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Cache Memory 



Characteristics of memory 
•  Location 
•  Capacity 
•  Unit of transfer 
•  Access method 
•  Performance 
•  Physical type 
•  Physical characteristics 
•  Organisation 



Location 
•  CPU 

— registers 
•  Internal 

— For control purpose in CPU, cache 
•  External 

— Disk, and other I/O 



Capacity 
•  Word size 

— The natural unit of organisation 
•  Number of words 

— or Bytes 



Unit of Transfer 
•  Internal memory 

— Usually governed by data bus width 
•  External memory 

— Usually a block which is much larger than a 
word 

•  Addressable unit 
— Smallest location which can be uniquely 

addressed 



Access Methods (1) 
•  Sequential 

— Start at the beginning and read through in 
order 

— Access time depends on location of data and 
previous location 

— e.g. tape 
•  Direct 

— Individual blocks have unique address 
— Access is by jumping to vicinity plus sequential 

search 
— Access time depends on location and previous 

location 
— e.g. disk 



Access Methods (2) 
•  Random 

— Individual addresses identify locations exactly 
— Access time is independent of location or 

previous access 
— e.g. RAM 

•  Associative 
— Data is located by a comparison with contents 

of a portion of the store 
— Access time is independent of location or 

previous access 
— e.g. cache 



Memory Hierarchy 
•  Registers 

— In CPU 
•  Internal or Main memory 

— May include one or more levels of cache 
— “RAM” 

•  External memory 
— Backing store 



Memory Hierarchy - Diagram 

- cost for 1 bit 
+ capacity 
+ access time 
- frequency of use 



Performance 
•  Access time (latency) 

— Time between presenting the address to the 
memory and getting the valid data 

•  Memory Cycle time 
— Time may be required for the memory to 

“recover” before next access 
— Cycle time is access + recovery 
— Recovery is due to bus, not memory! 

•  Transfer Rate 
— Rate at which data can be moved 



Example with 2 levels of memory 
•  Access time: 0,01 µs for level 1; 0,1 µs 

for level 2 
•  Use: 95% level 1 
•  Word form level 2 “travel” through level 1 

to reach the CPU 

Average access time:  
 
(0,95)(0,01 µs) +  
(0,05)(0,01 µs + 0,1 µs)  
 
= 0,015 µs 
 



Physical Types 
•  Semiconductor 

— RAM (random access, volatile) 
— ROM (non-volatile) 

•  Magnetic 
— Disk & Tape 

•  Optical 
— CD & DVD 

•  Others 
— Bubble 
— Hologram 



Physical Characteristics 
•  Decay 
•  Volatility 
•  Erasable 
•  Power consumption 



Organisation 
•  Physical arrangement of bits into words 
•  Not always obvious 
•  e.g. interleaved 



The Bottom Line 
•  We can state the constraint of memory 

design into: 
•  How much? 

— Capacity 
•  How fast? 

— Time to access 
•  How expensive? 

— Money  



Hierarchy List 
•  Registers 
•  L1 Cache 
•  L2 Cache 
•  Main memory 
•  Disk cache 
•  Disk 
•  Optical 
•  Tape 



So you want fast? 
•  It is possible to build a computer which 

uses only static RAM (see later) 
•  This would be very fast 
•  This would need no cache 

— How can you cache cache? 
•  This would cost a very large amount 



Locality of Reference 
•  During the course of the execution of a 

program, memory references tend to 
cluster 

•  e.g. loops, array 



Cache 
•  Small amount of fast memory 
•  Sits between normal main memory and 

CPU 
•  May be located on CPU chip or module 

near the CPU 



Cache and Main Memory 



Cache/Main Memory Structure 

Addresses of n bits 
Blocks of K words 
M = 2n/K blocks in main memory 
 
C lines of cache 
K words for each line 
C<<M 



Cache operation – overview 
•  CPU requests contents of memory location 
•  Check cache for this data 
•  If present, get from cache (fast) 
•  If not present, read required block from 

main memory to cache 
•  Then deliver from cache to CPU 
•  Cache includes tags to identify which 

block of main memory is in each cache 
slot 



Cache Read Operation - Flowchart 



Typical Cache organization 



Cache Design 
•  Addressing 
•  Size 
•  Mapping Function 
•  Replacement Algorithm 
•  Write Policy 
•  Block Size 
•  Number of Caches 



Cache Addressing 
•  Where does cache sit? 

— Between processor and virtual memory management 
unit 

— Between MMU and main memory 

•  Logical cache (virtual cache) stores data using 
virtual addresses 
— Processor accesses cache directly 
— Cache access faster, before MMU address translation 
— Virtual addresses use same address space for different 

applications 
– Must flush cache on each context switch 

•  Physical cache stores data using main memory 
physical addresses 



Physical vs Logical Cache 



Size does matter 
•  Cost 

— More cache is expensive 
•  Speed 

— More cache is faster (up to a point) 
— Checking cache for data takes time 



Comparison of Cache Sizes 

 

 

Processor Type Year of 
Introduction L1 cache L2 cache L3 cache 

IBM 360/85 Mainframe 1968 16 to 32 KB — —
PDP-11/70 Minicomputer 1975 1 KB — — 

VAX 11/780 Minicomputer 1978 16 KB — — 
IBM 3033 Mainframe 1978 64 KB — — 
IBM 3090 Mainframe 1985 128 to 256 KB — — 
Intel 80486 PC 1989 8 KB — — 

Pentium PC 1993 8 KB/8 KB 256 to 512 KB — 
PowerPC 601 PC 1993 32 KB — — 
PowerPC 620 PC 1996 32 KB/32 KB — — 
PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB

IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB 
IBM S/390 G6 Mainframe 1999 256 KB 8 MB — 

Pentium 4 PC/server 2000 8 KB/8 KB 256 KB — 
IBM SP High-end server/ 

supercomputer 2000 64 KB/32 KB 8 MB — 
CRAY MTAb Supercomputer 2000 8 KB 2 MB — 

Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB
SGI Origin 2001 High-end server 2001 32 KB/32 KB 4 MB — 

Itanium 2 PC/server 2002 32 KB 256 KB 6 MB 
IBM POWER5 High-end server 2003 64 KB 1.9 MB 36 MB 
CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1MB — 



Mapping Function – Example data 
•  Cache of 64kByte (216) 

•  Cache block of 4 bytes (22) 
— i.e. cache is 16k (214) lines of 4 bytes 

•  16MBytes main memory (224) 
•  24 bit address  

— (224=16M) 
•  We address a single byte 
•  We have 4M (222) blocks of 4 byte 



Direct Mapping 
•  Each block of main memory maps to only 

one cache line 
— i.e. if a block is in cache, it must be in one 

specific place 
•  Address is in two parts 
•  Least Significant w bits identify unique 

word 
•  Most Significant s bits specify one 

memory block 
•  The MSBs are split into a cache line field r 

and a tag of s-r (most significant) 



Direct Mapping 
Address Structure 

Tag  s-r Line or Slot  r Word  w 

8 14 2 

•  24 bit address 
•  2 bit word identifier (4 byte block) 
•  22 bit block identifier 

— 8 bit tag (=22-14) 
— 14 bit slot or line 

•  No two blocks in the same line have the same Tag field 
•  Check contents of cache by finding line and checking Tag 



Direct Mapping from Cache to Main Memory 



Direct Mapping  
Cache Line Table 

Cache line Main Memory blocks held 

0 0, m, 2m, 3m…2s-m 
 

1 1,m+1, 2m+1…2s-m+1 
 

… 

m-1 m-1, 2m-1,3m-1…2s-1 
 



Direct Mapping Cache Organization 



Direct  
Mapping 
Example 



Direct Mapping Summary 
•  Address length = (s + w) bits 
•  Number of addressable units = 2s+w words 

or bytes 
•  Block size = line size = 2w words or bytes 
•  Blocks in main memory = 2s+w/2w = 2s 

•  Number of lines in cache = m = 2r 

•  Size of tag = (s – r) bits 



Direct Mapping pros & cons 
•  Simple 
•  Inexpensive 
•  Fixed location for given block 

— If a program accesses 2 blocks that map to 
the same line repeatedly, cache misses are 
very high 



Victim Cache 
•  Lower miss penalty 
•  Remember what was discarded 

— Already fetched 
— Use again with little penalty 

•  Fully associative 
•  4 to 16 cache lines 
•  Between direct mapped L1 cache and next 

memory level 



Associative Mapping 
•  A main memory block can load into any 

line of cache 
•  Memory address is interpreted as tag and 

word 
•  Tag uniquely identifies block of memory 
•  Every line’s tag is examined for a match 
•  Cache searching gets expensive 



Associative Mapping from  
Cache to Main Memory 



Fully Associative Cache Organization 



Associative  
Mapping  
Example 



Tag   22 bit 
Word 
2 bit 

Associative Mapping 
Address Structure 

•  22 bit tag stored with each 32 bit block of data 
•  Compare tag field with tag entry in cache to 

check for hit 
•  Least significant 2 bits of address identify which 

16 bit word is required from 32 bit data block 
•  e.g. 

— Address  Tag   Data   Cache line 
— FFFFFC   FFFFFC 24682468  3FFF 



Associative Mapping Summary 
•  Address length = (s + w) bits 
•  Number of addressable units = 2s+w words 

or bytes 
•  Block size = line size = 2w words or bytes 
•  Number of blocks in main memory =  
                         2s+ w/2w = 2s 

•  Number of lines in cache = undetermined 
•  Size of tag = s bits 



Set Associative Mapping 
•  Cache is divided into a number of sets v 
•  Each set contains a number of lines k 
•  A given block maps to any line in a given 

set 
— e.g. Block B can be in any line of set i 

•  e.g. 2 lines per set 
— 2 way associative mapping 
— A given block can be in one of 2 lines in only 

one set 



Set Associative Mapping 
Example 
•  13 bit set number 
•  Block number in main memory is modulo 

213  
•  000000, 00A000, 00B000, 00C000 … map 

to same set 



Mapping From Main Memory to Cache: 
v Associative 

v sets, k lines 
m = v * k 
 
implementation:  
v associative caches (high 
values of k) 
 



Mapping From Main Memory to Cache: 
k-way Associative 

implementation:  
k direct caches (low values of k) 



K-Way Set Associative Cache 
Organization 



Set Associative Mapping 
Address Structure 

•  Use set field to determine cache set to 
look in 

•  Compare tag field to see if we have a hit 
•  e.g 

— Address   Tag  Data   Set 
number 

— 1FF 7FFC  1FF  12345678  1FFF 
— 001 7FFC  001  11223344  1FFF 

Tag  9 bit Set  13 bit 
Word 
2 bit 



Two Way Set Associative Mapping 
Example 



Set Associative Mapping Summary 
•  Address length = (s + w) bits 
•  Number of addressable units = 2s+w words 

or bytes 
•  Block size = line size = 2w words or bytes 
•  Number of blocks in main memory = 2s 

•  Number of lines in set = k 
•  Number of sets = v = 2d 

•  Number of lines in cache = kv = k * 2d 

•  Size of tag = (s – d) bits 



Direct and Set Associative Cache  
Performance Differences 

•  Significant up to at least 64kB for 2-way 
•  Difference between 2-way and 4-way at 

4kB much less than 4kB to 8kB 
•  Cache complexity increases with 

associativity 
•  Not justified against increasing cache to 

8kB or 16kB 
•  Above 32kB gives no improvement 



Figure 4.16  
Varying Associativity over Cache Size 
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Replacement Algorithms (1) 
Direct mapping 
•  No choice 
•  Each block only maps to one line 
•  Replace that line 



Replacement Algorithms (2) 
Associative & Set Associative 
•  Hardware implemented algorithm (speed) 
•  Least Recently used (LRU) 

— Replace block not used recently  
•  e.g. in 2 way set associative 

— Which of the 2 block is LRU? “USE” bit! 
•  First in first out (FIFO) 

— replace block that has been in cache longest 
•  Least frequently used 

— replace block which has had fewest hits 
•  Random 



Write Policy 
•  Must not overwrite a cache block unless 

main memory is up to date 
•  2 problems: 

— Multiple CPUs may have individual caches 
— I/O modules may address main memory 

directly 



Write through 
•  All writes go to main memory as well as 

cache 
•  Multiple CPUs can monitor main memory 

traffic to keep local (to CPU) cache up to 
date (bus monitoring) 

•  Lots of traffic 
•  Slows down writes 

•  Remember bogus write through caches! 



•  Bus monitoring 
— Lines are invalidates in all caches if altered in 

one 
•  Hardware transparency 

— Lines are updated in all caches 
•  Noncacheable memory 

— Memory that use cache is not shared 
— Memory that is shared don’t use cache 

Write through with multiple CPU 



Write back 
•  Updates initially made in cache only 
•  Update bit for cache slot is set when 

update occurs 
•  If block is to be replaced, write to main 

memory only if update bit is set 
•  Other caches get out of sync 
•  I/O must access main memory through 

cache 
•  N.B. 15% of memory references are 

writes 



Line Size 
•  Retrieve not only desired word but a number of 

adjacent words as well 
•  Increased block size will increase hit ratio at first 

— the principle of locality 
•  Hit ratio will decreases as block becomes even 

bigger 
— Probability of using newly fetched information becomes 

less than probability of reusing replaced 
•  Larger blocks  

— Reduce number of blocks that fit in cache 
— Data overwritten shortly after being fetched 
— Each additional word is less local so less likely to be 

needed 
•  No definitive optimum value has been found 
•  8 to 64 bytes seems reasonable 
•  For HPC systems, 64- and 128-byte most 

common 



Multilevel Caches 
•  High logic density enables caches on chip 

— Faster than bus access 
— Frees bus for other transfers 

•  Common to use both on and off chip 
cache 
— L1 on chip, L2 off chip in static RAM 
— L2 access much faster than DRAM or ROM 
— L2 often uses separate data path 
— L2 may now be on chip 
— Resulting in L3 cache 

– Bus access or now on chip… 



Hit Ratio (L1 & L2) 
For 8 kbytes and 16 kbyte L1 



Unified v Split Caches 
•  One cache for data and instructions or 

two, one for data and one for instructions 
•  Advantages of unified cache 

— Higher hit rate 
– Balances load of instruction and data fetch 
– Only one cache to design & implement 

•  Advantages of split cache 
— Eliminates cache contention between 

instruction fetch/decode unit and execution 
unit 
– Important in pipelining 



Pentium 4 Cache 
•  80386 – no on chip cache 
•  80486 – 8k using 16 byte lines and four way set 

associative organization 
•  Pentium (all versions) – two on chip L1 caches 

— Data & instructions 
•  Pentium III – L3 cache added off chip 
•  Pentium 4 

— L1 caches 
–  8k bytes 
–  64 byte lines 
–  four way set associative 

— L2 cache  
–  Feeding both L1 caches 
–  256k 
–  128 byte lines 
–  8 way set associative 

— L3 cache on chip 



Intel Cache Evolution 

Problem Solution Processor on which feature 
first appears 

External memory slower than the system bus. Add external cache using faster 
memory technology.

 

386

 
Increased processor speed results in external bus becoming a 
bottleneck for cache access. 

Move external cache on-chip, 
operating at the same speed as the 
processor.

 

486

 

Internal cache is rather small, due to limited space on chip Add external L2 cache using faster 
technology than main memory

 

486

 
Contention occurs when both the Instruction Prefetcher and 
the Execution Unit simultaneously require access to the 
cache. In that case, the Prefetcher is stalled while the 
Execution Unit’s data access takes place. 

Create separate data and instruction 
caches.

 

Pentium

 

Increased processor speed results in external bus becoming a 
bottleneck for L2 cache access. 

Create separate back-side bus that 
runs at higher speed than the main 
(front-side) external bus. The BSB is 
dedicated to the L2 cache.

 

Pentium Pro

 

Move L2 cache on to the processor 
chip.

 

Pentium II

 
Some applications deal with massive databases and must 
have rapid access to large amounts of data. The on-chip 
caches are too small. 

Add external L3 cache.

 
Pentium III

 

 Move L3 cache on-chip.

 
Pentium 4

 



Pentium 4 Block Diagram 



Pentium 4 Core Processor 
•  Fetch/Decode Unit 

— Fetches instructions from L2 cache 
— Decode into micro-ops 
— Store micro-ops in L1 cache 

•  Out of order execution logic 
— Schedules micro-ops 
— Based on data dependence and resources 
— May speculatively execute 

•  Execution units 
— Execute micro-ops 
— Data from L1 cache 
— Results in registers 

•  Memory subsystem 
— L2 cache and systems bus 



Pentium 4 Design Reasoning 
•  Decodes instructions into RISC like micro-ops before L1 

cache 
•  Micro-ops fixed length 

— Superscalar pipelining and scheduling 
•  Pentium instructions long & complex 
•  Performance improved by separating decoding from 

scheduling & pipelining 
— (More later – ch14) 

•  Data cache is write back 
— Can be configured to write through 

•  L1 cache controlled by 2 bits in register 
— CD = cache disable 
— NW = not write through 
— 2 instructions to invalidate (flush) cache and write back then 

invalidate 
•  L2 and L3 8-way set-associative  

— Line size 128 bytes 


