OverView OVERVIEW5.2

Introduction

Modelling parallel systems
Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)

syntax and semantics of LTL
automata-based LTL model checking «—
complexity of LTL model checking

Computation-Tree Logic

Equivalences and Abstraction

1/527

LTL model checking problem LTLMCS 219

2/527

LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

3/527

LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

basic idea: try to refute T |= ¢

4/527

LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

basic idea: try to refute T |= ¢ by searching
for a path 7 in 7 s.t.

Tl

5/527

LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

basic idea: try to refute T |= ¢ by searching
for a path 7 in 7 s.t.

wEp, e, TE

6 /527

The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—)

7/527

The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—)

2. search a path 7 in 7 with
trace(mw) € Words(—y)

8/527

The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—p)
2. search a path 7 in 7 with
trace(mw) € Words(—yp) = L,(A)

9/527

The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—p)
2. search a path w in 7 with
1 trace(m) € Words(—p) = L,,(A)

construct the product-TS 7 ® A
search a path in the product that meets
the acceptance condition of A

10/527

Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

N

LTL model checking

does T |= ¢ hold ?

S N

yes no

11/527

Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
, yd

LTL model checking

does T |= ¢ hold ?

S N

yes no

12/527

Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
(/

LTL model checking

via persistence checking
T® A E “00 no final state” ?

S N

yes no

13 /527

Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
f y

LTL model checking

via persistence checking
T® A E “00 no final state” ?

S N\

yes no + error indication

14 /527

Safety and LTL model checking

15 /527

Safety and LTL model checking

safety property E LTL-formula ¢

16 /527

Safety and LTL model checking

safety property E LTL-formula ¢

NFA for the
bad prefixes for E

L(A) € (2*°)*

17 /527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

18 /527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the
bad prefixes for E “bad behaviors”
L(A) C (2#P)*+ L,(A) = Words(—p)
Tracesi,(T) N L(A) = @

19/527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the
bad prefixes for E “bad behaviors”
L(A) C (2#P)*+ L,(A) = Words(—p)
Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

20/527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

invariant checking
in the product

21/527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

invariant checking persistence checking
in the product in the product

TRA=0O-F ? TRA = OO-F ?

22 /527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

invariant checking persistence checking
in the product in the product
TRA=0O-F ? TRA = OO-F ?

error indication:
7 € Pathsgn(T)
s.t. trace(T) € L(A)

23 /527

Safety and LTL model checking

safety property E

LTLMC3.2-20

LTL-formula ¢

NFA for the
bad prefixes for E

L(A) € (2*°)*

NBA for the
“bad behaviors”

L,(A) = Words(—p)

Tracesgn(T) N L(A) = @

Traces(T)NL,(A) =2

invariant checking
in the product

persistence checking
in the product

error indication:
7 € Pathsgn(T)
s.t. trace(T) € L(A)

error indication:
prefix of a path 7

s.t. trace(m) € L,(A)

24 /527

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

2/187

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

constructi?gr Ci;n NBA A — O(exp(|¢]))

persistence checking in the
product 7T ® A

3/187

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

«— O(exp(l¢l))

— O(size(T) - size(A))

4/187

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

«— O(exp(l¢l))

— O(size(T) - size(A))

complexity: O(size(T) - exp(|¢|))

5/187

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

constructi?(l)wr Cil;;n NBA A — O(exp(|¢]))

ersistence checking in the . .
pers! oroduct T é itl — O(size(T) - size(A))

complexity: O(size(T) - exp(|¢|))

The LTL model checking problem is
PSPACE-complete

6/187

Recall: complexity classes

9/187

Complexity classes P, NP

)

P = class of decision problem solvable in
deterministic polynomial time

NP

NP = class of decision problem solvable in
nondeterministic polynomial time

10/187

Complexity classes P, NP

7)
NP

NPC = class of NP-complete problems

11/187

Complexity classes P, NP

7)
NP

NPC = class of NP-complete problems
T

(1) Le NP
(2) Lis NP-hard, i.e., K <po L for all K € NP

12 /187

Complexity classes P, NP

NP-hard
problems

7)
NP

NPC = class of NP-complete problems
T

(1) Le NP
(2) Lis NP-hard, i.e., K <po L for all K € NP

13 /187

Complexity classes P, NP, coNP

NP-hard
problems

coNP

coNP = {L[:Le NP}

complement of L

14 /187

Complexity classes P, NP, coNP

NP-hard
problems

\
=

coNP
J
coNPC = class of coNP-complete problems
T
(1) L€ coNP

(2) L is coNP-hard, i.e., K <poy L for all K € coNP

15/187

Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

16 /187

Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
L ®
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

17 /187

Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
L ® e/
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

18 /187

Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems

LTL-MC LTL-MC
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

19/187

coNP-hardness LTLMC3.2-72

The LTL model checking problem is coNP-hard

20/187

coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC
/ AN

Hamilton path complement of the
problem LTL model checking problem

21/187

coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?

22/187

coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem
T
NP-complete

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?

23/187

coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem

T
NP-complete NP-hard

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?

24/187

Complexity of LTL model checking LTLMCB.2-73

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is
PSPACE -complete

41/187

The complexity class PSPACE LEMC3.2-74

42 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

43/187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE

44 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
T

DFS-based analysis of the computation tree
of an NP-algorithm

45 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
T

DFS-based analysis of the computation tree
of an NP-algorithm

space requirements:
recursion depth = height of computation tree

46 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

47 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

e PSPACE = NPSPACE (Savitch's Theorem)

48 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

e PSPACE = NPSPACE (Savitch's Theorem)

T
To prove L € PSPACE it suffices to provide a

nondeterministic polynomially space-bounded
algorithm for the complement L of L

49 /187

Complexity classes P, NP, coNP, PSPACE

(PSPACE h

)

- J

PSPACE = class of decision problems that are
decidable in deterministic polynomial space

50 /187

Complexity classes P, NP, coNP, PSPACE

(PSPACE h
N\
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space

51/187

Complexity classes P, NP, coNP, PSPACE

(PSPACE h
N\
S
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space

52 /187

Complexity classes P, NP, coNP, PSPACE

(PSPACE h
LTL-MC [TL-MC
N\
S
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space

53 /187

