Input/Output

Corso di Architettura degli Elaboratori (teoria)

Dott. Francesco De Angelis francesco.deangelis@unicam.it

Scuola di Scienze e Tecnologie - Sezione di Informatica

Architettura degli Elaboratori e Laboratorio

William Stallings Computer Organization and Architecture 8th Edition

Chapter 7 Input/Output

Input/Output Problems

- Wide variety of peripherals
 - Delivering different amounts of data
 - —At different speeds
 - —In different formats
- All slower than CPU and RAM
- Need I/O modules

Input/Output Module

- Interface to CPU and Memory
- Interface to one or more peripherals

Generic Model of I/O Module

External Devices

- Human readable
 - —Screen, printer, keyboard
- Machine readable
 - Monitoring and control
- Communication
 - -Modem
 - —Network Interface Card (NIC)

External Device Block Diagram

I/O Module Function

- Control & Timing
- CPU Communication
- Device Communication
- Data Buffering
- Error Detection

I/O Steps

- CPU checks I/O module device status
- I/O module returns status
- If ready, CPU requests data transfer
- I/O module gets data from device
- I/O module transfers data to CPU
- Variations for output, DMA, etc.

I/O Module Diagram

I/O Module Decisions

- Hide or reveal device properties to CPU
- Support multiple or single device
- Control device functions or leave for CPU
- Also O/S decisions
 - -e.g. Unix treats everything it can as a file

Input Output Techniques

- Programmed
- Interrupt driven
- Direct Memory Access (DMA)

Three Techniques for Input of a Block of Data

Programmed I/O

- CPU has direct control over I/O
 - —Sensing status
 - —Read/write commands
 - —Transferring data
- CPU waits for I/O module to complete operation
- Wastes CPU time

Programmed I/O - detail

- CPU requests I/O operation
- I/O module performs operation
- I/O module sets status bits
- CPU checks status bits periodically
- I/O module does not inform CPU directly
- I/O module does not interrupt CPU
- CPU may wait or come back later

I/O Commands

- CPU issues address
 - —Identifies module (& device if >1 per module)
- CPU issues command
 - —Control telling module what to do
 - e.g. spin up disk
 - —Test check status
 - e.g. power? Error?
 - —Read/Write
 - Module transfers data via buffer from/to device

Addressing I/O Devices

- Under programmed I/O data transfer is very like memory access (CPU viewpoint)
- Each device given unique identifier
- CPU commands contain identifier (address)

I/O Mapping

- Memory mapped I/O
 - Devices and memory share an address space
 - I/O looks just like memory read/write
 - No special commands for I/O
 - Large selection of memory access commands available
- Isolated I/O
 - Separate address spaces
 - Need I/O or memory select lines
 - Special commands for I/O
 - Limited set

Memory Mapped and Isolated I/O

ADDRESS 200 202	INSTRUCTION Load AC Store AC Load AC Branch if Sign = 0 Load AC	OPERAND "1" 517 517 202 516	COMMENT Load accumulator Initiate keyboard read Get status byte Loop until ready Load data byte	ADDRESS 200 201	INSTRUCTION Load I/O Test I/O Branch Not Ready In	OPERAND 5 5 201 5	COMMENT Initiate keyboard read Check for completion Loop until complete Load data byte
-----------------------	---	-----------------------------	---	-----------------------	---	-------------------------------	--

(b) Isolated I/O

Interrupt Driven I/O

- Overcomes CPU waiting
- No repeated CPU checking of device
- I/O module interrupts when ready

Interrupt Driven I/O Basic Operation

- CPU issues read command
- I/O module gets data from peripheral whilst CPU does other work
- I/O module interrupts CPU
- CPU requests data
- I/O module transfers data

CPU Viewpoint

- Issue read command
- Do other work
- Check for interrupt at end of each instruction cycle
- If interrupted:-
 - —Save context (registers)
 - —Process interrupt
 - Fetch data & store

Changes in Memory and Registers for an Interrupt

(a) Interrupt occurs after instruction at location N

(b) Return from interrupt

Design Issues

- How do you identify the module issuing the interrupt?
- How do you deal with multiple interrupts?
 - —i.e. an interrupt handler being interrupted

Identifying Interrupting Module (1)

- Different line for each module
 - -PC
 - —Limits number of devices
- Software poll
 - —CPU asks each module in turn
 - -Slow

Identifying Interrupting Module (2)

- Daisy Chain or Hardware poll
 - Interrupt Acknowledge sent down a chain
 - —Module responsible places vector on bus
 - CPU uses vector to identify handler routine
- Bus Master
 - Module must claim the bus before it can raise interrupt
 - -e.g. PCI & SCSI

Multiple Interrupts

- Each interrupt line has a priority
- Higher priority lines can interrupt lower priority lines
- If bus mastering only current master can interrupt

Example - PC Bus

- 80x86 has one interrupt line
- 8086 based systems use one 8259A interrupt controller
- 8259A has 8 interrupt lines

Sequence of Events

- 8259A accepts interrupts
- 8259A determines priority
- 8259A signals 8086 (raises INTR line)
- CPU Acknowledges
- 8259A puts correct vector on data bus
- CPU processes interrupt

ISA Bus Interrupt System

- ISA bus chains two 8259As together
- Link is via interrupt 2
- Gives 15 lines
 - -16 lines less one for link
- IRQ 9 is used to re-route anything trying to use IRQ 2
 - Backwards compatibility
- Incorporated in chip set

82C59A Interrupt Controller

Intel 82C55A Programmable Peripheral Interface

Keyboard/Display Interfaces to 82C55A

Direct Memory Access

- Interrupt driven and programmed I/O require active CPU intervention
 - —Transfer rate is limited
 - —CPU is tied up
- DMA is the answer

DMA Function

- Additional Module (hardware) on bus
- DMA controller takes over from CPU for I/O

Typical DMA Module Diagram

DMA Operation

- CPU tells DMA controller:-
 - —Read/Write
 - Device address
 - —Starting address of memory block for data
 - Amount of data to be transferred
- CPU carries on with other work
- DMA controller deals with transfer
- DMA controller sends interrupt when finished

DMA Transfer Cycle Stealing

- DMA controller takes over bus for a cycle
- Transfer of one word of data
- Not an interrupt
 - —CPU does not switch context
- CPU suspended just before it accesses bus
 - i.e. before an operand or data fetch or a data write
- Slows down CPU but not as much as CPU doing transfer

DMA and Interrupt Breakpoints During an Instruction Cycle

Aside

- What effect does caching memory have on DMA?
- What about on board cache?
- Hint: how much are the system buses available?

DMA Configurations (1)

- Single Bus, Detached DMA controller
- Each transfer uses bus twice
 - —I/O to DMA then DMA to memory
- CPU is suspended twice

DMA Configurations (2)

(b) Single-bus, Integrated DMA-I/O

- Single Bus, Integrated DMA controller
- Controller may support >1 device
- Each transfer uses bus once
 - —DMA to memory
- CPU is suspended once

DMA Configurations (3)

- Separate I/O Bus
- Bus supports all DMA enabled devices
- Each transfer uses bus once
 - —DMA to memory
- CPU is suspended once

Intel 8237A DMA Controller

- Interfaces to 80x86 family and DRAM
- When DMA module needs buses it sends HOLD signal to processor
- CPU responds HLDA (hold acknowledge)
 - DMA module can use buses
- E.g. transfer data from memory to disk
 - Device requests service of DMA by pulling DREQ (DMA request) high
 - 2. DMA puts high on HRQ (hold request),
 - 3. CPU finishes present bus cycle (not necessarily present instruction) and puts high on HDLA (hold acknowledge). HOLD remains active for duration of DMA
 - 4. DMA activates DACK (DMA acknowledge), telling device to start transfer
 - 5. DMA starts transfer by putting address of first byte on address bus and activating MEMR; it then activates IOW to write to peripheral. DMA decrements counter and increments address pointer. Repeat until count reaches zero
 - 6. DMA deactivates HRQ, giving bus back to CPU

8237 DMA Usage of Systems Bus

DACK = DMA acknowledge DREQ = DMA request HLDA = HOLD acknowledge HRQ = HOLD request

Fly-By

- While DMA using buses processor idle
- Processor using bus, DMA idle
 - —Known as fly-by DMA controller
- Data does not pass through and is not stored in DMA chip
 - -DMA only between I/O port and memory
 - Not between two I/O ports or two memory locations
- Can do memory to memory via register
- 8237 contains four DMA channels
 - Programmed independently
 - —Any one active
 - —Numbered 0, 1, 2, and 3

I/O Channels

- I/O devices getting more sophisticated
- e.g. 3D graphics cards
- CPU instructs I/O controller to do transfer
- I/O controller does entire transfer
- Improves speed
 - —Takes load off CPU
 - Dedicated processor is faster

I/O Channel Architecture

(b) Multiplexor

Interfacing

- Connecting devices together
- Bit of wire?
- Dedicated processor/memory/buses?
- E.g. FireWire, InfiniBand

IEEE 1394 FireWire

- High performance serial bus
- Fast
- Low cost
- Easy to implement
- Also being used in digital cameras, VCRs and TV

FireWire Configuration

- Daisy chain
- Up to 63 devices on single port
 - -Really 64 of which one is the interface itself
- Up to 1022 buses can be connected with bridges
- Automatic configuration
- No bus terminators
- May be tree structure

Simple FireWire Configuration

FireWire 3 Layer Stack

- Physical
 - Transmission medium, electrical and signaling characteristics
- Link
 - —Transmission of data in packets
- Transaction
 - Request-response protocol

FireWire Protocol Stack

FireWire - Physical Layer

- Data rates from 25 to 400Mbps
- Two forms of arbitration
 - Based on tree structure
 - Root acts as arbiter
 - First come first served
 - Natural priority controls simultaneous requests
 - i.e. who is nearest to root
 - Fair arbitration
 - Urgent arbitration

FireWire - Link Layer

Two transmission types

- —Asynchronous
 - Variable amount of data and several bytes of transaction data transferred as a packet
 - To explicit address
 - Acknowledgement returned

—Isochronous

- Variable amount of data in sequence of fixed size packets at regular intervals
- Simplified addressing
- No acknowledgement

FireWire Subactions

(a) Example asynchronous subaction

(b) Concatenated asynchronous subactions

(c) Example isochronous subactions

InfiniBand

- I/O specification aimed at high end servers
 - —Merger of Future I/O (Cisco, HP, Compaq, IBM) and Next Generation I/O (Intel)
- Version 1 released early 2001
- Architecture and spec. for data flow between processor and intelligent I/O devices
- Intended to replace PCI in servers
- Increased capacity, expandability, flexibility

InfiniBand Architecture

- Remote storage, networking and connection between servers
- Attach servers, remote storage, network devices to central fabric of switches and links
- Greater server density
- Scalable data centre
- Independent nodes added as required
- I/O distance from server up to
 - —17m using copper
 - 300m multimode fibre optic
 - 10km single mode fibre
- Up to 30Gbps

InfiniBand Switch Fabric

InfiniBand Operation

- 16 logical channels (virtual lanes) per physical link
- One lane for management, rest for data
- Data in stream of packets
- Virtual lane dedicated temporarily to end to end transfer
- Switch maps traffic from incoming to outgoing lane

InfiniBand Protocol Stack

Foreground Reading

- Check out Universal Serial Bus (USB)
- Compare with other communication standards e.g. Ethernet