

UML2

Diagrammi di Interazione

Andrea Polini

Ingegneria del Software Corso di Laurea in Informatica

Comportamento dinamico delle classi

Dopo aver definito un modello dei casi d'uso e realizzato un modello di analisi abbiamo bisogno di rispondere alle seguenti domande:

- Come le classi devono interagire per realizzare il comportamento definito da un caso d'uso?
- Quali messaggi devono essere scambiati?

Bisogna considerare che:

- In un contesto di sviluppo iterativo il lavoro condotto porta tipicamente a modifiche a manufatti precedentemente definiti
- È importante mantenere i manufatti allineati e coerenti
- no dettagli eccessivi quali parametri specifici delle operazioni e loro tipo

Realizzazione dei casi d'uso

Realizzazione dei casi d'uso è attività che coinvolge:

- Diagramma delle classi di analisi
- Diagrammi di Interazione
- Requisiti Speciali
- Raffinamento dei casi d'uso

Realizzazione dei casi d'uso

I principali diagrammi utilizzati nella concretizzazione di un caso d'uso sono i diagramma di interazione. Due entità fondamentali costituiscono questo tipo di diagrammi:

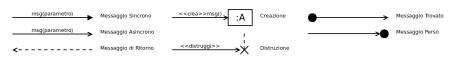
- linee di vita
- messaggi

Linee di vita

Servono a rappresentare un elemento di una classe all'interno di un'interazione. Consta di:

- Nome
- Tipo
- Selettore

Messaggi


Rappresentano tipo di interazione tra due linee di vita. Una comunicazione si può risolvere in:

- chiamata di un'operazione
- creazione/distruzione di un'istanza
- invio di un segnale

La ricezione di un messaggio attiva il focus di controllo per la linea di vita che riceve il messaggio stesso. Il focus risulterà dunque annidato.

Tipologie di messaggi

UML 2 fornisce la possibilità di specificare le seguenti tipologie di messaggi:

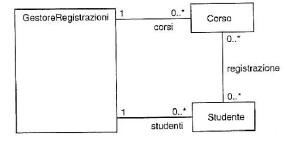
Diagrammi di interazione

Interazione

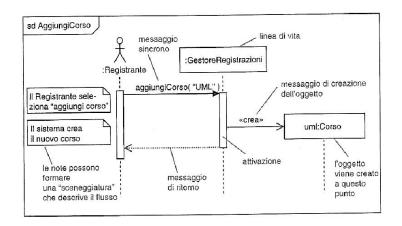
specifica di come alcuni oggetti si scambiano messaggi nel tempo per eseguire un compito nell'ambito di un certo contesto

- Diagrammi di sequenza
- Diagrammi di Comunicazione
- Diagrammi di Interazione Generale
- Diagrammi di Temporizzazione

Diagrammi di Sequenza


Sono la forma di diagramma di interazione più usata nelle fasi dell'analisi e realizzazione dei casi d'uso.

- gli oggetti che interagiscono vengono rappresentati da rettangoli con "coda"
- messaggi vengono rappresentati tra le linee di vita
- il focus viene rappresentato da un rettangolo sottile sulla linea di vita
- è possibili rappresentare messaggi annidati
- è possibile rappresentare invarianti di stato
- è possibile rappresentare vincoli di durata


Esempio - Linee di vita, messaggi ed attivazioni

Caso d'uso: AggiungiCorso	
ID:8	
Breve descrizione: Aggiunta di dettagli di un nuovo corso al sistema	
Attori primari: Registrante	
Attori secondari: Nessuno	3. 3. 3. 3.
Precondizioni: 1. Il Registrante si è collegato al sistema	
Sequenza degli eventi principale: 1. Il Registrante seleziona "aggiungi corso" 2. I Registrante inserisce il nome del nuovo corso 3. Il sistema crea il nuovo corso	
Postcondizioni: 1. Un nuovo corso è stato aggiunto al sistema	
Sequenza degli eventi alternativa: CorsoEsiste	

Esempio -Linee di vita, messaggi ed attivazioni

Esempio - Linee di vita, messaggi ed attivazioni

Esempio invarianti di stato e vincoli di durata

Stato

Condizione o situazione durante la vita di un oggetto in cui esso soddisfa una condizione, esegue un'attività o aspetta un evento.

Transizione di stato

un oggetto cambia il suo stato a seguito dell'esecuzione di un'attività, o all'occorrenza di un evento. La rappresentazione di tali aspetti può avvenire utilizzando i diagrammi della macchine a stati che sono associabili a qualsiasi classificatore

Caso d'uso: Elaborat In Ordine

ID:5

Breve descrizione

Il Cliente avvia un ordine che viene poi pagato e consegnato

Atlori primari Cliente

Attori secondari

Nessuno.

Precondizioni Nessuna.

Sequenza degli eventi principale

- 1. Il caso d'uso inizia quando l'attore Cliente crea un nuovo ordine.
- Il Cliente paga l'ordine a saldo.
- I prodotti vengono consegnati al Cliente entro 28 giorni dalla data del pagamento finale.

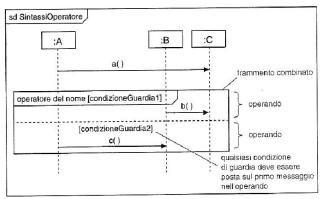
Postcondizioni

- 1. L'ordine è stato pagato.
- I prodotti sono stati consegnati entro 28 giorni dal pagamento finale

Sequenza degli eventi alternativa PagamentoInEccesso

OrdineAnnullato

ProdottiNonConsegnati


ProdottiConsegnatiInRitardo PagamentoParziale

Esempio invarianti di stato e vincoli di durata

Frammenti combinati

È possibile rappresentare sequenze complesse attraverso l'uso di frammenti combinati. Un frammento combinato ha un operatore, uno o più operandi e zero o più condizioni di guardia. La sintassi per tali costrutti è esemplificata da:

Frammenti combinati - Tipologie Operatori

- opt: sequenza opzionale se condizione vera
- alt: sequenze alternative. Eseguito operando con guardia vera. Guardie devono essere mutamente esclusive
- loop: ciclo (prossima slide)
- break: uscita da un operando
- ref: riferimento ad altro diagramma
- par: parallelismo
- critical: esecuzione atomica
- seq: sequenzializzazione debole
- strict: sequenzializzazione forte
- neg: iterazioni non valide
- ignore: elenca messaggi omessi
- consider: solo messaggi inclusi
- assert: unico comportamento accettabile in quel punto dell'esecuzione

loop

La sintassi dei loop è data da: loop min, max [condizione] Il significato è:

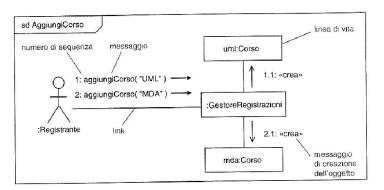
Esegui il loop un numero minimo di volte min continua l'esecuzione finché
condizione è vera per un numero massimo di max-min volte.

Tipici loop e loro rappresentazione:

- while (true) {body}
- for i=n to m {body}
- while (espressioneBooleana) {body}
- repeat {body} while (espressioneBooleana)
- forEach oggetto della collezione {body}
- forEach oggetto della classe {body}

loop

La sintassi dei loop è data da: loop min, max [condizione] Il significato è:


Esegui il loop un numero minimo di volte min continua l'esecuzione finché
condizione è vera per un numero massimo di max-min volte.

Tipici loop e loro rappresentazione:

- while (true) {body}
- for i=n to m {body}
- while (espressioneBooleana) {body}
- repeat {body} while (espressioneBooleana)
- forEach oggetto della collezione {body}
- forEach oggetto della classe {body}

Diagrammi di comunicazione

Si focalizzano sugli aspetti strutturali dell'interazione mostrando come le linee di vita sono collegate tra loro

Il potere espressivo è inferiore a quello dei diagrammi di sequenza è possibile comunque esprimere iterazioni e ramificazioni

SSD

- SSD sta per System Sequence Diagram
- Primo passo verso la progettazione di un caso d'uso. Servono a rappresentare gli eventi di sistema che vengono generati dall'interazione con l'utente
- possibile specificare Pre- e Post-condizioni per gli eventi
 - Creazione o cancellazione di oggetto
 - Formazione o rotture di collegamento
 - Cambiamento del valore di un attributo
- Completezza?