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LTL model checking problem LTLMCS 219
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LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?
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LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

basic idea: try to refute T |= ¢ by searching
for a path 7 in 7 s.t.
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LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

basic idea: try to refute T |= ¢ by searching
for a path 7 in 7 s.t.

wEp, e, TE
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The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—)
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The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—)

2. search a path 7 in 7 with
trace(mw) € Words(—y)
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The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—p)
2. search a path 7 in 7 with
trace(mw) € Words(—yp) = L,(A)
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The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—p)
2. search a path w in 7 with
1 trace(m) € Words(—p) = L,,(A)

construct the product-TS 7 ® A
search a path in the product that meets
the acceptance condition of A
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Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

N

LTL model checking

does T |= ¢ hold ?

S N

yes no
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Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
, yd

LTL model checking

does T |= ¢ hold ?

S N

yes no
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Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
( /

LTL model checking

via persistence checking
T® A E “00 no final state” ?

S N

yes no
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Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
f y

LTL model checking

via persistence checking
T® A E “00 no final state” ?

S N\

yes no + error indication
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Safety and LTL model checking
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Safety and LTL model checking

safety property E LTL-formula ¢
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Safety and LTL model checking

safety property E LTL-formula ¢

NFA for the
bad prefixes for E

L(A) € (2*°)*
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Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)
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Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the
bad prefixes for E “bad behaviors”
L(A) C (2#P)*+ L,(A) = Words(—p)
Tracesi,(T) N L(A) = @
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Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the
bad prefixes for E “bad behaviors”
L(A) C (2#P)*+ L,(A) = Words(—p)
Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2
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safety property E LTL-formula ¢
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in the product
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Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

invariant checking persistence checking
in the product in the product

TRA=0O-F ? TRA = OO-F ?
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Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

invariant checking persistence checking
in the product in the product
TRA=0O-F ? TRA = OO-F ?

error indication:
7 € Pathsgn(T)
s.t. trace(T) € L(A)
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Safety and LTL model checking

safety property E

LTLMC3.2-20

LTL-formula ¢

NFA for the
bad prefixes for E

L(A) € (2*°)*

NBA for the
“bad behaviors”

L,(A) = Words(—p)

Tracesgn(T) N L(A) = @

Traces(T)NL,(A) =2

invariant checking
in the product

persistence checking
in the product

error indication:
7 € Pathsgn(T)
s.t. trace(T) € L(A)

error indication:
prefix of a path 7

s.t. trace(m) € L,(A)
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Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A
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main steps of automata-based LTL model checking:

constructi?gr Ci;n NBA A — O(exp(|¢]))

persistence checking in the
product 7T ® A
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Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

«— O(exp(l¢l))

— O(size(T) - size(A))
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Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

«— O(exp(l¢l))

— O(size(T) - size(A))

complexity: O(size(T) - exp(|¢|))
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Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

constructi?(l)wr Cil;;n NBA A — O(exp(|¢]))

ersistence checking in the . .
pers! oroduct T é itl — O(size(T) - size(A))

complexity: O(size(T) - exp(|¢|))

The LTL model checking problem is
PSPACE-complete
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Recall: complexity classes
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Complexity classes P, NP

)

P = class of decision problem solvable in
deterministic polynomial time

NP

NP = class of decision problem solvable in
nondeterministic polynomial time
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Complexity classes P, NP

7)
NP

NPC = class of NP-complete problems
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Complexity classes P, NP

7)
NP

NPC = class of NP-complete problems
T

(1) Le NP
(2) Lis NP-hard, i.e., K <po L for all K € NP
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Complexity classes P, NP

NP-hard
problems

7)
NP

NPC = class of NP-complete problems
T

(1) Le NP
(2) Lis NP-hard, i.e., K <po L for all K € NP
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Complexity classes P, NP, coNP

NP-hard
problems

coNP

coNP = {L[:Le NP}

complement of L
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Complexity classes P, NP, coNP

NP-hard
problems

\
=

coNP
J
coNPC = class of coNP-complete problems
T
(1) L€ coNP

(2) L is coNP-hard, i.e., K <poy L for all K € coNP
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Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard
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Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
L ®
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard
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Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
L ® e/
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard
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Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems

LTL-MC LTL-MC
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard
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coNP-hardness LTLMC3.2-72

The LTL model checking problem is coNP-hard
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coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC
/ AN

Hamilton path complement of the
problem LTL model checking problem
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coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?
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coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction
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problem LTL model checking problem
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coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem

T
NP-complete NP-hard

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?
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Complexity of LTL model checking LTLMCB.2-73

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is
PSPACE -complete
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The complexity class PSPACE LEMC3.2-74
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
T

DFS-based analysis of the computation tree
of an NP-algorithm

45 /187



The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
T

DFS-based analysis of the computation tree
of an NP-algorithm

space requirements:
recursion depth = height of computation tree
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)
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deterministic polynomially space-bounded algorithm
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

e PSPACE = NPSPACE (Savitch's Theorem)

T
To prove L € PSPACE it suffices to provide a

nondeterministic polynomially space-bounded
algorithm for the complement L of L
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Complexity classes P, NP, coNP, PSPACE  ......

( PSPACE h

)

- J

PSPACE = class of decision problems that are
decidable in deterministic polynomial space
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Complexity classes P, NP, coNP, PSPACE  ......

( PSPACE h
N\
coNP
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_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space
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Complexity classes P, NP, coNP, PSPACE  ......

( PSPACE h
N\
S
coNP
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_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space
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Complexity classes P, NP, coNP, PSPACE  ......

( PSPACE h
LTL-MC [TL-MC
N\
S
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space
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