```
Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
  syntax and semantics of LTL
   automata-based LTL model checking
  complexity of LTL model checking
Computation-Tree Logic
Equivalences and Abstraction
```

LTLMC3.2-19

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$

LTLMC3.2-19

LTL model checking problem

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$ by searching

for a path π in T s.t.

$$\pi \not\models \varphi$$

LTLMC3.2-19

LTL model checking problem

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$ by searching

for a path π in T s.t.

 $\pi \not\models \varphi$, i.e., $\pi \models \neg \varphi$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)

2. search a path π in T with $trace(\pi) \in Words(\neg \varphi)$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

- 1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)
- 2. search a path π in T with $trace(\pi) \in Words(\neg \varphi) = \mathcal{L}_{\omega}(\mathcal{A})$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

- 1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)
- 2. search a path π in T with

$$trace(\pi) \in Words(\neg \varphi) = \mathcal{L}_{\omega}(\mathcal{A})$$

construct the product-TS $\mathcal{T} \otimes \mathcal{A}$ search a path in the product that meets the acceptance condition of \mathcal{A}

Safety and LTL model checking

LTLMC3.2-20

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$

Safety and LTL model checking

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{E}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{\mathcal{E}}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\neg \varphi)$
$\overline{Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})} = \emptyset$	

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{E}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$\overline{\mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})} = \varnothing$	$Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$Traces(T) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking in the product $T \otimes A \models \Box \neg F$?	

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$\mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking in the product $T \otimes A \models \Box \neg F$?	persistence checking in the product $T \otimes A \models \Diamond \Box \neg F$?

Surety and LTL model eneeming entires.2-20	
safety property E	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{E}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$\mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \varnothing$
invariant checking in the product $T \otimes A \models \Box \neg F$?	persistence checking in the product $T \otimes A \models \Diamond \Box \neg F$?
error indication: $\widehat{\pi} \in Paths_{fin}(\mathcal{T})$ s.t. $trace(\widehat{\pi}) \in \mathcal{L}(\mathcal{A})$	

23 / 527

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$\mathit{Traces}(T) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking in the product	persistence checking in the product

in the product in the product $T \otimes A \models \Box \neg F$? $T \otimes A \models \Box \neg F$? $T \otimes A \models \Diamond \Box \neg F$?

error indication: error indication: prefix of a path π s.t. $trace(\widehat{\pi}) \in \mathcal{L}(A)$ s.t. $trace(\pi) \in \mathcal{L}_{\omega}(A)$

Complexity of LTL model checking

main steps of automata-based LTL model checking:

construction of an NBA ${\cal A}$ for $\neg \varphi$

persistence checking in the product $T \otimes A$

construction of an NBA \mathcal{A} for $\neg \varphi$

 $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$

construction of an NBA \mathcal{A} for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$ persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

construction of an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

construction of an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

product $T \otimes A$

The LTL model checking problem is **PSPACE**-complete

- P = class of decision problem solvable in deterministic polynomial time
- **NP** = class of decision problem solvable in nondeterministic polynomial time

NPC = class of NP-complete problems

NPC = class of NP-complete problems

- $(1) \quad \mathbf{L} \in \mathbf{NP}$
- (2) \boldsymbol{L} is \boldsymbol{NP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{NP}$

NPC = class of **NP**-complete problems

- $(1) \quad \mathbf{L} \in \mathbf{NP}$
- (2) L is NP-hard, i.e., $K \leq_{poly} L$ for all $K \in NP$

$$coNP = \{ \overline{L} : L \in NP \}$$
complement of L

Complexity classes *P*, *NP*, *coNP*

LTLMC3.2-72A

coNPC = class of **coNP**-complete problems

- (1) $L \in coNP$
- (2) \boldsymbol{L} is \boldsymbol{coNP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{coNP}$

LTLMC3.2-72A

coNPC = class of **coNP**-complete problems

coNP-hardness

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

 $\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

proof by a polynomial reduction

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

proof by a polynomial reduction

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

proof by a polynomial reduction

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

Complexity of LTL model checking

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is *PSPACE*-complete

The complexity class *PSPACE*

LTLMC3.2-74

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

NP ⊆ PSPACE

NP ⊆ PSPACE

DFS-based analysis of the computation tree of an *NP*-algorithm

NP ⊆ PSPACE

DFS-based analysis of the computation tree of an *NP*-algorithm

space requirements:

- NP ⊆ PSPACE
- *PSPACE* = *coPSPACE* (holds for any deterministic complexity class)

- NP ⊆ PSPACE
- PSPACE = coPSPACE
 (holds for any deterministic complexity class)
- **PSPACE** = **NPSPACE** (Savitch's Theorem)

LTLMC3.2-74

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP ⊆ PSPACE
- PSPACE = coPSPACE
 (holds for any deterministic complexity class)
- PSPACE = NPSPACE (Savitch's Theorem)

To prove $L \in PSPACE$ it suffices to provide a nondeterministic polynomially space-bounded algorithm for the complement \overline{L} of L

