
1. Introduction
Motivations and General Structure of a Compiler

Andrea Polini, Luca Tesei

Compilers
Master of Science in Computer Science

University of Camerino

(Compilers) 1. Introduction CS@UNICAM 1 / 19



ToC

WARNING
Slides are distributed to help students in their preparation to the exam.
In no way they intend to substitute text books. Instead a thorough
study of text books constitutes the most wise strategy to maximise
the chances to pass the final exam.

1 General Information

2 Introduction to Compilers

(Compilers) 1. Introduction CS@UNICAM 2 / 19



General Information

ToC

1 General Information

2 Introduction to Compilers

(Compilers) 1. Introduction CS@UNICAM 3 / 19



General Information

Teacher and Course

Luca Tesei
e-mail: luca.tesei@unicam.it
web:

General: http://www.lucatesei.com
Unicam & Office Hours: http://docenti.unicam.it/...

For objectives, description, material and exam see the wiki
http://didattica.cs.unicam.it/...

For recorded lectures, notices and other material see the Google
Classroom page

(Compilers) 1. Introduction CS@UNICAM 4 / 19

mailto:luca.tesei@unicam.it
http://www.lucatesei.com
http://docenti.unicam.it/pdett.aspx?ids=N&tv=d&UteId=572&ru=RU
http://didattica.cs.unicam.it/


General Information

Course Objective

At the end of the course:
you will know the most common ways of specifying programming
languages and other structured languages
you will know the basic theory and methodology behind the
construction of a compiler
you will be able to understand the basic issues related to
compilers construction
you will have acquired basic skills to develop a
compiler/transformer for a simple language

(Compilers) 1. Introduction CS@UNICAM 5 / 19



General Information

Study material

Reference book:

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman
Compilatori. Principi, tecniche e strumenti. Ediz. MyLab. Con
aggiornamento online, Pearson, 2019.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman
Compilers – Principles, Techniques and Tools, 2nd Ed.
Addison-Wesley, 2007.

Terence Parr
The Definitive ANTLR4 Reference
The Pragmatic Programmers, 2012.

Further references possibly provided by the teacher

(Compilers) 1. Introduction CS@UNICAM 6 / 19

https://www.amazon.it/Compilatori-Principi-tecniche-strumenti-aggiornamento/dp/889191441X
https://www.amazon.it/Compilatori-Principi-tecniche-strumenti-aggiornamento/dp/889191441X
https://www.pearson.com/us/higher-education/program/Aho-Compilers-Principles-Techniques-and-Tools-2nd-Edition/PGM167067.html?tab=order
https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference


General Information

Final Exam

1. Project – dates of delivery scheduled in the ESSE3 system
You will be asked to develop a compiler/translator for a simplified
language using the ANTLR4 parser generator

2. Written Test – dates scheduled in the ESSE3 system
The paper will contain exercises that ask to the student to solve
problems not solved during classes, or questions on more
theoretical aspects. During the lectures we will discuss the
solutions of similar exercises

3. Registration of the Mark – once the student’s project is accepted
(mark ≥ 18) and the student passed the written test (mark ≥ 18),
the final mark is the average

4. Project and Written Test are independent, they do not have to be
passed in the same exam session. Each grade lasts for one solar
year and is automatically cancelled if the same partial exam is
attempted again.

(Compilers) 1. Introduction CS@UNICAM 7 / 19



Introduction to Compilers

ToC

1 General Information

2 Introduction to Compilers

(Compilers) 1. Introduction CS@UNICAM 8 / 19



Introduction to Compilers

Compilers vs. Interpreters

Two approaches to permit the execution of a program, written using an
high level language, on a physical machine:

Compilers: use of a program that can read a program in one
language (source) and translate it into an equivalent program in
another language (target)
Interpreters: use of a program that takes in input the program and
data and run the program on the data without the need to make an
explicit translation into the machine code

Java?

(Compilers) 1. Introduction CS@UNICAM 9 / 19



Introduction to Compilers

Compilers vs. Interpreters

Two approaches to permit the execution of a program, written using an
high level language, on a physical machine:

Compilers: use of a program that can read a program in one
language (source) and translate it into an equivalent program in
another language (target)
Interpreters: use of a program that takes in input the program and
data and run the program on the data without the need to make an
explicit translation into the machine code

Java?

(Compilers) 1. Introduction CS@UNICAM 9 / 19



Introduction to Compilers

Birth

1954 – IBM develops the 704 (software cost > hardware cost)
1954 - 1957 – FORTRAN I (FORmula TRANslating system) is
developed (In 1958 50% of code is written in FORTRAN)

The definition of the first compiler led to an enourmous body of
theoretical work

Compiler constuction is a complex engineering activity (practice) which
need to be based on well defined theoretical background (theory)

(Compilers) 1. Introduction CS@UNICAM 10 / 19



Introduction to Compilers

Structure of a Compiler

Two main parts:
Analysis(front end) and Synthesis (back end)

(Compilers) 1. Introduction CS@UNICAM 11 / 19



Introduction to Compilers

Lexical analysis

After having defined the alphabet to be used, the first things to do is to
recognize words

This is a sentence

The lexical analysis divides the program text into words and produce a
sequence of tokens (〈token-name, attribute-value〉)

position = initial + rate * 60

(Compilers) 1. Introduction CS@UNICAM 12 / 19



Introduction to Compilers

Lexical analysis

After having defined the alphabet to be used, the first things to do is to
recognize words

This is a sentence

The lexical analysis divides the program text into words and produce a
sequence of tokens (〈token-name, attribute-value〉)

position = initial + rate * 60

(Compilers) 1. Introduction CS@UNICAM 12 / 19



Introduction to Compilers

Syntax Analysis

After having understood the words we need to understand the
sentence structure. Not so much different from the syntax of what we
do for understanding natural languages

This line includes a long sentence

(Compilers) 1. Introduction CS@UNICAM 13 / 19



Introduction to Compilers

Semantic Analysis

Once the structure of the sentence is clear we need to understand the
meaning:

Humans can manage quite well this activity, the same is not so
true for machines

Examples:
Jack said Jerry left his assignment at home
Jack said Jack left his assignment at home?
Jack left her assignment at home

Compilers perform many semantic checks besides variable
bindings and type checking

(Compilers) 1. Introduction CS@UNICAM 14 / 19



Introduction to Compilers

Intermediate Code Generation

An intermediate representation that is easy to produce and easy to
translate is useful.
Typically based on a three-address code form i.e. assembly like
instructions with three operands per instruction:

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

(Compilers) 1. Introduction CS@UNICAM 15 / 19



Introduction to Compilers

Code Optimization

Not so important for natural language! It is the most complex and effort
prone activity in the construction of modern compilers

The compiler modifies the program so that it
runs faster
uses less memory
uses less power
makes less database accesses
uses less bandwidth
. . .

t1 = id3 * 60.0
id1 = id2 + t1

Optimisations can be machine dependent or machine independent

(Compilers) 1. Introduction CS@UNICAM 16 / 19



Introduction to Compilers

Code generation

Takes as input the intermediate representation of the source program
and produces assembly code to be run on the target machine

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

Judicious assignment of registers to hold variables is a crucial aspect,
as well as the memory management, which is a relevant aspect also
for the intermediate code generation phase

Proportions of the various phases
changed from the pioneering era

(Compilers) 1. Introduction CS@UNICAM 17 / 19



Introduction to Compilers

Code generation

Takes as input the intermediate representation of the source program
and produces assembly code to be run on the target machine

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

Judicious assignment of registers to hold variables is a crucial aspect,
as well as the memory management, which is a relevant aspect also
for the intermediate code generation phase

Proportions of the various phases
changed from the pioneering era

(Compilers) 1. Introduction CS@UNICAM 17 / 19



Introduction to Compilers

General remarks

New computer architectures need new compilers
parallelism (instruction-level, processor-level)
memory hierarchies

New linguistic constructions ask for the development of new
algorithms and new data structure to translate the code
Code optimisation faces many undecidable problems, thus theory
alone is not enough and we need heuristics, good engineers, and
good programmers

(Compilers) 1. Introduction CS@UNICAM 18 / 19



Introduction to Compilers

General remarks

New computer architectures need new compilers
parallelism (instruction-level, processor-level)
memory hierarchies

New linguistic constructions ask for the development of new
algorithms and new data structure to translate the code
Code optimisation faces many undecidable problems, thus theory
alone is not enough and we need heuristics, good engineers, and
good programmers

(Compilers) 1. Introduction CS@UNICAM 18 / 19



Introduction to Compilers

General remarks

New computer architectures need new compilers
parallelism (instruction-level, processor-level)
memory hierarchies

New linguistic constructions ask for the development of new
algorithms and new data structure to translate the code
Code optimisation faces many undecidable problems, thus theory
alone is not enough and we need heuristics, good engineers, and
good programmers

(Compilers) 1. Introduction CS@UNICAM 18 / 19



Introduction to Compilers

Interesting Questions?

Why are there so many programming languages?
Application domains have distinctive needs (scientific computing,
business applications, system programming, etc.)

Why are there new programming languages?
Introducing changes in a widely used language is complex
Cost of training programmers is the dominant cost for a
programming language
productivity > training cost?

What is a good programming language?
No definitive metric exists
Is it the one programmers use?

(Compilers) 1. Introduction CS@UNICAM 19 / 19



Introduction to Compilers

Interesting Questions?

Why are there so many programming languages?
Application domains have distinctive needs (scientific computing,
business applications, system programming, etc.)

Why are there new programming languages?
Introducing changes in a widely used language is complex
Cost of training programmers is the dominant cost for a
programming language
productivity > training cost?

What is a good programming language?
No definitive metric exists
Is it the one programmers use?

(Compilers) 1. Introduction CS@UNICAM 19 / 19



Introduction to Compilers

Interesting Questions?

Why are there so many programming languages?
Application domains have distinctive needs (scientific computing,
business applications, system programming, etc.)

Why are there new programming languages?
Introducing changes in a widely used language is complex
Cost of training programmers is the dominant cost for a
programming language
productivity > training cost?

What is a good programming language?
No definitive metric exists
Is it the one programmers use?

(Compilers) 1. Introduction CS@UNICAM 19 / 19


	General Information
	Introduction to Compilers

