
ANTLR4 Basics

Andrea Polini, Luca Tesei

Compilers
MSc in Computer Science

University of Camerino

(Compilers) ANTLR4 Basics CS@UNICAM 1 / 35

What’s that?

ANTLR v.4 is a powerful parser generator that you can use to read,
process, execute, or translate structured text or binary files.

From a grammar as a formal language description, ANTLR generates
a parser for that language that can automatically build parse trees.
ANTLR also automatically generates tree walkers that you can use to
visit the nodes of those trees to execute application-specific code.

(Compilers) ANTLR4 Basics CS@UNICAM 2 / 35

What’s that?

ANTLR v.4 is a powerful parser generator that you can use to read,
process, execute, or translate structured text or binary files.

From a grammar as a formal language description, ANTLR generates
a parser for that language that can automatically build parse trees.
ANTLR also automatically generates tree walkers that you can use to
visit the nodes of those trees to execute application-specific code.

(Compilers) ANTLR4 Basics CS@UNICAM 2 / 35

How can I get it?

Download last complete jar from
http://www.antlr.org/download.html

Put it in an appropriate folder, e.g. /usr/local/lib
The jar contains:

all dependencies necessary to run the ANTLR tool
the runtime library needed to compile and execute recognizers
generated by ANTLR
a sophisticated tree layout support library:
http://code.google.com/p/treelayout
a template engine useful for generating code and other structured
text: http://www.stringtemplate.org

(Compilers) ANTLR4 Basics CS@UNICAM 3 / 35

http://www.antlr.org/download.html
http://code.google.com/p/treelayout
http://www.stringtemplate.org

How can I install it?

Set the CLASSPATH environment variable to include "." and the
jar:
> export

CLASSPATH=".:/usr/local/bin/antlr-4.7.2-complete.jar:$CLASSPATH"

You can do it every time you start a session in a shell or you can
edit the .bash_profile file
To run the ANTLR4 Tool:
> java -jar /usr/local/lib/antlr-4.7.2-complete.jar

or directly:
> java org.antlr.v4.Tool

To save typing:
> alias antlr4=’java -jar /usr/local/lib/antlr-4.0-complete.jar’

(Compilers) ANTLR4 Basics CS@UNICAM 4 / 35

How should I use it?

File Hello.g4
grammar Hello; // Define a grammar called Hello
r : ’hello’ ID ; // Match the word ’hello’ followed by an identifier
ID : [a-z]+ ; // Match lower-case identifiers
WS : [\t \r \n]+ -> skip ; // skip spaces, tabs, newlines, \r (Windows)

> antlr4 Hello.g4
produces:
Hello.g4 HelloLexer.java HelloParser.java
Hello.tokens HelloLexer.tokens
HelloBaseListener.java HelloListener.java
Then:
> javac *.java

(Compilers) ANTLR4 Basics CS@UNICAM 5 / 35

Testing Hello

ANTLR4 generates an executable recognizer embodied by
HelloParser.java and HelloLexer.java

There is not (yet) a main program to trigger language recognition
ANTLR4 provides a a flexible testing tool in the runtime library
called TestRig

> alias grun=’java org.antlr.v4.gui.TestRig’

The test rig takes:
a grammar name
a starting rule name
various options for the desired output

(Compilers) ANTLR4 Basics CS@UNICAM 6 / 35

Testing Hello

> grun Hello r -tokens # start the TestRig on grammar Hello at rule r
hello parrt # input for the recognizer that you type
<eof> # type ctrl+D on Unix or ctrl+Z on Windows}\\

Outputs a detailed description of the tokens:

[@0,0:4=’hello’,<1>,1:0]
[@1,6:10=’parrt’,<2>,1:6]
[@2,12:11=’<EOF>’,<-1>,2:0]

(Compilers) ANTLR4 Basics CS@UNICAM 7 / 35

Testing Hello

> grun Hello r -tree
hello parrt
<eof>

Outputs the parse tree in LISP-style text:

(r hello parrt)

(Compilers) ANTLR4 Basics CS@UNICAM 8 / 35

Testing Hello

> grun Hello r -gui
hello pippo
<eof>

Opens a graphical representation of the parse tree:

(Compilers) ANTLR4 Basics CS@UNICAM 9 / 35

ANTLR4 Plugin for IDEs

For Eclipse: https://github.com/jknack/antlr4ide
For other IDEs: https://www.antlr.org/tools.html

(Compilers) ANTLR4 Basics CS@UNICAM 10 / 35

https://github.com/jknack/antlr4ide
https://www.antlr.org/tools.html

Compiler Phases in ANTLR4

Phases
ANTLR4 follows the usual conceptual structure of a generic compiler
that we have seen in this course

(Compilers) ANTLR4 Basics CS@UNICAM 11 / 35

Grammars and Parsers in ANTLR4

Grammar Definitions
Rules defines non-terminal symbols starting with lower-case letters

Grammar Implementation
ANTLR4 essentially creates a Recursive Descent Parser for the given
grammar

(Compilers) ANTLR4 Basics CS@UNICAM 12 / 35

Lookaheads

Lookaheads
ANTLR4 autonomously decide how many lookaheads are needed to
take parsing decision (even the whole text!)

Left Recursion
ANTLR4 accepts left recursive grammars and handles them
transparently!

(Compilers) ANTLR4 Basics CS@UNICAM 13 / 35

Ambiguity

Ambiguity
ANTLR4 accepts ambiguous grammars, but it cannot decide alone on
which parse tree to generate for ambiguous sentences

(Compilers) ANTLR4 Basics CS@UNICAM 14 / 35

Ambiguity

ANTLR4 will create, for an ambiguous sentence, the first parse
tree that can be generated
The order in which the rules are written in the .g4 file matters!
In case of multiple choices the first rule is applied
In case of fail, backtrack!

This resolves also possible ambiguities in LEXER (rules defining
symbols starting with upper-case letters):

(Compilers) ANTLR4 Basics CS@UNICAM 15 / 35

Semantic Analysis and Code Generation

ANTLR4 permits the definition of Syntax Directed Translation
Schemes
However, the main and preferred way to implement actions
associated to parsing is through walking or visiting the generated
parse tree
This has a lot of advantages in modularity and re-usability

(Compilers) ANTLR4 Basics CS@UNICAM 16 / 35

ANTLR4 Java Classes

ANTLR4 creates by default Java code for a given .g4 file
Some ANTLR4 classes are CharStream, Lexer, Token,
Parser and ParseTree

(Compilers) ANTLR4 Basics CS@UNICAM 17 / 35

ANTLR4 Java Classes for Rules

ANTLR4 creates specific subclasses for each symbol
This facilitates accessing to the subtrees

(Compilers) ANTLR4 Basics CS@UNICAM 18 / 35

Run-time tree walking

By default ANTLR4 generates a parse tree listener interface
This responds to events triggered by the built-in tree walker
The built-in tree walker performs a dept-first left-to-right visit of the
parse tree
For each node rule name two methods enterName() and
exitName() are created:

(Compilers) ANTLR4 Basics CS@UNICAM 19 / 35

Run-time tree walking

(Compilers) ANTLR4 Basics CS@UNICAM 20 / 35

Run-time tree visitors

We can also decide a particular order in which the tree is visited,
different from the standard one
Call ANTLR4 with -visitor option
It generates a visit method for each rule name
Inside the code we have to make explicit calls to the other visit
methods

(Compilers) ANTLR4 Basics CS@UNICAM 21 / 35

Starter Project

Let’s create the first application
We want to parse integer lists inside possibly nested curly braces:
{1, 2, 3} or {1, {2, 3}, 4 }

We want to produce corresponding strings of Unicode characters
E.g., {1, 2, 3} is translated to "\u0001\u0002\u0003"

(Compilers) ANTLR4 Basics CS@UNICAM 22 / 35

Starter Project

Let’s run ANTLR4 and produce the stub code:

(Compilers) ANTLR4 Basics CS@UNICAM 23 / 35

Starter Project

Analyse the code
Create simple Test class
Create a subclass to define actions at enter and exit of the rules
Create a class for realising the translation

(Compilers) ANTLR4 Basics CS@UNICAM 24 / 35

Expressions Project

Let’s create an ANTLR4 project for a desk calculator
It will parse sequences of expressions and will print the
corresponding value

(Compilers) ANTLR4 Basics CS@UNICAM 25 / 35

Importing grammars

ANTLR4 permits to import grammars
Very useful for modularity

(Compilers) ANTLR4 Basics CS@UNICAM 26 / 35

Handling Errors

ANTLR4 automatically handles errors
The standard behaviour can be customised (advanced topic)

(Compilers) ANTLR4 Basics CS@UNICAM 27 / 35

Rule labeling

When rules have alternatives it is better to give names to them

(Compilers) ANTLR4 Basics CS@UNICAM 28 / 35

Calculator Implementation with Visitor

Let’s implement the calculator using the Visitor Pattern

(Compilers) ANTLR4 Basics CS@UNICAM 29 / 35

Calculator Implementation with Visitor

Subclass LabeledExprBaseVisitor<T> with T as Integer
Redefine the behaviour of the visit methods
Create a class with a main that creates a visitor object and visits a
parse tree
See Code...

(Compilers) ANTLR4 Basics CS@UNICAM 30 / 35

Translator from Java classes to Java interfaces

Let’s implement a translator that can parse Java files!
We are given a Java grammar specification Java.g4

The translator has to transform the code of a Java class into a
code for a Java interface containing the same methods without
implementation
Any comment appearing within the method signature must be
retained

(Compilers) ANTLR4 Basics CS@UNICAM 31 / 35

Translator from Java classes to Java interfaces

must produce (see code):

(Compilers) ANTLR4 Basics CS@UNICAM 32 / 35

Implementing an SDT in ANTLR4

Let’s implement a translator that parses a csv text file with tab as
separator
We want to select the data values of a particular column

Base grammar:

(Compilers) ANTLR4 Basics CS@UNICAM 33 / 35

Implementing an SDT in ANTLR4

Enriched grammar with code

(Compilers) ANTLR4 Basics CS@UNICAM 34 / 35

Implementing an SDT in ANTLR4

Running the parser (see code)

(Compilers) ANTLR4 Basics CS@UNICAM 35 / 35

