
Linguaggi Macchina:  
caratteristiche e funzioni 
Corso di Architettura degli Elaboratori (teoria)

Dott. Francesco De Angelis

francesco.deangelis@unicam.it

Scuola di Scienze e Tecnologie - Sezione di Informatica

Architettura degli Elaboratori e Laboratorio

William Stallings
Computer Organization
and Architecture
8th Edition

Chapter 10
Instruction Sets:
Characteristics and Functions

What is an Instruction Set?
•  The complete collection of instructions

that are understood by a CPU
•  Machine Code
•  Binary
•  Usually represented by assembly codes

Elements of an Instruction
•  Operation code (Op code)

— Do this
•  Source Operand reference

— To this
•  Result Operand reference

— Put the answer here
•  Next Instruction Reference

— When you have done that, do this...

Where have all the Operands Gone?
•  Long time passing….
•  (If you don’t understand, you’re too

young!)
•  Main memory (or virtual memory or

cache)
•  CPU register
•  I/O device

Instruction Cycle State Diagram

Instruction Representation
•  In machine code each instruction has a

unique bit pattern
•  For human consumption (well,

programmers anyway) a symbolic
representation is used
— e.g. ADD, SUB, LOAD

•  Operands can also be represented in this
way
— ADD A,B

Simple Instruction Format

Instruction Types
•  Data processing
•  Data storage (main memory)
•  Data movement (I/O)
•  Program flow control

Number of Addresses (a)
•  3 addresses

— Operand 1, Operand 2, Result
— a = b + c;
— May be a forth - next instruction (usually

implicit by the PC register)
— Not common
— Needs very long words to hold everything

Number of Addresses (b)
•  2 addresses

— One address doubles as operand and result
— a = a + b
— Reduces length of instruction
— Requires some extra work

– Temporary storage to hold some results

Number of Addresses (c)
•  1 address

— Implicit second address
— Usually a register (AC accumulator)
— Common on early machines

Number of Addresses

Use of Addresses

Number of
addresses

Symbolic
representation

Interpretation

3 OP A, B, C A ç B OP C
2 OP A, B A ç A OP B
1 OP A AC ç AC OP A
0 OP T ç (T-1) OP T

Number of Addresses (d)
•  0 (zero) addresses

— All addresses implicit
— Uses a stack
— e.g. push a
—  push b
—  add
—  pop c

— c = a + b

How Many Addresses
•  More addresses

— More complex (powerful?) instructions
— More registers

– Inter-register operations are quicker

— Fewer instructions per program
•  Fewer addresses

— Less complex (powerful?) instructions
— More instructions per program
— Faster fetch/execution of instructions

Design Decisions (1)
•  Operation repertoire

— How many ops?
— What can they do?
— How complex are they?

•  Data types
•  Instruction formats

— Length of op code field
— Number of addresses

Design Decisions (2)
•  Registers

— Number of CPU registers available
— Which operations can be performed on which

registers?
•  Addressing modes (later…)

Types of Operand
•  Addresses
•  Numbers

— Integer/floating point
•  Characters

— ASCII etc.
•  Logical Data

— Bits or flags
•  (Aside: Is there any difference between numbers and

characters? Ask a C programmer!)

x86 Data Types
•  8 bit Byte
•  16 bit word
•  32 bit double word
•  64 bit quad word
•  128 bit double quadword
•  Addressing is by 8 bit unit
•  Words do not need to align at even-

numbered address
•  Data accessed across 32 bit bus in units of

double word read at addresses divisible by
4

•  Little endian

SIMD Data Types
•  Integer types

— Interpreted as bit field or integer

•  Packed byte and packed byte integer
— Bytes packed into 64-bit quadword or 128-bit double

quadword
•  Packed word and packed word integer

— 16-bit words packed into 64-bit quadword or 128-bit double
quadword

•  Packed doubleword and packed doubleword integer
— 32-bit doublewords packed into 64-bit quadword or 128-bit

double quadword
•  Packed quadword and packed qaudword integer

— Two 64-bit quadwords packed into 128-bit double quadword

•  Packed single-precision floating-point and packed double-
precision floating-point
— Four 32-bit floating-point or two 64-bit floating-point values

packed into a 128-bit double quadword

x86 Numeric Data Formats

ARM Data Types
•  8 (byte), 16 (halfword), 32 (word) bits
•  Halfword and word accesses should be word aligned
•  Nonaligned access alternatives

—  Default
–  Treated as truncated
–  Bits[1:0] treated as zero for word
–  Bit[0] treated as zero for halfword
–  Load single word instructions rotate right word aligned data transferred by

non word-aligned address one, two or three bytes
—  Alignment checking: Data abort signal indicates alignment fault for

attempting unaligned access
—  Unaligned access: Processor uses one or more memory accesses to

generate transfer of adjacent bytes transparently to the programmer
•  Unsigned integer interpretation supported for all types
•  Twos-complement signed integer interpretation supported for all

types
•  Majority of implementations do not provide floating-point

hardware
—  Saves power and area
—  Floating-point arithmetic implemented in software
—  Optional floating-point coprocessor
—  Single- and double-precision IEEE 754 floating point data types

ARM Endian Support
•  E-bit in system control register
•  Under program control

Types of Operation
•  Data Transfer
•  Arithmetic
•  Logical
•  Conversion
•  I/O
•  System Control
•  Transfer of Control

Types of Operation

Types of Operation

Data Transfer
•  Specify

— Source
— Destination
— Amount of data

•  May be different instructions for different
movements
— e.g. IBM 370

•  Or one instruction and different addresses
— e.g. VAX

Arithmetic
•  Add, Subtract, Multiply, Divide
•  Signed Integer
•  Floating point ?
•  May include

— Increment (a++)
— Decrement (a--)
— Negate (-a)

Shift and Rotate Operations

Logical shift

Arithmentic shift

Rotation

Shift and Rotate Examples

Logical
•  Bitwise operations
•  AND, OR, NOT
•  Example:
•  (R1) = 10100101
•  (R2) = 11111111
•  (R1) xor (R2) = 01011010

Conversion
•  E.g. Binary to Decimal
•  Example EBCDIC to IRA
•  Conversion table stored starting from

location 1000
•  Location 2100 from 2103 are F1 F9 F8 F4
•  R1 is address 2100
•  R2 is address 1000
•  TR R1 (4), R2 translate F1 to 31, F9 to

39 , F8, to 38 and F4 to 34 following the
table.

Input/Output
•  May be specific instructions
•  May be done using data movement

instructions (memory mapped)
•  May be done by a separate controller

(DMA)

Systems Control
•  Privileged instructions
•  CPU needs to be in specific state

— Ring 0 on 80386+
— Kernel mode

•  For operating systems use

Transfer of Control
•  Branch

— e.g. branch to x if result is zero
•  Skip

— e.g. increment and skip if zero
— ISZ Register1
— Branch xxxx
— ADD A

•  Subroutine call
— c.f. interrupt call

Transfer of Control
•  BRP X branch if positive
•  BRN X branch if negative
•  BRZ X branch if zero
•  BRO X branch if overflow

•  BRE R1, R2, X branch if equal

Branch Instruction

Nested Procedure Calls

Use of Stack

Stack Frame Growth Using Sample
Procedures P and Q

Stack

I
J
K
L
M

After PUSH

BP

SP
J
K
L
M

Initial state

BP

SP J
K
L
M

BP

SP

After POP

KJ
L
M

After multiply
operation

D
es

ce
nd

in
g

ad
dr

es
se

s

BP

SP

SP = stack pointer
BP = base pointer

Figure 10.13 Basic Stack Operation (full/descending)

Block

reserved

for stack

Main

memory
Processor

registers

Free

Stack

limit

Stack

pointer

Stack

base

In use

D
e
s
c
e
n

d
in

g
 a

d
d

r
e
s
s
e
s

Figure 10.14 Typical Stack Organization (full/descending)

Expression evaluation

 Stack General Registers Single Register

 Push a Load R1, a Load d

 Push b Subtract R1, b Multiply e

 Subtract Load R2, d Add c

 Push c Multiply R2, e Store f

 Push d Add R2, c Load a

 Push e Divide R1, R2 Subtract b

 Multiply Store R1, f Divide f

 Add Store f

 Divide

 Pop f

Number of instructions 10 7 8

Memory access 10 op + 6 d 7 op + 6 d 8 op + 8 d

Figure 10.15 Comparison of Three Programs to Calculate

€

f =
a − b

c+ d × e()

Expression evaluation

a a
b c c

d

a – b a – b a – b

c
d d e
e

a – b
c

a – b a – b

a – b

Figure 10.16 Use of Stack to Compute f = (a – b)/[(d e) + c]

(d e) + c

(d e) + c

ab-cdex+/

Byte Order
(A portion of chips?)
•  What order do we read numbers that

occupy more than one byte
•  e.g. (numbers in hex to make it easy to

read)
•  12345678 can be stored in 4x8bit

locations as follows

Byte Order (example)
•  Address Value (1) Value(2)
•  184 12 78
•  185 34 56
•  186 56 34
•  187 78 12

•  i.e. read top down or bottom up?

Byte Order Names
•  The problem is called Endian
•  The system on the left has the least

significant byte in the lowest address
•  This is called big-endian
•  The system on the right has the least

significant byte in the highest address
•  This is called little-endian

Example of C Data Structure

Alternative View of Memory Map

Standard…What Standard?
•  Pentium (x86), VAX are little-endian
•  IBM 370, Motorola 680x0 (Mac), and most

RISC are big-endian
•  Internet is big-endian

— Makes writing Internet programs on PC more
awkward!

— WinSock provides htoi and itoh (Host to
Internet & Internet to Host) functions to
convert

