Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
syntax and semantics of LTL automata-based LTL model checking \longleftarrow complexity of LTL model checking
Computation-Tree Logic
Equivalences and Abstraction
given: \quad finite transition system \mathcal{T} over $\boldsymbol{A P}$ (without terminal states)
LTL-formula φ over $A P$
question: does $\mathcal{T} \models \varphi$ hold ?
given: finite transition system \mathcal{T} over $\boldsymbol{A P}$ (without terminal states)
LTL-formula φ over $A P$
question: does $\mathcal{T} \models \varphi$ hold ?
basic idea: try to refute $\mathcal{T} \models \varphi$
given: finite transition system \mathcal{T} over $\boldsymbol{A P}$ (without terminal states)
LTL-formula φ over $A P$
question: does $\mathcal{T} \models \varphi$ hold ?
basic idea: try to refute $\mathcal{T} \models \varphi$ by searching for a path π in \mathcal{T} s.t.

$$
\pi \not \models \varphi
$$

given: finite transition system \mathcal{T} over $\boldsymbol{A P}$ (without terminal states)
LTL-formula φ over $A P$
question: does $\mathcal{T} \models \varphi$ hold ?
basic idea: try to refute $\mathcal{T} \models \varphi$ by searching for a path π in \mathcal{T} s.t.

$$
\pi \not \models \varphi, \text { i.e., } \pi \models \neg \varphi
$$

The LTL model checking problem

given: \quad finite transition system \mathcal{T} over $\boldsymbol{A P}$
LTL-formula φ over $A P$
question: does $\mathcal{T} \models \varphi$ hold ?

1. construct an NBA \mathcal{A} for $\operatorname{Words}(\neg \varphi)$

The LTL model checking problem

given: \quad finite transition system \mathcal{T} over $\boldsymbol{A P}$
LTL-formula φ over $A P$
question: does $\mathcal{T} \models \varphi$ hold ?

1. construct an NBA \mathcal{A} for $\operatorname{Words}(\neg \varphi)$
2. search a path π in \mathcal{T} with $\operatorname{trace}(\pi) \in \operatorname{Words}(\neg \varphi)$

The LTL model checking problem

given: \quad finite transition system \mathcal{T} over $\boldsymbol{A P}$
LTL-formula φ over $A P$
question: does $\mathcal{T} \models \varphi$ hold ?

1. construct an NBA \mathcal{A} for $\operatorname{Words}(\neg \varphi)$
2. search a path π in \mathcal{T} with

$$
\operatorname{trace}(\pi) \in \operatorname{Words}(\neg \varphi)=\mathcal{L}_{\omega}(\mathcal{A})
$$

The LTL model checking problem

given: \quad finite transition system \mathcal{T} over $\boldsymbol{A P}$
LTL-formula φ over $A P$
question: does $\mathcal{T} \models \varphi$ hold ?

1. construct an NBA \mathcal{A} for $\operatorname{Words}(\neg \varphi)$
2. search a path π in \mathcal{T} with

$$
\operatorname{trace}(\pi) \in \operatorname{Words}(\neg \varphi)=\mathcal{L}_{\omega}(\mathcal{A})
$$

construct the product-TS $\mathcal{T} \otimes \mathcal{A}$
search a path in the product that meets the acceptance condition of \mathcal{A}

Automata-based LTL model checking

Safety and LTL model checking

Safety and LTL model checking

Safety and LTL model checking

safety property $E \quad$ LTL-formula φ
NFA for the
bad prefixes for E $\mathcal{L}(\mathcal{A}) \subseteq\left(2^{A P}\right)^{+}$

Safety and LTL model checking

safety property $E \quad$ LTL-formula φ
NFA for the
bad prefixes for E $\mathcal{L}(\mathcal{A}) \subseteq\left(2^{A P}\right)^{+}$

NBA for the
"bad behaviors"
$\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\neg \varphi)$

Safety and LTL model checking

safety property $E \quad$ LTL-formula φ
NFA for the
bad prefixes for E $\mathcal{L}(\mathcal{A}) \subseteq\left(2^{A P}\right)^{+}$

NBA for the
"bad behaviors"
$\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\neg \varphi)$
$\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})=\varnothing$

Safety and LTL model checking

safety property $E \quad$ LTL-formula φ
NFA for the
bad prefixes for E $\mathcal{L}(\mathcal{A}) \subseteq\left(2^{A P}\right)^{+}$

NBA for the
"bad behaviors"
$\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\neg \varphi)$
$\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})=\varnothing \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A})=\varnothing$

Safety and LTL model checking

safety property E
 LTL-formula φ

NFA for the
bad prefixes for E $\mathcal{L}(\mathcal{A}) \subseteq\left(2^{A P}\right)^{+}$

NBA for the
"bad behaviors"

$$
\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\neg \varphi)
$$

$\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})=\varnothing \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A})=\varnothing$
invariant checking in the product
$\mathcal{T} \otimes \mathcal{A} \models \square \neg F$?

Safety and LTL model checking

safety property E
 LTL-formula φ

NFA for the bad prefixes for E $\mathcal{L}(\mathcal{A}) \subseteq\left(2^{A P}\right)^{+}$

NBA for the
"bad behaviors"

$$
\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\neg \varphi)
$$

$\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})=\varnothing \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A})=\varnothing$

invariant checking in the product
$\mathcal{T} \otimes \mathcal{A} \models \square \neg F$?
persistence checking in the product
$\mathcal{T} \otimes \mathcal{A} \vDash \diamond \square \neg F$?

Safety and LTL model checking

safety property E
 LTL-formula φ

NFA for the bad prefixes for E $\mathcal{L}(\mathcal{A}) \subseteq\left(2^{A P}\right)^{+}$

NBA for the
"bad behaviors"

$$
\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\neg \varphi)
$$

$\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})=\varnothing \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A})=\varnothing$
invariant checking in the product
$\mathcal{T} \otimes \mathcal{A} \models \square \neg F$?
persistence checking in the product
$\mathcal{T} \otimes \mathcal{A} \vDash \diamond \square \neg F$?
error indication:
$\widehat{\pi} \in$ Paths $_{\text {fin }}(\mathcal{T})$
s.t. $\operatorname{trace}(\widehat{\pi}) \in \mathcal{L}(\mathcal{A})$

Safety and LTL model checking

safety property E
 LTL-formula φ

NFA for the bad prefixes for E $\mathcal{L}(\mathcal{A}) \subseteq\left(2^{A P}\right)^{+}$

NBA for the
"bad behaviors"
$\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\neg \varphi)$
$\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})=\varnothing$
$\operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A})=\varnothing$
invariant checking in the product
$\mathcal{T} \otimes \mathcal{A} \vDash \square \neg F$?
persistence checking in the product
$\mathcal{T} \otimes \mathcal{A} \equiv \diamond \square \neg F$?
error indication:
prefix of a path π
s.t. $\operatorname{trace}(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})$

Complexity of LTL model checking

main steps of automata-based LTL model checking:
construction of an NBA \mathcal{A} for $\neg \varphi$
persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$

Complexity of LTL model checking

main steps of automata-based LTL model checking:
construction of an NBA \mathcal{A} for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp (|\varphi|))$
persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$

Complexity of LTL model checking

main steps of automata-based LTL model checking:
construction of an NBA \mathcal{A}

$$
\text { for } \neg \varphi
$$

$$
\longleftarrow \mathcal{O}(\exp (|\varphi|))
$$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$
$\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

Complexity of LTL model checking

main steps of automata-based LTL model checking:
construction of an NBA \mathcal{A}

$$
\text { for } \neg \varphi
$$

$$
\longleftarrow \mathcal{O}(\exp (|\varphi|))
$$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$
$\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$
complexity: $\mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \exp (|\varphi|))$

Complexity of LTL model checking

main steps of automata-based LTL model checking:
construction of an NBA \mathcal{A}

$$
\text { for } \neg \varphi
$$

$$
\longleftarrow \mathcal{O}(\exp (|\varphi|))
$$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$
$\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$
complexity: $\mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \exp (|\varphi|))$

The LTL model checking problem is PSPACE-complete

Recall: complexity classes

Complexity classes P, NP

$\boldsymbol{P}=$ class of decision problem solvable in deterministic polynomial time
$N P=$ class of decision problem solvable in nondeterministic polynomial time

Complexity classes P, NP

$\mathbf{N P C}=$ class of $\mathbf{N P}$-complete problems

Complexity classes $P, N P$

$\boldsymbol{N P C}=$ class of $\boldsymbol{N P}$-complete problems
(1) $L \in \boldsymbol{N} \boldsymbol{P}$
(2) L is $\boldsymbol{N P}$-hard, i.e., $K \leq_{\text {poly }} L$ for all $K \in N P$

Complexity classes $P, N P$

$\boldsymbol{N P C}=$ class of $\boldsymbol{N P}$-complete problems
(1) $L \in \boldsymbol{N} \boldsymbol{P}$
(2) L is $\boldsymbol{N P}$-hard, i.e., $K \leq_{\text {poly }} L$ for all $K \in \boldsymbol{N} P$

Complexity classes $P, N P$, coNP

$c o N P=\{\bar{L}: L \in N P\}$
complement of L

Complexity classes $P, N P$, coNP

coNPC $=$ class of coNP-complete problems
(1) $L \in \operatorname{coN} P$
(2) L is coNP-hard, i.e., $K \leq_{\text {poly }} L$ for all $K \in \operatorname{coNP}$

Complexity classes $P, N P$, coNP

coNPC $=$ class of coNP-complete problems
L is coNP-hard iff \bar{L} is $N P$-hard

Complexity classes $P, N P$, coNP

coNPC $=$ class of coNP-complete problems
L is coNP-hard iff \bar{L} is $N P$-hard

Complexity classes $P, N P$, coNP

coNPC $=$ class of coNP-complete problems
L is coNP-hard iff \bar{L} is $N P$-hard

Complexity classes $P, N P$, coNP

$\operatorname{coNPC}=$ class of coNP-complete problems
L is coNP-hard iff \bar{L} is $N P$-hard

coNP-hardness

The LTL model checking problem is coNP-hard

coNP-hardness

The LTL model checking problem is coNP-hard
proof by a polynomial reduction

coNP-hardness

The LTL model checking problem is coNP-hard
proof by a polynomial reduction

complement of the LTL model checking problem:
given: finite transition system \mathcal{T}, LTL-formula φ question: does $\mathcal{T} \not \vDash \varphi$ hold ?

coNP-hardness

The LTL model checking problem is coNP-hard
proof by a polynomial reduction

complement of the LTL model checking problem:
given: finite transition system \mathcal{T}, LTL-formula φ question: does $\mathcal{T} \not \vDash \varphi$ hold ?

coNP-hardness

The LTL model checking problem is coNP-hard
proof by a polynomial reduction

Hamilton path problem
\uparrow
NP-complete
complement of the
LTL model checking problem

complement of the LTL model checking problem:
given: finite transition system \mathcal{T}, LTL-formula φ question: does $\mathcal{T} \not \vDash \varphi$ hold ?

Complexity of LTL model checking

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is PSPACE-complete

The complexity class PSPACE

The complexity class PSPACE

PSPACE $=$ class of decision problems solvable by a deterministic polynomially space-bounded algorithm

The complexity class PSPACE

PSPACE $=$ class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP \subseteq PSPACE

The complexity class PSPACE

PSPACE $=$ class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP \subseteq PSPACE

DFS-based analysis of the computation tree of an $N P$-algorithm

The complexity class PSPACE

PSPACE $=$ class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP \subseteq PSPACE

DFS-based analysis of the computation tree of an NP-algorithm
space requirements:
recursion depth $\widehat{=}$ height of computation tree

The complexity class PSPACE

PSPACE $=$ class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- $N P \subseteq P S P A C E$
- PSPACE = coPSPACE
(holds for any deterministic complexity class)

The complexity class PSPACE

PSPACE $=$ class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- $N P \subseteq P S P A C E$
- PSPACE = coPSPACE
(holds for any deterministic complexity class)
- PSPACE $=$ NPSPACE (Savitch's Theorem)

The complexity class PSPACE

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP \subseteq PSPACE

- PSPACE = coPSPACE
(holds for any deterministic complexity class)
- PSPACE $=$ NPSPACE \quad (Savitch's Theorem)

To prove $L \in$ PSPACE it suffices to provide a nondeterministic polynomially space-bounded algorithm for the complement \bar{L} of L

Complexity classes $P, N P$, coNP, PSPACE

PSPACE

PSPACE $=$ class of decision problems that are decidable in deterministic polynomial space

Complexity classes $P, N P$, coNP, PSPACE

PSPACE

coNP
NP

PSPACE $=$ class of decision problems that are decidable in deterministic polynomial space

Complexity classes $P, N P$, coNP, PSPACE

PSPACE

PSPACE $=$ class of decision problems that are decidable in deterministic polynomial space

Complexity classes $P, N P$, coNP, PSPACE

PSPACE

LTL-MC

$$
\overline{L T L-M C}
$$

