.
- frame state $S_{2}$ there is the path

$$
\begin{aligned}
S_{2} \rightarrow s_{0} \rightarrow s_{1} \rightarrow & s_{2} \ldots \\
\{c\} & \{b\}
\end{aligned}
$$

Frau initial state $S_{0}$ both $S_{2}$ and $S_{3}$ con be reached; if they are not reached the implication $c \longrightarrow \exists \longleftrightarrow b$ is trivially satisfied; if they are reached a path to 'b' can always be found.
Fran initial state $s_{2}$ only state $s_{3}$ can be reached ard similar cousideratious apply.

$$
\phi_{3}=\forall \square(c \rightarrow \forall \diamond b)
$$

TS $\# \phi_{3}$ a counterexample is

$$
\begin{array}{cc}
S_{0} \\
S_{0}^{\prime} S_{2} & S_{1} \\
\vdots & \{c\} \\
! &
\end{array}
$$

| $h 4$ |  |
| :--- | :--- |
| so |  |
| 1 | 1 |
| $s_{0}$ |  |
| 1 |  |\(\longrightarrow \begin{array}{r}aboug this path b is <br>

never reached\end{array}\) $\left\{4 \left\lvert\, \begin{array}{l}s_{0} \\ 1 \\ s_{0} \ldots \ldots .\end{array}\right.\right.$

