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Lexical Analysis: What does a Lexer do?

Lexical Analysis

if (i==j)
z=0;

else
z=1;

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;
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Lexical Analysis: What does a Lexer do?

Token, Pattern Lexeme

Token
A token is a pair consisting of a token name and an optional attribute
value. The token names are the input symbols that the parser
processes.

Pattern
A pattern is a description of the form that the lexemes of a token may
take. In the case of a keyword as a token, the pattern is just the
sequence of characters that form the keyword.

Lexeme
A lexeme is a sequence of characters in the source program that
matches the pattern for a token and is identified by the lexical analyzer
as an instance of that token.
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Lexical Analysis: What does a Lexer do?

Lexical Analysis

Token Class (or Class)
- In English: Noun, Verb, Adjective, Adverb, Article, . . .

- In a programming language: Identifier, Keywords, “(”, “)”, Numbers,
. . .
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Lexical Analysis: What does a Lexer do?

Lexical Analysis

Token classes corresponds to sets of strings

Identifier
- strings of letter or digits starting with a letter

Integer
- a non-empty string of digits

Keyword
- “else”, “if”, “while”, . . .

Whitespace
- a non-empty sequence of blanks, newlines, and tabs
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Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore the role of the lexical analyser (Lexer) is:
Classify program substring according to role (token class)
communicate tokens to parser

Why is not wise to merge the two components?
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Lexical Analysis: What does a Lexer do?

Lexical Analysis

Let’s analyse these lines of code:

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

x=0;\n\twhile (x<10) {\n\tx++;\n}

Token Classes: Identifier, Integer, Keyword, Whitespace
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Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore an implementation of a lexical analyser must do two things:
Recognise substrings corresponding to tokens

the lexemes

Identify the token class for each lexemes
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Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

FORTRAN rule: whitespace is insignificant
i.e. VA R1 is the same as VAR1

DO 5 I = 1,25

DO 5 I = 1.25

In FORTRAN the “5” refers to a label you will find in the following of the program code
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Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

The goal is to partition the string. This is implemented by reading
left-to-right, recognising one token at a time
“Lookahead” may be required to decide where one token ends
and the next token begins
PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE(ARG1,...,ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead
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Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

C++ template syntax:

Foo<Bar>

C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

(Compilers) 2. Lexical Analysis CS@UNICAM 12 / 65



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

C++ template syntax:

Foo<Bar>

C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

(Compilers) 2. Lexical Analysis CS@UNICAM 12 / 65



Lexical Analysis: How can we do it?
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Lexical Analysis: How can we do it?

Languages

We need to define which is the set of strings in any token class.
Therefore we need to choose the right mechanisms to describe such
sets:

- Reducing at minimum the complexity needed to recognise
lexemes

- Identifying effective and simple ways to describe the patterns

- Regular languages seem to be enough powerful to define all the
lexemes in any token class

- Regular expressions are a suitable way to syntactically identify
strings belonging to a regular language
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Lexical Analysis: How can we do it?

Strings

Parts of a string
Terms related to stings:
I a prefix of a string s is the string obtained removing zero or more

characters from the end of s
I a suffix of a string s is the string obtained removing zero or more

characters from the beginning of s
I a substring of a string s is obtained deleting any prefix and any

suffix from s
I proper prefixes, suffixes and substrings of a string s are those

prefixes, suffixes and substrings of s, respectively, that are not
empty (ε) or not equal to s itself

I a subsequence of a string s is any string formed by deleting zero
or more not necessarily consecutive positions of s
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Lexical Analysis: How can we do it? Regular Expressions

Regular expressions (regexp): Syntax

To form a syntactically correct regexp we have the following rules:
Single character: ’c’ is a regexp for each c ∈ Σ;
Epsilon: ε is a regexp;
Union: a + b is a regexp if a and b are regexps (also written a|b);
Concatenation: a · b is a regexps if a and b are regexps (also
written ab);
Iteration (Kleene star): a∗ is a regexp if a is a regexp;
Brackets: (a) is a regexp if a is a regexp
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Lexical Analysis: How can we do it? Regular Expressions

Regular expressions (regexp): Syntax

To avoid too much brackets we fix the following precedence and
associativity rules:
∗ has the highest precedence and is left associative
· has the second highest precedence and is left associative
+ has the lowest precedence and is left associative
e.g., a + bc∗ means a + (b(c∗)); abc + d + e means
(((ab)c) + d) + e; . . .

Moreover we will use the following shorthands:
At least one: a+ ≡ aa∗

Option: a? ≡ a + ε

Range: [a− z] ≡ ′a′ + ′b′ + · · ·+ ′z ′

Excluded range: [∧a− z] ≡ complement of [a− z]

(Compilers) 2. Lexical Analysis CS@UNICAM 17 / 65



Lexical Analysis: How can we do it? Regular Expressions

Meaning function L

The meaning function L maps syntax to semantics: L (e) = M
where e is a regexp and M is a set of strings

Given an alphabet Σ and regular expressions a and b over Σ:
L (ε) = {ε}
L (′c′) = {c}, where c ∈ Σ

L (a + b) = L (a) ∪L (b)

L (ab) = L (a)�L (b)

L (a∗) =
⋃

i≥0 L (a)i where
{

L (a)0 = {ε}
L (a)i = L (a)�L (a)i−1

� is the concatenation of languages:

L1 � L2 = {s1s2 | s1 ∈ L1 ∧ s2 ∈ L2}
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Lexical Analysis: How can we do it? Regular Expressions

Some equivalence laws for regexps

Given regexps e1 and e2, they are equivalent, written e1 ≡ e2, if and
only if L (e1) = L (e2)

Let a,b, c be regexps, then:

a + b ≡ b + a + is commutative
a + (b + c) ≡ (a + b) + c + is associative
a + a ≡ a + is idempotent
a(bc) ≡ (ab)c · is associative
a(b + c) ≡ ab + ac · distributes over + on the left
(a + b)c ≡ ac + bc · distributes over + on the right
aε ≡ εa ≡ a ε is the identity for ·
(ε+ a)∗ ≡ a∗ ε is guaranteed in a closure
a∗∗ ≡ a∗ the Kleene star is idempotent
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Lexical Analysis: How can we do it? Regular Expressions

Regular Languages

Semantics of Regular Expressions
Regular expressions (syntax)
specify regular languages (semantics)

A language L is regular if and only if there exists a regular expression
e such that L (e) = L

Closure Properties of Regular Languages
Regular languages are closed with respect to union, intersection,
complement

If L1 and L2 are regular languages then L1 ∪ L2, L1 ∩ L2 and Lc
1 are

regular languages
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Lexical Analysis: How can we do it? Regular Expressions

Exercise
Consider Σ = {0, 1}. What are the sets defined by the following REs?

I 1∗

I (1 + 0)1
I 0∗ + 1∗

I (0 + 1)∗

Exercise
Given the regular language identified by (0 + 1)∗1(0 + 1)∗ which are the regular
expressions identifying the same language among the following one:

I (01 + 11)∗(0 + 1)∗

I (0 + 1)∗(10 + 11 + 1)(0 + 1)∗

I (1 + 0)∗1(1 + 0)∗

I (0 + 1)∗(0 + 1)(0 + 1)∗
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Lexical Analysis: How can we do it? Regular Expressions

Exercise
Choose the regular languages that are correct specifications of the
following English-language description:
Twelve-hour times of the form “04:13PM”. Minutes should always be a two digit
number, but hours may be a single digit

I (0 + 1)?[0− 9] : [0− 5][0− 9](AM + PM)

I ((0 + ε)[0− 9] + 1[0− 2]) : [0− 5][0− 9](AM + PM)

I (0∗[0− 9] + 1[0− 2]) : [0− 5][0− 9](AM + PM)

I (0?[0− 9] + 1(0 + 1 + 2)) : [0− 5][0− 9](A + P)M
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Lexical Analysis: How can we do it? Regular Expressions

Exercise
Describe the languages denoted by the following RegExp:
I a(a|b)∗a
I a∗ba∗ba∗ba∗

I ((ε|a)b∗)∗
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Lexical Analysis: How can we do it? Regular Expressions

Regular definitions

For notational convenience we give names to certain regular
expressions. A regular definition, on the alphabet Σ is sequence of
definitions of the form:

d1 → r1

d2 → r2

. . .
dn → rn

where:
Each di is a new symbol, not in Σ, and not the same as any other
of the d ’s
Each ri is a regular expression over the alphabet
Σ ∪ {d1,d2, . . . ,di−1}
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Lexical Analysis: How can we do it? Regular Expressions

Using regular definitions

The tokens of a language can be defined as:

letter → a|b|...|z|A|B|...|Z
letter_→ letter |_

compact syntax: [a− zA− B]

digit → 0|1|...|9
compact syntax: [0− 9]

integers → (−|ε)digit · digit∗

identifiers → letter_(letter_|digit)∗
expnot → digit(.digit+E(+|−)digit+)? (Exponential Notation)
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Lexical Analysis: How can we do it? Regular Expressions

Exercise
Write regular definitions for the following languages:
I All strings of lowercase letters that contains the five vowels in

order
I All strings of lowercase letters in which the letters are in

ascending lexicographic order
I All strings of digits with no repeated digits
I All strings with an even number of a’s and and an odd number of

b’s
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Lexical Analysis: How can we do it? Regular Expressions

How does the lexical analyser work?

Suppose we are given a regular definition R = {d1, . . . ,dm}
1 Let the input be x0 · · · xn ∈ Σ∗

For 0 ≤ i ≤ n check if x0 · · · xi ∈ L (dk ) for some k ∈ {1, . . . ,m}
2 if success then we know that x0 · · · xi ∈ L (dk ) for some k
3 remove x0 · · · xi from input and go to 1

However, things are not so simple. . . consider the following regular
definition:

1 d1 → a - token T1

2 d2 → abb - token T2

3 d3 → a∗b+ - token T3

Input: aaba, which are the tokens to recognise?
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i < j , i , j ∈ {0, . . . ,n}:
x0 · · · xi ∈ L (dk ) for some k , and
x0 · · · xi · · · xj ∈ L (dh) for some h

Which is the match to consider?

longest match rule, i.e., pattern dh is recognised

Suppose that at the same time for i ∈ {0, . . . ,n} and k < h,
k ,h ∈ {1, . . . ,m}:

x0 · · · xi ∈ L (dk )

x0 · · · xi ∈ L (dh)

Which is the match to consider?

first one listed rule, i.e., pattern dk is recognised

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language
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Lexical Analysis: How can we do it? Regular Expressions

Implementation of LA

How to implement this algorithm for any given regular definition?
First, it would be convenient to use a device that is able to
recognise automatically the lexemes corresponding to each
pattern
Finite Automata are the devices that are more convenient from an
algorithmic point of view
Then, we should find a way to combine these automata for all the
patterns of the given regular definition and to implement the
matching rules
Non-determinism will do the trick
Finally, we should try to optimise everything, which will be done by
eliminating non-determinism and by minimising the resulting
deterministic automaton
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Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

Regular Expressions = specification of tokens
Finite Automata = recognition of tokens

Finite Automaton
A Finite Automaton A is a tuple 〈S,Σ, δ, s0,F〉 where:
I S represents the set of states
I Σ represents a set of symbols (alphabet)
I δ represents the transition function (δ : S × Σ→ . . .)
I s0 represents the start state (s0 ∈ S)
I F represents the set of accepting states (F ⊆ S)

In two flavours: Deterministic Finite Automata (DFA) and
Non-Deterministic Finite Automata (NFA)
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Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

DFA vs. NFA
Depending on the definition of δ we distinguish between:
I Deterministic Finite Automata (DFA) - δ : S × Σ→ S
I Nondeterministic Finite Automata (NFA) δ : S × Σ→P(S)

The transition relation δ can be represented in a table (transition table)

P(S) = 2S is the powerset of the set S of states, i.e., the set of all the
subsets of S

Overview of the graphical notation circle and edges (arrows)
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Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for DFAs

Moves of a DFA
A DFA “consumes” an input character c going from a state s to a state s′ if

δ(s, c) = s′, written s
c
−−→ s′

A DFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there is
a sequence of states si+1, . . . , si+n−1, si+n = sj s.t.

∀k ∈ {1, . . . , n}.δ(si+k−1, ak ) = si+k , written si
a
−−→ sj

Acceptance of Strings
A DFA accepts a string a if and only if it consumes a from the initial state s0 to a final

state si , i.e., s0
a
−−→ si and si ∈ F

Accepted Language

The language accepted by a DFA is the set of all the strings a such that s0
a
−−→ si and

si ∈ F
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Exercise
Define the following automata:

I DFA for a single 1
I DFA for accepting any number of 1’s followed by a single 0
I DFA for any sequence of a or b (possibly empty) followed by ’abb’

Exercise

Which regular expression corresponds to the automaton?
1 (0|1)*
2 (1*|0)(1|0)
3 1*|(01)*|(001)*|(000*1)*
4 (0|1)*00
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ε-moves

DFA, NFA and ε-moves
DFA

at most one transition for one input in a given state
no ε-moves

NFA
can have multiple transitions for one input in a given state
can have ε-moves, i.e., δ : S × (Σ ∪ {ε})→P(S)
smaller (exponentially)
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Acceptance of Strings for NFAs

Moves of an NFA
An NFA “consumes” an input character c going from a state s to a state s′ if

s′ ∈ δ(s, c), written s
c
−−→ s′

An NFA can move from a state s to a state s′ without consuming any input character,
written s

ε
−−→ s′

An NFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there

is a sequence of moves si
x0
−−→ si+1

x1
−−→··· si+m−1

xm−1
−−→ si+m = sj s.t.

∀k ∈ {0, . . . ,m − 1}.si+k ∈ δ(si+k , xk ) and x0x1 · · · xm−1 = a, written si
a

==⇒ sj

Acceptance of Strings
An NFA accepts a string a if and only if there exists at least one sequence of moves
from the initial state s0 to a state si such that si is a final state, i.e., ∃si ∈ F : s0

a
==⇒ si

Accepted Language
The language accepted by an NFA is the set of all the strings a such that
∃si ∈ F : s0

a
==⇒ si

(Compilers) 2. Lexical Analysis CS@UNICAM 35 / 65



Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for NFAs

Moves of an NFA
An NFA “consumes” an input character c going from a state s to a state s′ if

s′ ∈ δ(s, c), written s
c
−−→ s′

An NFA can move from a state s to a state s′ without consuming any input character,
written s

ε
−−→ s′

An NFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there

is a sequence of moves si
x0
−−→ si+1

x1
−−→··· si+m−1

xm−1
−−→ si+m = sj s.t.

∀k ∈ {0, . . . ,m − 1}.si+k ∈ δ(si+k , xk ) and x0x1 · · · xm−1 = a, written si
a

==⇒ sj

Acceptance of Strings
An NFA accepts a string a if and only if there exists at least one sequence of moves
from the initial state s0 to a state si such that si is a final state, i.e., ∃si ∈ F : s0

a
==⇒ si

Accepted Language
The language accepted by an NFA is the set of all the strings a such that
∃si ∈ F : s0

a
==⇒ si

(Compilers) 2. Lexical Analysis CS@UNICAM 35 / 65



Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for NFAs

Moves of an NFA
An NFA “consumes” an input character c going from a state s to a state s′ if

s′ ∈ δ(s, c), written s
c
−−→ s′

An NFA can move from a state s to a state s′ without consuming any input character,
written s

ε
−−→ s′

An NFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there

is a sequence of moves si
x0
−−→ si+1

x1
−−→··· si+m−1

xm−1
−−→ si+m = sj s.t.

∀k ∈ {0, . . . ,m − 1}.si+k ∈ δ(si+k , xk ) and x0x1 · · · xm−1 = a, written si
a

==⇒ sj

Acceptance of Strings
An NFA accepts a string a if and only if there exists at least one sequence of moves
from the initial state s0 to a state si such that si is a final state, i.e., ∃si ∈ F : s0

a
==⇒ si

Accepted Language
The language accepted by an NFA is the set of all the strings a such that
∃si ∈ F : s0

a
==⇒ si

(Compilers) 2. Lexical Analysis CS@UNICAM 35 / 65



Lexical Analysis: How can we do it? Finite State Automata

From regexp to NFA

Equivalent NFA for a regexp
The Thompson’s algorithm permits to automatically derive an NFA
from the specification of a regexp. It defines basic NFAs for basic
regexps and rules to compose them:

1 for ε
2 for ’c’
3 for ab
4 for a + b
5 for a∗

Now consider the regexp for (1|0)*1
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Implementation of Lexical Analyser

Recall the matching rules, i.e., the way in which the LA should
work to recognise the tokens of a given regular definition
R = {d1, . . . ,dm}
We can use Thompson’s algorithm to create NFAs A1 for d1, . . .,
Am for dm

We can create a fresh new initial state s0 and connect it with an ε
transition to all the (unique) initial states of A1, . . ., Am

The (unique) final state fi of Ai recognises the lexemes of token i
for all i
We can then use this combined NFA to implement the matching
rules
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Implementation of LA: Example

Let R be :
d1 = a {TOKEN1}
d2 = abb {TOKEN2}
d3 = a∗b+ {TOKEN3}

The combined NFA of the three NFAs obtained from d1, d2 and d3
is the following (the NFA for d3 is simplified, actually made
deterministic):

a
1 2

a b b
43 5 6

8
b

7

a b

start

ε

ε

ε

0
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Implementation of LA: Example cont’d

The LA must record the last time in which the automaton was in a
final state (null at the beginning)
To do this it implements a lookahead with two variables:

Last_Final: it is the set of the last occurred final states (empty at
the beginning)
Input_Pos_at_Last_Final: it records the position on the input
corresponding to the last occurred final state

These positions must be reset when the the lookahead is “too
ahead”, i.e., the input is terminated or the automaton is blocked
Simulation of ε-transitions will be handled by ε-closure(s) (s single
state); and
ε-closure(T ) =

⋃
s∈T ε-closure(s) (T set of states)
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Implementation of LA: Example cont’d

Let’s apply this idea to the input aaba
Initially, the automaton is in the set of states
ε-closure(0) = {0,1,3,7}
The first input character a is read and the automaton moves to
states ε-closure(δ({0,1,3,7},a)) = {2,3,7}
Now 2 is a final state, so we set Last_Final = {2} and
Input_Pos_at_Last_Final = 1. This must be considered a
partial result, we need to go ahead because there could be a
longer input prefix that corresponds to a lexeme
The second character a is read making the automaton reach the
set of states {7}, which does not contain final states, so we go on
The third character b is read and the set of states {8} is reached,
and 8 is final state. Thus we update: Last_Final = {8} and
Input_Pos_at_Last_Final = 3. We go on
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Implementation of LA: Example cont’d

The fourth character a is read and the automaton is blocked
because there are no transitions labelled with a from state 8.
The LA outputs TOKEN3 with lexeme aab and resets the variables
to the the initial state with the remaining input a

The LA restarts with input a:
Initially, the automaton is in the set of states
ε-closure(0) = {0,1,3,7}
The first input character a is read and the automaton moves to
states ε-closure(δ({0,1,3,7},a)) = {2,3,7}
Now 2 is a final state, so we set Last_Final = {2} and
Input_Pos_at_Last_Final = 1. This must be considered a
partial result, we need to go ahead because there could be a
longer input prefix that corresponds to a lexeme
The automaton is blocked because the input is terminated. The
LA outputs TOKEN1 with lexeme a and terminates.
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Implementation of LA: Example cont’d

The pattern matching algorithm that we have just given correctly
implements the longest match rule
Note that Last_Final is a set of states
If it contains more than one state and the LA decides to output the
token, the final state corresponding to the highest di in R must be
considered to correctly implement the first one listed rule

The automaton that is used by the LA is non-deterministic, thus it must
simulate the non-determinism and the ε-closure:

A real LA would be more efficient if the given automaton was
deterministic
→ we can transform the NFA into an equivalent DFA (possible
exponential blow up of states)
A real LA would be more efficient if the given deterministic
automaton had a minimal number of states
→ we can minimise the obtained DFA
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NFA to DFA

NFA 2 DFA
Given an NFA accepting a language L there exists a DFA accepting the same
language

The derivation of a DFA from an NFA is based on the concept of
ε-closure
The subset construction algorithm makes the transformation using
the following operations:

ε-closure(s) with s ∈ S
ε-closure(T ) =

⋃
s∈T ε-closure(s) where T ⊆ S

move(T ,a) with T ⊆ S and a ∈ Σ
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NFA to DFA

build the ε-closure(. . .) for different states/sets

build move(T , a) for different sets and elements
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NFA to DFA

Subset Construction Algorithm
The Subset Construction algorithm permits to derive a DFA 〈S,Σ, δD, s0,FD〉 from an
NFA 〈N ,Σ, δN , n0,FN〉

s0 ← ε-closure({n0}); S ← {s0}; FD ← ∅; worklist← {s0};
if (s0 ∩ FN 6= ∅) then FD ← FD ∪ s0;
end if
while (worklist 6= ∅) do

take and remove q from worklist;
for all (c ∈ Σ) do

t ← ε-closure(move(q, c));
δD[q, c]← t ;
if (t /∈ S) then
S ← S ∪ t ; worklist← worklist ∪ t ;

end if
if (t ∩ FN 6= ∅) then FD ← FD ∪ t ;
end if

end for
end while
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Simulating DFA and NFA

DFA
s = s0;
c = nextChar();
while (c 6= eof) do

s = move(s, c);
c = nextChar();

end while
if (s ∈ F) then return “yes”;
else return “no”;
end if

NFA
S = ε-closure(s0);
c = nextChar();
while (c 6= eof) do

S = ε-closure(move(S, c));
c = nextChar();

end while
if (S ∩ F 6= ∅) then return “yes”;
else return “no”;
end if
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Exercises NFA to DFA

Derive an NFA for the regexp: (a|b)∗abb
NFA to DFA for the obtained NFA
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DFA to Minimal DFA

Note
Reducing the size of the automaton does not reduce the number of moves needed to
recognise a string, nevertheless it reduces the size of the transition table that could
more easily fit the size of a cache

Equivalent states
Two states of a DFA are equivalent if they produce the same “behaviour” on any input
string.

Let D = 〈S,Σ, δ, q0,F〉 be a DFA. Two states si and sj of D are considered equivalent,
written si ≡ sj , iff

∀x ∈ Σ∗.(si
x
−−→ s′i ∧ s′i ∈ F) ⇐⇒ (sj

x
−−→ s′j ∧ s′j ∈ F)
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DFA to Minimal DFA – Partition Refinement Algorithm

Deriving a minimal DFA

Transform a DFA 〈S,Σ, δD, s0,FD〉 into a minimal DFA 〈S ′,Σ, δ′D, s′0,F ′D〉

// Π is a partition of the set of states S
Π← {FD ,S − FD} // Initially there are only two groups of states: final states and non-final states
repeat

Πnew ← Π // create a working copy Πnew
for all groups G in Π do

partition G in subgroups G1, . . . ,Gn (n ≥ 1) such that two states s and t are in the same subgroup Gi iff

∀c ∈ Σ ((s 6
c
−−→ ) ∧ (t 6

c
−−→ )) ∨ ((s

c
−−→ s′) ∧ (t

c
−−→ t′) ∧ (s′, t′ ∈ Ḡ) for some group Ḡ in Π)

// subgroups Gi ’s may be composed of only one state
Πnew ← Πnew − G ∪ {G1, . . . ,Gn} // Replace G with the obtained subgroups in Πnew
// the partition is refined: the group G is possibly replaced with a finer partition G1, . . . ,Gn

end for
until Πnew = Π // exit when the partition cannot be refined further
// Now Π contains a set of groups that are a partition of the states S
// The algorithm continues with the construction of the minimal DFA . . .
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DFA to Minimal DFA – Partition Refinement Algorithm

// Continues from the previous slide . . .
// the states of the minimal DFA are representatives of groups of equivalent states, those that are in Π
S′ ← ∅ and F′D ← ∅
for all groups G in Π do

choose a state in G as the representative for G and add it to S′
if G ∩ FD 6= ∅ // G contains either all final states or all non-final states then

add the representative state for G also to F′D
end if

end for
s′0 ← the representative state of the group G containing s0
for all states s ∈ S′ do

for all charachters c ∈ Σ do
if δD [s, c] is defined then
δ′D [s, c]← the representative state of the group G containing the state δD [s, c]

end if
end for

end for

Uniqueness of the minimal DFA

There exists a unique DFA, up to isomorphism, that recognises a regular language L
and has minimal number of states. Two DFA are isomorphic iff they are equal by
neglecting the labels of the states.
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Exercises

RegExp 2 DFA
I Minimise the DFA for the regexp (a|b)∗abb
I Consider the regexp a(b|c)∗ and derive the minimal accepting DFA
I Define an automated strategy to decide if two regular expressions define the

same language combining the algorithms defined so far

Regular Languages properties
I Specify a DFA accepting all strings of a’s and b’s that do not contain the

substring aab
I Show that the complement of a regular language, on alphabet Σ, is still a regular

language
I Show that the intersection of two regular languages, on alphabet Σ, is still a

regular language
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Recall of Implementation of LA: Example

Let R be :
d1 = a {TOKEN1}
d2 = abb {TOKEN2}
d3 = a∗b+ {TOKEN3}

The combined NFA of the three NFAs obtained from d1, d2 and d3
is the following (the NFA for d3 is simplified, actually made
deterministic):

a
1 2

a b b
43 5 6

8
b

7

a b

start

ε

ε

ε

0
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Implementation of LA: Optimisation

The behaviour of the LA can be optimised by determinizing the
NFA and then by minimising the states
The DFA obtained from the combined NFA for R is:
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Implementation of LA: Optimisation

By performing a standard minimisation the following minimal DFA
is obtained:
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Implementation of LA: Optimisation

Let’s scan the input aaba

A
a
−−→ B, Last_Final = {2}, Input_Pos_at_Last_Final = 1

B
a
−−→D

D
b
−−→ (C,E ,F ), Last_Final = {6,8},

Input_Pos_at_Last_Final = 3

(C,E ,F ) 6
a
−−→

The LA cannot decide which token to output! Final state 6 would
call for TOKEN 2 (incorrect!) and final state 8 would call for
TOKEN 3!

We need to retain the information on the final states!

(Compilers) 2. Lexical Analysis CS@UNICAM 55 / 65



Lexical Analysis: How can we do it? Finite State Automata

Implementation of LA: Optimisation

We must start the minimisation of the DFA by initially splitting the
group of final states into subgroups
A subgroup for each set of reached final states must be created
subgroup 1 = {B} for TOKEN 1 - only final state 2
subgroup 2 = {C,E} for TOKEN 3 - only final state 8
subgroup 3 = {F} for TOKEN 2 and TOKEN 3 - final states {6,8}
The other non-final states can be grouped together as usual

Π1 = {(A,D), (B), (C,E), (F )}
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Implementation of LA: Optimisation

The group (A,D) can be refined: A
a
−−→ B and D

a
−−→D

Π2 = {(A), (D), (B), (C,E), (F )}

The group (C,E) can be refined: C
b
−−→C and E

b
−−→ F

Π3 = {(A), (D), (B), (C), (E), (F )}
Π3 cannot be refined further!
The minimal DFA to use for the LA scanning is just the same DFA
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Implementation of LA: Optimisation

Let’s scan the input aaba

A
a
−−→ B, Last_Final = {2}, Input_Pos_at_Last_Final = 1

B
a
−−→D

D
b
−−→C, Last_Final = {8}, Input_Pos_at_Last_Final = 3

C 6
a
−−→

The LA outputs TOKEN 3 with lexeme aab, then clear the
recognised input and restart

A
a
−−→ B, Last_Final = {2}, Input_Pos_at_Last_Final = 1

B 6−−→ end of input
The LA outputs TOKEN 1 with lexeme a, then stops.
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Languages

Language
Let Σ be a set of characters generally referred to as the alphabet. A
language over Σ is a set of strings of characters drawn from Σ

Alphabet = English character =⇒ Language = English sentences
Alphabet = ASCII =⇒ Language = C programs

Given Σ = {a,b} examples of simple languages are:
L1 = {a,ab,aa}
L2 = {b,ab,aabb}
L3 = {s | s has an equal number of a’s and b’s}
. . .
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Grammar Definition

Grammar
A Grammar G is a tuple 〈VT ,VN ,S,P〉 where:
I VT is a finite and non empty set of terminal symbols (alphabet)
I VN is a finite set of non-terminal symbols s.t. VN ∩ VT = ∅
I S ∈ VN is the start symbol
I P is a finite set of productions s.t. P ⊆ (V∗ · VN · V∗)× V∗ where
V = VT ∪ VN
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Derivations

Derivations
Given a grammar G = 〈VT ,VN ,S,P〉 a derivation is a sequence of
strings φ1, φ2, ..., φn s.t.
∀i ∈ {1, ..,n}.φi ∈ V∗ ∧ ∀i ∈ {1, ...,n − 1}.∃p ∈ P : φi →p φi+1
We generally write φ1 →∗ φn to indicate that from φ1 it is possible to
derive φn repeatedly applying productions in P

Generated Language
The language generated by a grammar G = 〈VT ,VN ,S,P〉
corresponds to: L(G) = {x | x ∈ V∗T ∧ S →∗ x}
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Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the
structure of the productions in set P (α, β, γ ∈ V∗,a ∈ VT ,A,B ∈ VN ):
T0. Unrestricted Grammars:

Production Schema: no constraints
Recognizing Automaton: Turing Machines

T1. Context Sensitive Grammars:
Production Schema: αAβ → αγβ
Recognizing Automaton: Linear Bound Automaton (LBA)

T2. Context-Free Grammars:
Production Schema: A→ γ
Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:
Production Schema: A→ a or A→ aB
Recognizing Automaton: Finite State Automaton
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Meaning function L

Meaning Function
Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics
I e.g. the case for numbers

Why using a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Expressions and meanings are not 1 to 1

Warning
It should never happen that the same

syntactical structure has more meanings
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Short Notes on Formal Languages

Summary

Lexical Analysis
Relevant concepts we have encountered:

Tokens, Patterns, Lexemes
Regular expressions
Problems and solutions in matching strings
DFA and NFA
Transformations

RegExp→ NFA
NFA→ DFA
DFA→ Minimal DFA

Implementation and optimisation of LA
Chomsky hierarchy and regular languages
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