

UML2

Diagrammi di Attività

Andrea Polini

Ingegneria del Software Corso di Laurea in Informatica

Brevissima introduzione alle Petri Nets

Le reti di Petri sono un formalismo ideato negli anni 60 per modellare sistemi concorrenti, asincroni, distribuiti, paralleli, non deterministici, e/o stocastici. Formalmente sono definite da una tupla $<\mathcal{P}, \mathcal{T}, \mathcal{F}, \mathcal{W}, \mathcal{M}_0>$:

- lacktriangle \mathcal{P} è un insieme finito di piazze
- T è un insieme finito di transizioni
- $\mathcal{F} \subseteq \{\mathcal{P} \times \mathcal{T}\} \cup \{\mathcal{T} \times \mathcal{P}\}$ è detta relazione di flusso della rete di Petri
- ullet $\mathcal{W}: \mathcal{F} \to \mathbb{N}^+$ è la funzione peso che associa valore non nullo agli elementi di \mathcal{F}
- lacktriangledown $\mathcal{M}_0:\mathcal{P}\to\mathbb{N}$ è la marcatura iniziale ed indica lo stato iniziale della rete di Petri

Deve poi valere che: $\mathcal{P} \cup \mathcal{T} \neq \emptyset$ e $\mathcal{P} \cap \mathcal{T} = \emptyset$

In ogni momento lo stato di una rete di petri è indicato dalla funzione di marcatura che associa ad ogni piazza un numero naturale indicante il numero di "token" (gettoni) presenti nella piazza:

$$\mathcal{M}:\mathcal{P}\to\mathbb{N}$$

I diagrammi di attività (Activity Diagrams) modellano un processo come un'attività costituita da un insieme di nodi connessi da archi. La semantica è descritta tramite il formalismo delle Reti di Petri. Servono dunque a modellare aspetti del comportamento dinamico di un sistema.

```
casi d'uso
```

- classi
- e componenti
- o onorazioni
- o operazioni

I diagrammi di attività (Activity Diagrams) modellano un processo come un'attività costituita da un insieme di nodi connessi da archi. La semantica è descritta tramite il formalismo delle Reti di Petri. Servono dunque a modellare aspetti del comportamento dinamico di un sistema.

- casi d'uso
- classi
- interfacce
- componenti
- collaborazioni
- operazioni

I diagrammi di attività (Activity Diagrams) modellano un processo come un'attività costituita da un insieme di nodi connessi da archi. La semantica è descritta tramite il formalismo delle Reti di Petri. Servono dunque a modellare aspetti del comportamento dinamico di un sistema.

- casi d'uso
- classi
- interfacce
- componenti
- collaborazioni
- operazioni

I diagrammi di attività (Activity Diagrams) modellano un processo come un'attività costituita da un insieme di nodi connessi da archi. La semantica è descritta tramite il formalismo delle Reti di Petri. Servono dunque a modellare aspetti del comportamento dinamico di un sistema.

- casi d'uso
- classi
- interfacce
- componenti
- collaborazion
- operazioni

I diagrammi di attività (Activity Diagrams) modellano un processo come un'attività costituita da un insieme di nodi connessi da archi. La semantica è descritta tramite il formalismo delle Reti di Petri. Servono dunque a modellare aspetti del comportamento dinamico di un sistema.

- casi d'uso
- classi
- interfacce
- componenti
- collaborazioni
- operazioni

I diagrammi di attività (Activity Diagrams) modellano un processo come un'attività costituita da un insieme di nodi connessi da archi. La semantica è descritta tramite il formalismo delle Reti di Petri. Servono dunque a modellare aspetti del comportamento dinamico di un sistema.

- casi d'uso
- classi
- interfacce
- componenti
- collaborazioni
- operazioni

I diagrammi di attività (Activity Diagrams) modellano un processo come un'attività costituita da un insieme di nodi connessi da archi. La semantica è descritta tramite il formalismo delle Reti di Petri. Servono dunque a modellare aspetti del comportamento dinamico di un sistema.

- casi d'uso
- classi
- interfacce
- componenti
- collaborazioni
- operazioni

Diagrammi di Attività e UP

Nel flusso di lavoro dell'Analisi

- modellazione grafica del flusso di un caso d'uso
- modellazione del flusso tra più casi d'uso (diagramma di interazione generale)

Nel flusso di lavoro della Progettazione

- modellazione dei dettagli di un'operazione
- modellazione di specifici algoritmi

Nella modellazione dei processi di business (BP) - altro linguaggio in voga è BPMN 2.0

Tre tipi di nodi:

- nodi azione
- nodi controllo
- nodi oggetto

Due tipi di archi

- flussi di controllo
 - flussi di oagetti

Tre tipi di nodi:

- nodi azione
- nodi controllo
- nodi oggetto

Due tipi di archi:

flussi di controlle

flussi di oagetti

Tre tipi di nodi:

- nodi azione
- nodi controllo
- nodi oggetto

Due tipi di archi:

- flussi di controllo
- flussi di oggetti

Tre tipi di nodi:

- nodi azione
- nodi controllo
- nodi oggetto

Due tipi di archi:

- flussi di controllo
- flussi di oggetti

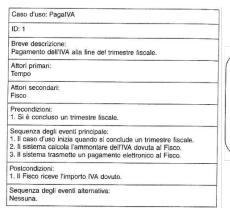
Tre tipi di nodi:

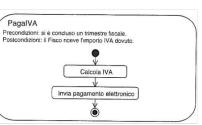
- nodi azione
- nodi controllo
- nodi oggetto

Due tipi di archi:

- flussi di controllo
- flussi di oggetti

Tre tipi di nodi:


- nodi azione
- nodi controllo
- nodi oggetto


Due tipi di archi:

- flussi di controllo
- flussi di oggetti

Casi d'uso e Diagramma delle Attività

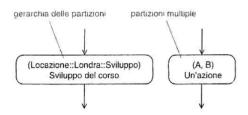
Un diagramma delle attività può fornire una rappresentazione grafica compatta di un Caso d'uso.

Azioni verranno nel diagramma verranno poi raffinate nelle attività di progettazione

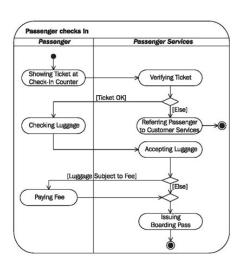
Semantica

La semantica è basata sulle Reti di Petri nelle versioni più complesse non approfondite nelle lezioni di modellazione formale di sistemi. I token possono rappresentare:

- flusso di controllo
- un oggetto
- dati


I token sono lo strumento di controllo del flusso che è comunque sottoposto a:

- post-condizioni del nodo sorgente
- o condizioni di guardia sull'arco
- pre-condizioni sul nodo di destinazione


Partizioni

È possibile raggruppare azioni attraverso uso di partizioni (anche annidate e rappresentanti sistemi esterni):

- casi d'uso
- classi
- componenti
- unità organizzative
- ruoli

Example - Flight check-in

Regole di attivazione dell'azione

- esiste un token su ciascun arco entrante
- tutte le precondizioni locali del nodo azione sono soddisfatte

Regole di uscita

 i token vengono emessi su ogni arco in uscita se la post-condizione viene valutata a vero

- azione di chiamata
- invia segnale
- accettazione evento
- espressione temporale

Regole di attivazione dell'azione

- esiste un token su ciascun arco entrante
- tutte le precondizioni locali del nodo azione sono soddisfatte

Regole di uscita

 i token vengono emessi su ogni arco in uscita se la post-condizione viene valutata a vero

- azione di chiamata
- invia segnale
- accettazione evento
- espressione temporale

Regole di attivazione dell'azione

- esiste un token su ciascun arco entrante
- tutte le precondizioni locali del nodo azione sono soddisfatte

Regole di uscita

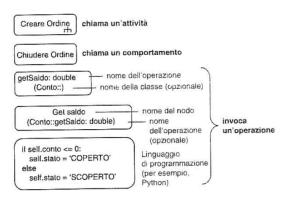
 i token vengono emessi su ogni arco in uscita se la post-condizione viene valutata a vero

- azione di chiamata
- invia segnale
- accettazione evento
- espressione temporale

Regole di attivazione dell'azione

- esiste un token su ciascun arco entrante
- tutte le precondizioni locali del nodo azione sono soddisfatte

Regole di uscita

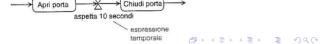

 i token vengono emessi su ogni arco in uscita se la post-condizione viene valutata a vero

- azione di chiamata
- invia segnale
- accettazione evento
- espressione temporale

Nodi Azione di chiamata

- Può attivare:
 - attività
 - comportamento
 - operazione

Nodi Azione Accettazione Evento Temporale


Comportamento

Il nodo ha un'espressione temporale e genera un token quando l'espressione diventa vera.

- un evento nel tempo (fine del mese)
- un punto nel tempo (7 novembre 2018)
- una durata (10 minuti)
- Con nessun flusso in ingresso:

Con flusso in ingresso:

Chiudi porta

- nodo iniziale
- nodo finale dell'attività
- nodo finale del flusso
- nodo decisione
- nodo fusione
- nodo biforcazione
- nodo ricongiunzione

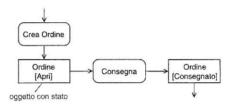
- nodo iniziale
- nodo finale dell'attività
- nodo finale del flusso
- nodo decisione
- nodo fusione
- nodo biforcazione
- nodo ricongiunzione

- nodo iniziale
- nodo finale dell'attività
- nodo finale del flusso
- nodo decisione
- nodo fusione
- nodo biforcazione
- nodo ricongiunzione

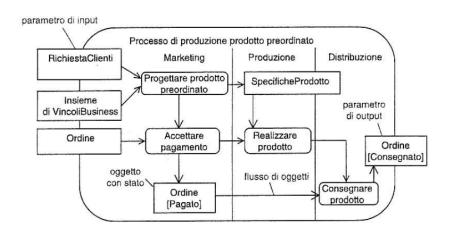
- nodo iniziale
- nodo finale dell'attività
- nodo finale del flusso
- nodo decisione
- nodo fusione
- nodo biforcazione
- nodo ricongiunzione

- nodo iniziale
- nodo finale dell'attività
- nodo finale del flusso
- nodo decisione
- nodo fusione
- nodo biforcazione
- nodo ricongiunzione

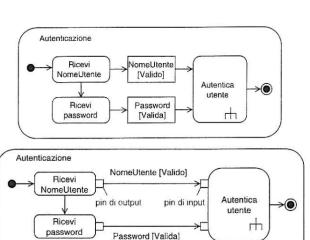
- nodo iniziale
- nodo finale dell'attività
- nodo finale del flusso
- nodo decisione
- nodo fusione
- nodo biforcazione
- nodo ricongiunzione


- nodo iniziale
- nodo finale dell'attività
- nodo finale del flusso
- nodo decisione
- nodo fusione
- nodo biforcazione
- nodo ricongiunzione

Nodi oggetto


I nodi oggetto rappresentano la disponibilità di istanze di classificatori e fungono da buffer per i dati:

- è possibile specificare dimensione del buffer
- i nodi hanno ordinamento (FIFO default)
- comportamento di selezione <<selezione>>


Rappresentazione dello stato degli oggetti

Parametri di attività

Pin

