Linguaggi Macchina:
caratteristiche e funzioni

Corso di Architettura degli Elaboratori (teoria)

Dott. Francesco De Angelis
francesco.deangelis@unicam.it

Scuola di Scienze e Tecnologie - Sezione di Informatica

Architettura degli Elaboratori e Laboratorio

William Stallings
Computer Organization
and Architecture

8th Edition

Chapter 10
Instruction Sets:
Characteristics and Functions

What is an Instruction Set?

e The complete collection of instructions
that are understood by a CPU

e Machine Code

e Binary

e Usually represented by assembly codes

Elements of an Instruction

e Operation code (Op code)
—Do this

e Source Operand reference
—To this

e Result Operand reference
—Put the answer here

e Next Instruction Reference
—When you have done that, do this...

Where have all the Operands Gone?

e Long time passing....

e (If you don’t understand, you' re too
young!)

e Main memory (or virtual memory or
cache)

e CPU regqister
e I/O device

Instruction Cycle State Diagram

nstructio Operand
fetch fetch
- e \ y
Multiple
operands
nstructi nstructi Opera pera
address operatio address
lculati decodi Iculati
Instruction complete, Return for string
fetch next instruction or vector data

Multiple
results

address
lculatio

Instruction ReEresentation

e In machine code each instruction has a
unique bit pattern

e For human consumption (well,
programmers anyway) a symbolic
representation is used
—e.g. ADD, SUB, LOAD

e Operands can also be represented in this
way
—ADD A,B

SimEIe Instruction Format

4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

16 bits

>

Instruction Types

e Data processing

e Data storage (main memory)
e Data movement (I/0O)

e Program flow control

Number of Addresses ga!

e 3 addresses
—Operand 1, Operand 2, Result
—a =b + c;
—May be a forth - next instruction (usually
implicit by the PC register)
—Not common
—Needs very long words to hold everything

Instruction mment
SUB Y.A.B Y~ A-B

MPY T,D,E T<DxE , A-B
ADD T.T.C T<T+C Programs to Execute Y =

DIV Y.Y.T Y<Y=T C+(DxE)

(a) Three-address instructions

Number of Addresses gb!

e 2 addresses
—One address doubles as operand and result
—a =a+b
—Reduces length of instruction

—Requires some extra work
— Temporary storage to hold some results

Instruction Comment

MOVE Y. A Y<—A

SUB Y.B Y<Y-B A_B
MOVE T,D T<D n _ —
MPY T.E == Programs to Execute Y C+ (DxE)
ADD T.,C T«<T+C

DIV Y.T Y«<Y=T

(b) Two-address instructions

Number of Addresses gc!

e 1 address
—Implicit second address
—Usually a register (AC accumulator)
—Common on early machines

In ion mmen

LOAD D AC <D

MPY E AC < AC xE

ADD C AC« AC+C A-B
Programs to Execute Y =

STOR Y Y <« AC C+(DXE)

LOAD A AC <« A

SUB B AC<«< AC-B

DIV Y AC«—AC+Y

STOR Y Y < AC

(c) One-address instructions

Number of Addresses

Instruction Comment
SUB Y.A.B Y<A-B
MPY T.D.E T«<DxE
ADD T.T.C T«<T+C
DIV Y.Y.T Y<Y=+T
Instruction Comment
(a) Three-address instructions
LOAD D AC<«<D
MPY E AC<«< ACxE
Instruction Comment ADD C AC < AC+C
MOVE Y. A Y<A STOR Y Y < AC
SUB Y.B Y<Y-B LOAD A AC<— A
MOVE T,D T<D SUB B AC«< AC-B
MPY T.E T«<TxE DIV Y AC<—AC=Y
ADD T.C T«<T+C STOR Y Y «< AC
DIV Y.T Y<Y=+T
(b) Two-address instructions (c) One-address instructions
A-B

Figure 10.3 Programs to Execute Y =———
C+(DxE)

Use of Addresses

Number of Symbolic Interpretation
addresses representation
3 OP A, B, C A€ BOPC
2 OP A, B A€AOPB
1 OP A AC €« ACOPA
0 OP T€ (T-1)OPT

Number of Addresses gd!

e 0 (zero) addresses
—All addresses implicit
—Uses a stack
—e.g. push a
— push b
— add

- pop C

—C=a+b

How Manx Addresses

e More addresses
—More complex (powerful?) instructions

—More registers
— Inter-register operations are quicker

—Fewer instructions per program

o Fewer addresses
—Less complex (powerful?) instructions
—More instructions per program
—Faster fetch/execution of instructions

Design Decisions $1 !

e Operation repertoire
—How many ops?
—What can they do?
—How complex are they?

e Data types

e Instruction formats
—Length of op code field
—Number of addresses

Design Decisions 12!

e Registers
—Number of CPU registers available

—Which operations can be performed on which
registers?

e Addressing modes (later...)

Ters of OEerand

e Addresses

e Numbers
—Integer/floating point

e Characters
—ASCII etc.

e Logical Data

—Bits or flags

e (Aside: Is there any difference between numbers and
characters? Ask a C programmer!)

x86 Data Types

e 8 bit Byte

e 16 bit word

e 32 bit double word

e 64 bit quad word

e 128 bit double quadword
e Addressing is by 8 bit unit

e Words do not need to align at even-
numbered address

e Data accessed across 32 bit bus in units of
double word read at addresses divisible by
4

e Little endian

SIMD Data Ters

e Integer types
— Interpreted as bit field or integer

e Packed byte and packed byte integer

— Bytes packed into 64-bit quadword or 128-bit double
quadword

e Packed word and packed word integer

— 16-bit words packed into 64-bit quadword or 128-bit double
quadword

e Packed doubleword and packed doubleword integer

— 32-bit doublewords packed into 64-bit quadword or 128-bit
double quadword

e Packed quadword and packed gaudword integer
— Two 64-bit quadwords packed into 128-bit double quadword

e Packed single-precision floating-point and packed double-
precision floating-point
— Four 32-bit floating-point or two 64-bit floating-point values
packed into a 128-bit double quadword

x86 Numeric Data Formats

8 0
15]
31 0
a3 0
Twos comp
8 0
1was comp
15 0
1wes complement
31 0
1wes complement
a3 0
zsignhit
exp signil xand
3130 22 0
zign i
exp sigmicand
6362 51 0
=ign ht miegst hil
exponent significand
79 64 62 0

Byte unsigned integer

Waord unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

Byte signad integer

Word signed integer

Doubleword signed integer

Quadword signed integer

Single precision
floating point

Double precision
floating point

Double extended precision
floating point

ARM Data Txees

8 (byte), 16 (halfword), 32 (word) bits
Halfword and word accesses should be word aligned

Nonaligned access alternatives

— Default
- Treated as truncated
— Bits[1:0] treated as zero for word
- Bit[0] treated as zero for halfword

- Load single word instructions rotate right word aligned data transferred by
non word-aligned address one, two or three bytes

— Alignment checking: Data abort signal indicates alignment fault for
attempting unaligned access

— Unaligned access: Processor uses one or more memory accesses to
generate transfer of adjacent bytes transparently to the programmer

Unsigned integer interpretation supported for all types

g'wos—complement signed integer interpretation supported for all
YPES
Majority of implementations do not provide floating-point
hardware

— Saves power and area

— Floating-point arithmetic implemented in software

— Optional floating-point coprocessor

— Single- and double-precision IEEE 754 floating point data types

ARM Endian SuEEort

o E-bit in system control register
e Under program control

Data bytes
in memory

(ascending address values
from byte 0 to byte 3)

>

>

Byte 3

<

Byte 2

<

Byte 1

<

Byte 0

o —

31 vy A 4 A 4 A 4 31 v A 4 4 y O
Byte3 | Byte2 | Bytel | ByteO ByteO | Byte1l | Byte2 | Byte3
ARM register ARM register

program status register E-bit =0

program status register E-bit = 1

Ters of OEeration

e Data Transfer

e Arithmetic

e Logical

e Conversion

e I/O

e System Control

e Transfer of Control

Types of O

eration

Type

Operation Name

Description

Maowve (transfer)
Store

Load (tewch)
Exchan;
Clear (reser)
Set

Push

l’n‘l

<
Data wansler

Add

Subtract

Multiply

: Divide

Agithmetic Absolute
Negate
Inerement
Decrement

:\ND
OR
NOT

(Complement)

xclusive-OR
Test
Compars

Set control
variables
Shift
Rotate

Jump {branch)
Jump conditi

Jumip Lo subroutine

Retumn
Exvcule
Transter
of control Skip

Skip conditional

Halt

1 (hold)
No operation
Input {read)

Output (wrile)
Stare 11O
I'est PO

Input/output

I'ranslate

Conversion N
QUVORSH Convert

ibtract | from operand

No operation is performed, but pr

Transter ward or block [rom source to destination

Transter word [rom processor to memaory

Transter word lrom memory Lo processor

Swap contents of source and destin
Transfer word of s 1o destination
Fransfer word of |s 1o destination

alion

ransfer word ITom souree lo top of stack

Transfer word from top of stack to

Compute sum of two operands

destmation

Compute difference of two operands

Compute product of two aperands
Compule guotient of twa operands

Replace operand by its absolute value

Change sign ol operand
Add 1 10 operand

Perform the specitied logica

Test cified condition; set 11z

$)

ape

ration bitwise

based an outcome

Make logical or arithmetic camparison of twa or more operands;

set Hagts) based oo outeome
Class of instructions to sef controls

[or protection purposes.

interrupt handling. timer control, elc.
Left (right) shift operand, miroducing constants at end
Left (right) shilt operand, with wraparound end

Unconditional transfer: load PC with specified address

Test specified condition: either koad PC witl

ddo nothing, based on condition
Place current program control
jump to specitied address
Replace contents of PC and
Ferch operand from spec
do not modily PC
Increment P¢

othe

pecitied address o1

nlarmation in known location;

register rom known locatbion
2 location and execule as instruction:

1o skin nexuinstruction

Test specilied condition: either skip or do nothing based on

condinion
Stap program execulion
Stap program execulion: test specil

ied condition repeatedly:

resume execution when conditson is sabislied

wnsfer data from s

fied O port or device 1o destination

gram execution is continued

Transfer duta trom specified source 1o 1O port or device

Transfer instructions 1o KO processor ta imtiate 1O operation

Transfer status inforn

Transtate values in a section of memory based on i table of
correspandences

cked decymal 1o binary}

ifed destination

the contents of a word from one form 1o anothes

Ters of OEeration

Pransfer data from one location 1o another

I memory 15 involved

Data transfe Determine memary adkdress
Perlorm virtual-to-actnal-memory address transformation
Check cache
[nitiate memory read wnte

Mav imvolve data transter, before andior afles
Anthmetwe Peclorm lunction in ALL)
Set condliion codes and flags

Logical Same as arithmelic

Conversion Stmibar to anthmetie and logical. May invalve special logic 1o perform conversion

L pdate program counter. For subroutme callirelurn, manage parameter passing and

Transier of control
|Il|k:|‘\‘,l'

Issue command o O module

O
I memorv-mapped 11O, determing memosy-mapped address

Data Transfer

e Specify
—Source
—Destination
—Amount of data

e May be different instructions for different
movements
—e.qg. IBM 370

e Or one instruction and different addresses
—e.g. VAX

Arithmetic

e Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
—Increment (a++)

—Decrement (a--)
—Negate (-a)

Shift and Rotate Oeerations

{a) Logical right shift Logical Shift

PITTTT =TT

(h) Logical leftshift

(¢) Arithmetic right shift Arithmentic Sh]ft

STTTTT 11T

(d) Arithmetic left shift

Rotation

Shift and Rotate Exameles

Table 10,7 Examples of Shift and Rotate Operations

Input Operation Result
U Logical night shift (3 bits) A TR R
[T Logical lelt shaft (3 bits) l_.‘llvljlnl'Illi'rlvl'f-l
N AR R - ;‘\TIIE)IIIUKL' nieht shedt 13 bigs) 11RO G0
l'.']',ll_'l_ll_? Artthmetie feft shaju (3 bits '~~ O TO0K
L0100 1 Right rotate (3 ¥;ii~} THOTOC
|l'il_7n:-l 14l Ll r-iu.n«~ (3 hits) - AR RN]

Logical

e Bitwise operations
e AND, OR, NOT

o Example:
o (R1) = 10100101
o (R2) = 11111111

e (R1) xor (R2) = 01011010

Conversion

e E.g. Binary to Decimal
o Example EBCDIC to IRA

e Conversion table stored starting from
location 1000

e Location 2100 from 2103 are F1 F9 F8 F4
e R1 is address 2100
e R2 is address 1000

o TR R1 (4), R2 translate F1 to 31, F9 to

39, F8, to 38 and F4 to 34 following the
table.

Ineut/OutEut

e May be specific instructions

e May be done using data movement
instructions (memory mapped)

e May be done by a separate controller
(DMA)

sttems Control

e Privileged instructions

e CPU needs to be in specific state
—Ring 0 on 80386+
—Kernel mode

e For operating systems use

Transfer of Control

e Branch
—e.g. branch to x if result is zero
o SKkip
—e.g. increment and skip if zero
—ISZ Registerl
—Branch xxxx
—ADD A
e Subroutine call
—c.f. interrupt call

Transfer of Control

e BRP X branch if positive
e BRN X branch if negative
e BRZ X branch if zero

e BRO X branch if overflow

e BRE R1, R2, X branch if equal

Branch Instruction

Unconditional
Branch

Memory
Address

200
201
> 202

203

210
211

Instruction

SUB X,Y
BRZ 211

Conditional
Branch

Conditional
Branch

Nested Procedure Calls

Addresses
4000

4100
4101

4500

4600
4601

4650
4651

43800

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Callsand returns

Main
Program

Procedure
Procl

Procedure
Proc2

(b) Execution sequence

Use of Stack

(a) Initkal stack

ohlents

4101

(b) After
CALL Procl

4601

4101

4101

(¢) Inithal

CALL Proc2

(d) After
RETURN

4651

4101

4101

(e) After

CALL Proc2

() After
RETURN

(g) After
RETURN

Stack Frame Growth Using Sample

Procedures P and Q

X2

x1

Old Frame Pointer

Return Point

(a) P is active

Stack
Pointer

Frame
Pointer

Stack

2
y Pointer

y1

| Old Frame Pointer-
B Frgme
Pointer
Return Point
X2
x1

Old Frame Pointer

Return Point

(b) P has called Q

Stack

Processor Main
registers memory

Stack

limit

Stack

SP —p, I pointer

SP—»{ J J SP—p] s
K K K sp—Jxk| 1% $
£ Stack F 42
L L L L S hese e g
& Block =
M M M M g reserved <
° ° ° ° "g for stack %D
[] L] [] L] § In use g
[] [] [] [] S %
a
BP —p o BP —p ° BP —» ° BP —p °
Initial state After PUSH After POP After multiply
operation
SP = stack pointer

BP = base pointer

Figure 10.13 - Basic Stack Operation (full/descending) Figure 10.14 Typical Stack Organization (full/descending)

Exeression evaluation

Figure 10.15 Comparison of Three Programs to Calculate f =

Stack General Registers | Single Register
Push a Load R1, a Load d
Push b Subtract R1, b Multiply e
Subtract Load R2,d Add c
Push ¢ Multiply R2, e Store f
Push d Add R2,c Load a
Push e Divide R1, R2 Subtract b
Multiply Store R1, f Divide f
Add Store f
Divide
Pop f
Number of instructions 10 7 8
Memory access 10op+6d 7op+6d 8op+8d
a-b

c+ (dxe)

Exeression evaluation

—Pp d
—> b —> c c
—> a a —» a-b a-b a-b
—] e
d —» dxe
C C —>»|(dxe) + ¢
a-b a-b a-b —> \ —>
a-b
(dxe) +c¢

Figure 10.16 Use of Stack to Compute f = (a — b)/[(d xe) + c] ab-CdeX+/

Byte Order
SA portion of chips?!

e What order do we read numbers that
occupy more than one byte

e e.g. (humbers in hex to make it easy to
read)

e 12345678 can be stored in 4x8bit
locations as follows

the Order gexamele!

e Address Value (1) Value(2)
e 184 12 /78
e 185 34 56
e 186 56 34
o 187 78 12

e ji.e. read top down or bottom up?

the Order Names

e The problem is called Endian

e The system on the left has the least
significant byte in the lowest address

e This is called big-endian

e The system on the right has the least
significant byte in the highest address

e This is called little-endian

Examele of C Data Structure

Byle
Address

00

08

10

L3

20

struct{

int
int
cdouble b;

char*
char
short

int
S;

pad;

dal7];

//01112_1314

//0x2122_2324_2526_2728
//0x3132_3334
TR, "B, 'CT

/05152

' /0x6161_6364

Big-endian address mapping

11

12 13

01

02

14

04 05 06 07

21
08

22 23
09 0A

25 26 27 28
0C 0D OB OF

31

10

32 33

11

12

A’ . va . vcv .lDl
14' 15'16' 17

'E'FUG| |51 s2
819 1a]] ic b|1e e
61 62 63 ™4
0 21 22 2

word

doubleword
word
'F','G"'" byte array
hal fword
word

Little-endian add ress mapping

Byle

11 12 13 14| Addres

07 06 05 04|03 2 01 00 00
21 22 23 24 25 26 27 28

OF OE OD OC 0B O0A 09 08 0s
'D' 'C' B’ "A' 31 32 33 M

17 :16' 15 '14 13 12 11 10 10
51 52 'G'''F'!'E'

IE IE|ID IC]|IB 1;\519513 18
61 62 63 &

23 2 21 20 20

Alternative View of Memoa MaE

o0 1 o0 E
12 13
13 12
4 1]
in 04
08 21 08 P
[+ 27|
23 | 26 |
24 25
oc [25 oc | A
26 | 2% |
—5— —5—
28 | 21
10 31 10 M
I 32 A
33 B
R 31
14 'A' 14 A’
T
OCD !CO
IDV IDI
18 E s [E |
—TE | —TF |
TGT TGT
ic [o1 1C 52
32 31
X 61 X %]
62 & |
63 62 |
6d 61

(a) Big-¢hdian (b) Little-¢ndian

Standard...What Standard?

e Pentium (x86), VAX are little-endian

e IBM 370, Motorola 680x0 (Mac), and most
RISC are big-endian

e Internet is big-endian
—Makes writing Internet programs on PC more
awkward!

—WinSock provides htoi and itoh (Host to
Internet & Internet to Host) functions to

convert

