
Visione ad alto livello delle funzioni e 
interconnessioni del calcolatore 
Corso di Architettura degli Elaboratori (teoria)

Dott. Francesco De Angelis

francesco.deangelis@unicam.it

Scuola di Scienze e Tecnologie - Sezione di Informatica

Architettura degli Elaboratori e Laboratorio

William Stallings
Computer Organization
and Architecture
8th Edition

Chapter 3
Top Level View of Computer
Function and Interconnection

Program Concept
•  Hardwired systems

are inflexible
•  General purpose

hardware can do
different tasks, given
correct control
signals

•  Instead of re-wiring,
supply a new set of
control signals

What is a program?
•  A sequence of steps
•  For each step, an arithmetic or logical

operation is done
•  For each operation, a different set of

control signals is needed

Function of Control Unit
•  For each operation a unique code is

provided
— e.g. ADD, MOVE

•  A hardware segment accepts the code and
issues the control signals

•  We have a computer!

Components
•  The Control Unit and the Arithmetic and

Logic Unit constitute the Central
Processing Unit

•  Data and instructions need to get into the
system and results out
— Input/output

•  Temporary storage of code and results is
needed
— Main memory

Computer Components:
Top Level View

Instruction Cycle
•  Two steps:

— Fetch
— Execute

Fetch Cycle
•  Program Counter (PC) holds address of

next instruction to fetch
•  Processor fetches instruction from

memory location pointed to by PC
•  Increment PC

— Unless told otherwise
•  Instruction loaded into Instruction

Register (IR)
•  Processor interprets instruction and

performs required actions

Execute Cycle – different type of
instructions
•  Processor-memory

— data transfer between CPU and main memory
•  Processor I/O

— Data transfer between CPU and I/O module
•  Data processing

— Some arithmetic or logical operation on data
•  Control

— Alteration of sequence of operations
— e.g. jump

•  Combination of above

An hypothetical example machine
•  16 bit data and

instructions
•  Memory

organized in
words of 16 bit

•  4 bit opcode
•  24 opcodes
•  212 word of

memory

Example of Program Execution
(add the words at addresses 940 and 941)

Instruction Cycle State Diagram

Interrupts
•  Mechanism by which other modules (e.g.

I/O) may interrupt normal sequence of
processing

•  Program
— e.g. overflow, division by zero

•  Timer
— Generated by internal processor timer
— Used in pre-emptive multi-tasking

•  I/O
— from I/O controller

•  Hardware failure
— e.g. memory parity error

Interrupt Cycle
•  Added to instruction cycle
•  Processor checks for interrupt

— Indicated by an interrupt signal
•  If no interrupt, fetch next instruction
•  If interrupt pending:

— Suspend execution of current program
— Save context
— Set PC to start address of interrupt handler

routine
— Process interrupt
— Restore context and continue interrupted

program

Transfer of Control via Interrupts

Program Flow Control

Instruction Cycle with Interrupts

Program Timing
Short I/O Wait

Program Timing
Long I/O Wait

Instruction Cycle (with Interrupts) -
State Diagram

Multiple Interrupts
•  Disable interrupts

— Processor will ignore further interrupts whilst
processing one interrupt

— Interrupts remain pending and are checked
after first interrupt has been processed

— Interrupts handled in sequence as they occur
•  Define priorities

— Low priority interrupts can be interrupted by
higher priority interrupts

— When higher priority interrupt has been
processed, processor returns to previous
interrupt

Multiple Interrupts - Sequential

Multiple Interrupts – Nested

Time Sequence of Multiple Interrupts
•  priorities: printer=2, disk=4,

communication=5

Connecting
•  All the units must be connected
•  Different type of connection for different

type of unit
— Memory
— Input/Output
— CPU

Memory Connection
•  Receives and sends data
•  Receives addresses (of locations)
•  Receives control signals

— Read
— Write
— Timing

Input/Output Connection(1)
•  Similar to memory from computer’s

viewpoint
•  Output

— Receive data from computer
— Send data to peripheral

•  Input
— Receive data
 from peripheral
— Send data to
 computer

Input/Output Connection(2)
•  Receive control signals from computer
•  Send control signals to peripherals

— e.g. spin disk
•  Receive addresses from computer

— e.g. port number to identify peripheral
•  Send interrupt signals (control)

CPU Connection
•  Reads instruction and data
•  Writes out data (after processing)
•  Sends control signals to other units
•  Receives (& acts on) interrupts

Buses
•  There are a number of possible

interconnection systems
•  Single and multiple BUS structures are

most common
•  e.g. Control/Address/Data bus (PC)
•  e.g. Unibus (DEC-PDP)

What is a Bus?
•  A communication pathway connecting two

or more devices
•  Usually broadcast
•  Often grouped

— A number of channels in one bus
— e.g. 32 bit data bus is 32 separate single bit

channels
•  Power lines may not be shown

Data Bus
•  Carries data

— Remember that there is no difference between
“data” and “instruction” at this level

•  Width is a key determinant of
performance
— 8, 16, 32, 64 bit

Address bus
•  Identify the source or destination of data
•  e.g. CPU needs to read an instruction

(data) from a given location in memory
•  Bus width determines maximum memory

capacity of system
— e.g. 8080 has 16 bit address bus giving 64k

address space

Control Bus
•  Control and timing information

— Memory read/write signal
— Interrupt request
— Clock signals

Bus Interconnection Scheme

Big and Yellow?
•  What do buses look like?

— Parallel lines on circuit boards
— Ribbon cables
— Strip connectors on mother boards

– e.g. PCI

— Sets of wires

Physical Realization of Bus Architecture

Single Bus Problems
•  Lots of devices on one bus leads to:

— Propagation delays
– Long data paths mean that co-ordination of bus use

can adversely affect performance
– If aggregate data transfer approaches bus capacity

•  Most systems use multiple buses to
overcome these problems

Traditional (ISA)
(with cache)

High Performance Bus

Bus Types
•  Dedicated

— Separate data & address lines
•  Multiplexed

— Shared lines
— Address valid or data valid control line
— Advantage - fewer lines
— Disadvantages

– More complex control
– Ultimate performance

Bus Arbitration
•  More than one module controlling the bus
•  e.g. CPU and DMA controller
•  Only one module may control bus at one

time
•  Arbitration may be centralised or

distributed

Centralised or Distributed Arbitration
•  Centralised

— Single hardware device controlling bus access
– Bus Controller
– Arbiter

— May be part of CPU or separate
•  Distributed

— Each module may claim the bus
— Control logic on all modules

Timing
•  Co-ordination of events on bus
•  Synchronous

— Events determined by clock signals
— Control Bus includes clock line
— A single 1-0 is a bus cycle
— All devices can read clock line
— Usually sync on leading edge
— Usually a single cycle for an event

Synchronous Timing Diagram

Asynchronous Timing – Read Diagram

Asynchronous Timing – Write Diagram

PCI Bus
•  Peripheral

Component
Interconnection

•  Intel released to
public domain

•  32 or 64 bit
•  50 lines

PCI Bus Lines (required)
•  Systems lines

— Including clock and reset
•  Address & Data

— 32 time mux lines for address/data
— Interrupt & validate lines

•  Interface Control
•  Arbitration

— Not shared
— Direct connection to PCI bus arbiter

•  Error lines

PCI Bus Lines (Optional)
•  Interrupt lines

— Not shared
•  Cache support
•  64-bit Bus Extension

— Additional 32 lines
— Time multiplexed
— 2 lines to enable devices to agree to use 64-

bit transfer
•  JTAG/Boundary Scan

— For testing procedures

PCI Commands
•  Transaction between initiator (master)

and target
•  Master claims bus
•  Determine type of transaction

— e.g. I/O read/write
•  Address phase
•  One or more data phases

PCI Read Timing Diagram
(see page 99-103)

PCI Bus Arbiter

PCI Bus Arbitration (see page 104)

