Visione ad alto livello delle funzioni e
Interconnessioni del calcolatore

Corso di Architettura degli Elaboratori (teoria)

Dott. Francesco De Angelis
francesco.deangelis@unicam.it

Scuola di Scienze e Tecnologie - Sezione di Informatica

Architettura degli Elaboratori e Laboratorio

William Stallings
Computer Organization
and Architecture

8th Edition

Chapter 3

Top Level View of Computer
Function and Interconnection

Program Conceet

e Hardwired systems
are inflexible

e General purpose
hardware can do

different tasks, given

correct control
signhals
e Instead of re-wiring,

supply a new set of
control signals

Instruction
codes

Data ———

Sequence of
arithmetic
and logic
functions

(a) Programming in hardware

Instruction
interpreter

Control
signals

Data ————

General-purpose
arithmetic
and logic
functions

(b) Programming in software

Results

Results

What is a Erogram?

e A sequence of steps

e For each step, an arithmetic or logical
operation is done

e For each operation, a different set of
control signals is needed

Function of Control Unit

e For each operation a uniqgue code is
provided

—e.g. ADD, MOVE

* A hardware segment accepts the code and
issues the control signals

e We have a computer!

Comeonents

e The Control Unit and the Arithmetic and
_ogic Unit constitute the Central
Processing Unit

e Data and instructions need to get into the
system and results out
—Input/output

e Temporary storage of code and results is
needed
—Main memory

Computer Components:
Top Level View

CPU
PC MAR
IR MBR
/O AR
Exe\c/ution
__unit_/ /O BR

/O Module

Buffers

System
Bus

PC

IR
MAR
MBR
I/0 AR
I/0 BR

Main Memory

Instruction
Instruction
Instruction

Data
Data
Data
Data

33
- N

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

Instruction Cxcle

e Two steps:
—Fetch
—EXxecute

Fetch Cycle Execute Cycle

Execute
Instruction

Fetch Next
Instruction

START

Fetch Cxcle

Program Counter (PC) holds address of
next instruction to fetch

Processor fetches instruction from
memory location pointed to by PC

Increment PC

—Unless told otherwise

Instruction loaded into Instruction
Register (IR)

Processor interprets instruction and
performs required actions

Execute Cycle - different type of
instructions

e Processor-memory
—data transfer between CPU and main memory

e Processor I/O
—Data transfer between CPU and I/O module

e Data processing

—Some arithmetic or logical operation on data
e Control

—Alteration of sequence of operations

—e.g. jJump
e Combination of above

An thothetical examele machine
e 16 bit data and

15

instructions L O

(a) Instruction format
e Memory
0 1

15

Organized in | S | Magnitude

W O rd S Of 1 6 b it (b) Integer format

o 4 b t p d Program Counter (PC) = Address of instruction
I O CO e Instruction Register (IR) = Instruction being executed
4 Accumulator (AC) = Temporary storage
e 2% opcod
O CO e S (c) Internal CPU registers
o 212 d of
W O r O 0001 = Load AC from Memory

0010 = Store AC to Memory

m e m O ry 0101 = Add to AC from Memory

(d) Partial list of opcodes

Example of Program Execution

gadd the words at addresses 940 and 9412

Memory CPU Registers] Memory CPU Registers
30001 940 300/PC |300[1 940 30 1|PC
30159411 Ac| 301594 1] 000 3]AC
3022 9 4 1 1940[R 302|2941f1940IR

¢ ¥

¥ ¥
94000 0 0 3 9400 0 0 3
9410 0 0 2 94110 0 0 2

Step 1 Step 2

Memory CPU Registers] Memory CPU Registers
30001 940 30 1|/PC |300[1 940 30 2|/PC
3015 9 4 1 0 00 3/AC)30159 4 1 0 005|AC
30226471 W59 41 IR|30242 947 <‘35941

‘ ¥

¥ ¥
94000 0 0 3 9400 0 0 3 t 2=
9410 0 0 2 9410002—/‘2

Step 3 Step 4

Memory CPU Registers] Memory CPU Registers
30001 940 302|/PC |300[1 940 3 0 3/PC
3015 9 4 1 0005 AC)3015 9 4 1 0 0 05/AC
3022 94 1—»2 94 1|IR 302]2941 294 1|R

‘

¥
94000 0 0 3 9400003
9410 0 0 2 9410 0 0 5
Step 5 Step 6

Instruction Cycle State Diagram

Instructio Operand perand

fetch fetch store

- o
Multiple Multiple
operands results

nstructi nstructi Opera Data pera
address operatio address peratio address
Iculati decodi Iculati Iculatio

Instruction complete, Return for string
fetch next instruction or vector data

Interru Ets

e Mechanism by which other modules (e.g.
I/O) may interrupt normal sequence of
processing

e Program
—e.g. overflow, division by zero

e Timer
—Generated by internal processor timer
—Used in pre-emptive multi-tasking

e I/O
—from I/O controller

e Hardware failure
—e.g. memory parity error

Interrupt Cycle

e Added to instruction cycle

e Processor checks for interrupt
—Indicated by an interrupt signal

e If no interrupt, fetch next instruction
o If interrupt pending:
—Suspend execution of current program

—Save context

—Set PC to start address of interrupt handler
routine

—Process interrupt

—Restore context and continue interrupted
program

Transfer of Control via InterruEts

User Program Interrupt Handler

1
2
L L
L L
® L
1
Interrupt ——»
occurs here i+ 1 <

Program Flow Control

. ¢ . .
. . . .
. . . .
* . . .
% . . .
........ ., Ssssssne,
R S A
e - . . . -
LAY PRRA . b . .
& Pee. . R T 4 LT ey
. b e . e, U,
* el the H $ teel, The.
. v Tt Teel, H ¢ e, %,
% C e, Tte. . @ e e,
WL e Tt S
. Vo T T % S e e,
- - - -
L L 2O ... ceselte ‘A
. ¢ 000* *
000000000000000 @ %esces cssssasmd

0000000000000 y 2
ooo -oo o.o -oo
% % S .oo
000‘“ 000000 o. o- 00000 seeney
- teo, ooﬁoo s looo o &
.00000 DR 29 . k0 s
. ‘oot oo . o e, .
. LU .. J 0 . .
OO .c 000000000 QO .c -'0 .
s s TheelL e * o * .
. S The, N, » o* .. oo
% 0000 .‘C. * . .
K e, *e *s
. oa .. Q" 00000000000 - 0.
% . O TR, . %
000000000000000 @ %eccccsscscescet sbescssssssesde *tecscescsssssele 00000000000'
5 w w w
o8| | E | ¢ | £ | ¢ 1=
=11 | | _ | £ | |
2 ©
o
©
g 5
s © ©
og] log] 12
= b = -
o S E| |
a 5
............... C sessssssssnsny
* .
. »
oooo c.o
’..J....................‘.'.
OO..‘.C 0. 0.0'
. e . -
. . . .
. AL TN * *
. LT e
° hi 28 .
. o %o, .
. & LT .
S Teea, AW
o S P
* S T
-
............... V b.'.".'..'..'..’..’..’....“’.ﬁ’............'...............’v

WRITE

(c) Interrupts; long I/O wait

(b) Interrupts; short I/O wait

(a) No interrupts

Instruction Cxcle with InterruEts

Fetch Cycle Execute Cycle Interrupt Cycle
< Interrupts
Disabled
Fetch Next Execute Al

Instruction Instruction

Program Timing
Short 1/0 Wait

I'ime

@\@

Processor 1/0
wait operation

@\@|@

Processor 1/0
wait operation

o e

(a) Without interrupts

I

I

elololololelele]o

(b) With interrupts

/0
operation

1/0
operation

Program Timing

Long 1/10 Wait

Time —@ —@
o ©

A
Processor I/ O‘ @
wait operation o
operation
Processor
@ wait
v
® I
I/0
Processor 1/0] operation
wait operation Processor
wait

® -
@ (b) With interrupts

(a) Without interrupts

Instruction Cycle (with Interrupts) -
State Diagram

Instruction: ' Operand i Operand |
fetch fetch store ‘

Multiple Multiple

operands results
Instruction Instruction Operand Data / Operand I |
address | operation ——p address Operation — | address = | nterrupt sy = interrupt |
calculation decoding calculation P calculation check

No
Instruction complete, Return for string interrupt
fetch next instruction or vector data

Multiele InterruEts

e Disable interrupts

—Processor will ignore further interrupts whilst
processing one interrupt

—Interrupts remain pending and are checked
after first interrupt has been processed

—Interrupts handled in sequence as they occur
e Define priorities
—Low priority interrupts can be interrupted by
higher priority interrupts
—When higher priority interrupt has been

processed, processor returns to previous
interrupt

Multiple Interrupts - Sequential

Interrupt
User program handler X

\

Interrupt

handler Y
[F=os—

i

(a) Sequential interrupt processing

Multiple Interrupts - Nested

Interrupt
User program handler X

//

\

4

Interrupt
andler Y

/IIIIIIIIIIII/

(b) Nested interrupt processing

Time Sequence of Multiple Interrupts

e priorities: printer=2, disk=4,
communication=5

Printer Communication

User program
interrupt service routine interrupt service routine

— — \5 —
- % - > -
— ‘ — -
\ _\ ==
/s - Disk
0 = interrupt service routine
~— T~

/

Connecﬁng

e All the units must be connected

o Different type of connection for different
type of unit
—Memory
—Input/Output
—CPU

Memoa Connection

e Receives and sends data
e Receives addresses (of locations)
o Receives control signals

—Read
—Write Read > Memory
_T|m|ng Write
N Words
Address SLLLIIIL)) Data >

Data > N- ; (11T

Ineuthuteut Connectionﬁ!

e Similar to memory from computer’s
viewpoint

e Output
—Receive data from computer
—Send data to peripheral

e Input

Read .| 1/0 Module

»
External

from peripheral Address Y M Ports bea D
_Send data to Internal >

Data

Interru
computer — Senale

Data

Ineuthuteut Connection‘Z!

e Receive control signals from computer

e Send control signals to peripherals
—e.g. spin disk

e Receive addresses from computer
—e.g. port number to identify peripheral

e Send interrupt signals (control)

_— > I/O Module Internal >

Write Data
>
External

Address > M Ports Data >
Internal

Data > Interrupt >
External Slglmls

Data

CPU Connection

e Reads instruction and data

o Writes out data (after processing)
e Sends control signals to other units
o Receives (& acts on) interrupts

Inslrucliuns) Address >

Control

Data > CPU Signals >

Interrupt > Data >

Signals

Buses
e There are a number of possible
Interconnection systems

e Single and multiple BUS structures are
most common

e e.g. Control/Address/Data bus (PC)
e e.g. Unibus (DEC-PDP)

What is a Bus?

e A communication pathway connecting two
or more devices

o Usually broadcast

e Often grouped
—A number of channels in one bus

—e.g. 32 bit data bus is 32 separate single bit
channels

e Power lines may not be shown

Data Bus

e Carries data

—Remember that there is no difference between
“data” and “instruction” at this level

o Width is a key determinant of

performance
—8, 16, 32, 64 bit

Address bus

o Identify the source or destination of data

e e.g. CPU needs to read an instruction
(data) from a given location in memory

e Bus width determines maximum memory
capacity of system

—e.g. 8080 has 16 bit address bus giving 64k
address space

Control Bus

e Control and timing information
—Memory read/write signal
—Interrupt request
—Clock signals

Bus Interconnection Scheme

CPU ‘ Memory I s e+ | Memory ‘ 1/0 I soe ‘ 1/0 I
ntrol

Control Lines

Address Lines Bus

Data Lines

Big and Yellow?
e What do buses look like?
—Parallel lines on circuit boards

—Ribbon cables

—Strip connectors on mother boards
- e.qg. PCI

—Sets of wires

Physical Realization of Bus Architecture

Bus

/\

Boards

Single Bus Problems

e Lots of devices on one bus leads to:

—Propagation delays

- Long data paths mean that co-ordination of bus use
can adversely affect performance

— If aggregate data transfer approaches bus capacity

e Most systems use multiple buses to
overcome these problems

Traditional (ISA)

(withcache)

Processor Local Bus Cache
Local /O
Main controller
Memory
I System Bus I |
Network Expansion -
SCSI bus interface Seria

| ‘ Modem I

Expansion Bus

High Performance Bus

Main
Memory

L.ocal Bus

Processo System Bus

SCSI P139%4

Graphic Video LLAN

High-Speed Bus

FAX Expansion

bus interface] Serial

Modem

Expansion Bus

Bus Types
e Dedicated
—Separate data & address lines

e Multiplexed
—Shared lines
—Address valid or data valid control line
—Advantage - fewer lines

—Disadvantages
— More complex control
— Ultimate performance

Bus Arbitration

e More than one module controlling the bus

e e.g. CPU and DMA controller

e Only one module may control bus at one
time

o Arbitration may be centralised or
distributed

Centralised or Distributed Arbitration

e Centralised

—Single hardware device controlling bus access

— Bus Controller
— Arbiter

—May be part of CPU or separate

e Distributed
—Each module may claim the bus
—Control logic on all modules

Timing
e Co-ordination of events on bus
e Synchronous
—Events determined by clock signals
—Control Bus includes clock line
—A single 1-0 is a bus cycle
—All devices can read clock line

—Usually sync on leading edge
—Usually a single cycle for an event

anchronous Timing Diagram

| [I |
| [I |

M_m
Clock |

Stl? :;: _< Status signals }_
[

- l " N
Adtﬁ — Stable address) -

| | I |
Address I | |
enable : / : \ : :
Data I I y— :
Read lines : : }\ alid data m?—
cycle : | ! !
Read | !/ ' \ |
| | I |
Data I I —
Write lines : |(Valid ('lata out ?—
cycle : | ! !
| | I '
| [I |

Asxnchronous Timing - Read Diagram

ines
lines
Address

lines Stable address

Read _\ /—
Data -

lines Valid data

Acknowledge \ /

Asxnchronous Timing - Write Diagram

lines
Address
lines Stable address
Data
lines Valid data
Write —\—/—
Acknowledge \ /

PCI Bus

e Peripheral
Component
Interconnection

e Intel released to
public domain

e 32 or 64 bit
e 50 lines

Processor]
Cache
- . Motion
Bridge/ Audio video
memory DRAM
controller
PCI Bus |
LAN SCSI Expansion Graphics
bus bridge Base 170
devices
TN
I Expansion bus |
S——~
(a) Typical desktop system
Processor/ Processor/ Memory ,
cache cache controller DRAM
System bus |

PCI Bus

Expansion

bus bridge

Expansion
bus bridge

Host bridgg

| PCI Bus |

[scsi] [scsi] [LaNn| [LAN]

PCI to PCI
bridge

(b) Typical server system

PCIl Bus Lines greguired!

o Systems lines
—Including clock and reset

e Address & Data

—32 time mux lines for address/data
—Interrupt & validate lines

e Interface Control

e Arbitration

—Not shared
—Direct connection to PCI bus arbiter

e Error lines

PCIl Bus Lines gOEtionall

e Interrupt lines
—Not shared

e Cache support

e 64-bit Bus Extension
—Additional 32 lines
—Time multiplexed

—2 lines to enable devices to agree to use 64-
bit transfer

e JTAG/Boundary Scan
—For testing procedures

PCl Commmands

e Transaction between initiator (master)
and target

e Master claims bus

e Determine type of transaction
—e.g. I/O read/write

e Address phase
e One or more data phases

PCl Read Timing Diagram

(see page 99-103)

| | | | | | | | |
CLK g g g i
1 2 3 4 5 6 7 8 9
|(? | | I I I I | G-l_ _
FRAME# | 1 1 1 1 1 1 é 1 |
| | | | | | | |
I ‘-D m@ 'l 'l 'l 'l 'l m
4*— DATA-1 X DATA-2 X DATA-3 i1 -
AD | u T T T T T wl
| | (5‘) | | | | | | |
c/pEs —H—{BUS cMDY Byte Enable X Byte Enable X Byte Enable }— - -
| | | | | | | | |
I ™y | | | | | (;} | | 1
move 1~ 1 1 ! | d | Q—F
! ~ | | E 4 Z 4 % I
1 L g i g & K i
L] L - o - — - =
TRDY# I 1 I I _;} I \ s } 8 / I
| - | | I | S. | I |
| | | | | | | | / |
DEVSEL# U \
-l Jin—ell el - -
Address Phase Data Phase Data Phase Data Phase
Wait State Wait State Wait State
- Bus Transaction -

PCI Bus Arbiter

Y l y ¥ l l y
1+ 1+ 1+ 1+
= O = O = O = O
. Z W Z W Z W Z W
PCI Arbiter O @ O @ O @ N4
PCI PCI PCI PCI
Device Device Device Device

PCIl Bus Arbitration (see page 104

FRAME#

(Address X Data)

SS X Data)

o

-—access-B———p-

-——access-A————-

