

Andrea Polini, Luca Tesei

Compilers MSc in Computer Science University of Camerino

ToC

- Lexical Analysis: What does a Lexer do?
- Lexical Analysis: How can we do it?
 - Regular Expressions
 - Finite State Automata
- Short Notes on Formal Languages

```
if (i==j)
  z=0;
else
  z=1;
```

```
tif (i==i) \n\t\z=0: \n\t\else\n\t\z=1:
```

```
if (i==j)
  z=0;
else
  z=1;

\tif (i==j) \n\t\tz=0; \n\telse\n\t\tz=1;
```

Token, Pattern Lexeme

Token

A token is a pair consisting of a token name and an optional attribute value. The token names are the input symbols that the parser processes.

Pattern

A pattern is a description of the form that the lexemes of a token may take. In the case of a keyword as a token, the pattern is just the sequence of characters that form the keyword.

Lexeme

A lexeme is a sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token.

4/65

- Token Class (or Class)
 - In English: Noun, Verb, Adjective, Adverb, Article, . . .
 - In a programming language: *Identifier, Keywords, "(", ")", Numbers,* . . .

- Token classes corresponds to sets of strings
- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", . . .
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

- Token classes corresponds to sets of strings
- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

- Token classes corresponds to sets of strings
- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", . . .
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

- Token classes corresponds to sets of strings
- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

- Token classes corresponds to sets of strings
- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

Therefore the role of the lexical analyser (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Why is not wise to merge the two components?

Therefore the role of the lexical analyser (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Why is not wise to merge the two components?

Therefore the role of the lexical analyser (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Why is not wise to merge the two components?

Let's analyse these lines of code:

$$\forall i = j) \n t = 0; \n t = 1;$$

$$x=0; \n twhile (x<10) { \n tx++; \n}$$

Token Classes: Identifier, Integer, Keyword, Whitespace

Therefore an implementation of a lexical analyser must do two things:

- Recognise substrings corresponding to tokens
 - the lexemes
- Identify the token class for each lexemes

- FORTRAN rule: whitespace is insignificant
 - i.e. VA R1 is the same as VAR1

DO 5 I =
$$1,25$$

DO 5 I =
$$1.25$$

In FORTRAN the "5" refers to a label you will find in the following of the program code

- The goal is to partition the string. This is implemented by reading left-to-right, recognising one token at a time
- "Lookahead" may be required to decide where one token ends and the next token begins
- PL/1 keywords are not reserved

```
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
```

DECLARE (ARG1, . . . , ARGN)

Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

- The goal is to partition the string. This is implemented by reading left-to-right, recognising one token at a time
- "Lookahead" may be required to decide where one token ends and the next token begins
- PL/1 keywords are not reserved

```
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
```

DECLARE (ARG1, ..., ARGN)

Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

- The goal is to partition the string. This is implemented by reading left-to-right, recognising one token at a time
- "Lookahead" may be required to decide where one token ends and the next token begins
- PL/1 keywords are not reserved

```
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
```

DECLARE (ARG1, ..., ARGN)

Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

• C++ template syntax:

C++ stream syntax:

Foo<Bar<Barr>>

• C++ template syntax:

C++ stream syntax:

ToC

- Lexical Analysis: What does a Lexer do?
- Lexical Analysis: How can we do it?
 - Regular Expressions
 - Finite State Automata
- Short Notes on Formal Languages

Languages

We need to define which is the set of strings in any token class. Therefore we need to choose the right mechanisms to describe such sets:

- Reducing at minimum the complexity needed to recognise lexemes
- Identifying effective and simple ways to describe the patterns
- Regular languages seem to be enough powerful to define all the lexemes in any token class
- Regular expressions are a suitable way to syntactically identify strings belonging to a regular language

Strings

Parts of a string

Terms related to stings:

- a prefix of a string s is the string obtained removing zero or more characters from the end of s
- a suffix of a string s is the string obtained removing zero or more characters from the beginning of s
- a substring of a string s is obtained deleting any prefix and any suffix from s
- ▶ proper prefixes, suffixes and substrings of a string s are those prefixes, suffixes and substrings of s, respectively, that are not empty (ϵ) or not equal to s itself
- ▶ a subsequence of a string s is any string formed by deleting zero or more not necessarily consecutive positions of s

4 D > 4 A > 4 B > 4 B >

Regular expressions (regexp): Syntax

To form a syntactically correct regexp we have the following rules:

- Single character: 'c' is a regexp for each $c \in \Sigma$;
- Epsilon: ∈ is a regexp;
- Union: $r_1 + r_1$ is a regexp if r_1 and r_1 are regexps (also written $r_1|r_2$);
- Concatenation: $r_1 \cdot r_2$ is a regexp if r_1 and r_2 are regexps (also written $r_1 r_2$);
- Iteration (Kleene star): r* is a regexp if r is a regexp;
- Brackets: (r) is a regexp if r is a regexp

Regular expressions (regexp): Syntax

To avoid too much brackets we fix the following precedence and associativity rules:

- * has the highest precedence and is left associative
- has the second highest precedence and is left associative
- + has the lowest precedence and is left associative
- e.g., $a + bc^*$ means $a + (b(c^*))$; abc + d + e means (((ab)c) + d) + e; . . .

Moreover we will use the following shorthands:

- At least one: $r^+ \equiv rr^*$
- Option: $r? \equiv r + \epsilon$
- Range: $[a z] \equiv 'a' + 'b' + \cdots + 'z'$
- Excluded range: $[^{\land}a z] \equiv \text{complement of } [a z]$

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ かなぐ

Meaning function \mathscr{L}

• The meaning function \mathcal{L} maps syntax to semantics: $\mathcal{L}(e) = \mathcal{M}$ where e is a regexp and \mathcal{M} is a set of strings

Given an alphabet Σ and regular expressions a and b over Σ :

- $\mathcal{L}(\epsilon) = \{\epsilon\}$
- $\mathcal{L}('c') = \{c\}$, where $c \in \Sigma$
- $\bullet \ \mathscr{L}(r_1+r_2)=\mathscr{L}(r_1)\cup\mathscr{L}(r_2)$
- $\bullet \ \mathscr{L}(r_1r_2) = \mathscr{L}(r_1) \odot \mathscr{L}(r_2)$
- $\mathscr{L}(r^*) = \bigcup_{i \geq 0} \mathscr{L}(r)^i$ where $\left\{ \begin{array}{l} \mathscr{L}(r)^0 = \{\epsilon\} \\ \mathscr{L}(r)^i = \mathscr{L}(r) \odot \mathscr{L}(r)^{i-1} \end{array} \right.$
- ⊙ is the concatenation of languages:

$$L_1 \odot L_2 = \{s_1 s_2 \mid s_1 \in L_1 \land s_2 \in L_2\}$$

Some equivalence laws for regexps

Given regexps r_1 and r_2 , they are equivalent, written $r_1 \equiv r_2$, if and only if $\mathcal{L}(r_1) = \mathcal{L}(r_2)$

Let r, r_1, r_2, r_3 be regexps, then:

$$r_1 + r_2 \equiv r_2 + r_1$$
 + is commutative $r_1 + (r_2 + r_3) \equiv (r_1 + r_2) + r_3$ + is associative $r + r \equiv r$ + is idempotent $r_1(r_2r_3) \equiv (r_1r_2)r_3$ · is associative $r_1(r_2 + r_3) \equiv r_1r_2 + r_1r_3$ · distributes over + on the left · distributes over + on the right $r \in = \epsilon r \equiv r$ ϵ is the identity for · ϵ is guaranteed in a closure $r^* \equiv r^*$ the Kleene star is idempotent

19/65

Regular Languages

Semantics of Regular Expressions

Regular expressions (syntax) specify regular languages (semantics)

A language L is regular if and only if there exists a regular expression r such that $\mathcal{L}(r) = L$

Closure Properties of Regular Languages

Regular languages are closed with respect to union, intersection, complement

If L_1 and L_2 are regular languages then $L_1 \cup L_2$, $L_1 \cap L_2$ and L_1^c are regular languages

Consider $\Sigma = \{0, 1\}$. What are the sets defined by the following REs?

- ▶ 1*
- ► (1+0)1
- 0* + 1*
- ▶ (0+1)*

Exercise

Given the regular language identified by $(0+1)^*1(0+1)^*$ which are the regular expressions identifying the same language among the following one:

- $(01+11)^*(0+1)^*$
- \triangleright $(0+1)^*(10+11+1)(0+1)^*$
- $(1+0)^*1(1+0)^*$
- \triangleright $(0+1)^*(0+1)(0+1)^*$

Consider $\Sigma = \{0, 1\}$. What are the sets defined by the following REs?

- ▶ 1*
- ► (1+0)1
- $ightharpoonup 0^* + 1^*$
- ▶ (0+1)*

Exercise

Given the regular language identified by $(0+1)^*1(0+1)^*$ which are the regular expressions identifying the same language among the following one:

- \triangleright $(01+11)^*(0+1)^*$
- \triangleright $(0+1)^*(10+11+1)(0+1)^*$
- $(1+0)^*1(1+0)^*$
- \triangleright $(0+1)^*(0+1)(0+1)^*$

Choose the regular languages that are correct specifications of the following English-language description:

Twelve-hour times of the form "04:13PM". Minutes should always be a two digit number, but hours may be a single digit

- (0+1)?[0-9]:[0-5][0-9](AM+PM)
- $((0+\epsilon)[0-9]+1[0-2]):[0-5][0-9](AM+PM)$
- $\qquad \qquad \bullet \ \, (0^*[0-9]+1[0-2]):[0-5][0-9](AM+PM)$
- \blacktriangleright (0?[0-9]+1(0+1+2)):[0-5][0-9](A+P)M

Describe the languages denoted by the following RegExp:

- ▶ a(a|b)*a
- ▶ a*ba*ba*ba*
- $ightharpoonup ((\epsilon|a)b^*)^*$

Regular definitions

For notational convenience we give names to certain regular expressions. A regular definition, on the alphabet Σ is sequence of definitions of the form:

- \bullet $d_1 \rightarrow r_1$
- $d_2 \rightarrow r_2$
- ...
- $d_n \rightarrow r_n$

where:

- Each d_i is a new symbol, not in Σ , and not the same as any other of the d's
- Each r_i is a regular expression over the alphabet $\Sigma \cup \{d_1, d_2, \dots, d_{i-1}\}$

Using regular definitions

The tokens of a language can be defined as:

- letter $\rightarrow a|b|...|z|A|B|...|Z$
- letter_ → letter _
 - compact syntax: [a zA B]
- $digit \rightarrow 0|1|...|9$
 - compact syntax: [0 9]
- integers $\rightarrow (-|\epsilon)$ digit \cdot digit*
- identifiers → letter_(letter_|digit)*
- $expnot \rightarrow digit(.digit^+E(+|-)digit^+)$? (Exponential Notation)

Exercise

Write regular definitions for the following languages:

- All strings of lowercase letters that contains the five vowels in order
- All strings of lowercase letters in which the letters are in ascending lexicographic order
- All strings of digits with no repeated digits
- All strings with an even number of a's and and an odd number of b's

How does the lexical analyser work?

Suppose we are given a regular definition $R = \{d_1, \dots, d_m\}$

- Let the input be $x_0 \cdots x_n \in \Sigma^*$ For $0 \le i \le n$ check if $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some $k \in \{1, \dots, m\}$
- ② if success then we know that $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some k
- **3** remove $x_0 \cdots x_i$ from input and go to 1

However, things are not so simple... consider the following regular definition:

- \bigcirc $d_1 \rightarrow a$ token T1
- 2 $d_2 \rightarrow abb$ token T2

Input: aaba, which are the tokens to recognise?

Suppose that at the same time for i < j, $i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathcal{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$
 - $x_0 \cdots x_i \in \mathcal{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Suppose that at the same time for i < j, $i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathcal{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$
- $x_0 \cdots x_i \in \mathcal{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Suppose that at the same time for i < j, $i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathcal{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$
- $x_0 \cdots x_i \in \mathcal{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Suppose that at the same time for i < j, $i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathcal{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$
- $x_0 \cdots x_i \in \mathcal{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Suppose that at the same time for i < j, $i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathcal{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$
- $x_0 \cdots x_i \in \mathcal{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Suppose that at the same time for i < j, $i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_i \in \mathcal{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathcal{L}(d_k)$
- $x_0 \cdots x_i \in \mathcal{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Implementation of LA

- How to implement this algorithm for any given regular definition?
- First, it would be convenient to use a device that is able to recognise automatically the lexemes corresponding to each pattern
- Finite Automata are the devices that are more convenient from an algorithmic point of view
- Then, we should find a way to combine these automata for all the patterns of the given regular definition and to implement the matching rules
- Non-determinism will do the trick
- Finally, we should try to optimise everything, which will be done by eliminating non-determinism and by minimising the resulting deterministic automaton

- Regular Expressions = specification of tokens
- Finite Automata = recognition of tokens

Finite Automaton

A Finite Automaton \mathcal{A} is a tuple $\langle \mathcal{S}, \Sigma, \delta, s_0, \mathcal{F} \rangle$ where:

- \triangleright S represents the set of states
- ► ∑ represents a set of symbols (alphabet)
- \blacktriangleright δ represents the transition function ($\delta: \mathcal{S} \times \Sigma \to \ldots$)
- ▶ s_0 represents the start state ($s_0 \in S$)
- $ightharpoonup \mathcal{F}$ represents the set of accepting states ($\mathcal{F} \subseteq \mathcal{S}$)

In two flavours: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NFA)

30/65

- Regular Expressions = specification of tokens
- Finite Automata = recognition of tokens

Finite Automaton

A Finite Automaton \mathcal{A} is a tuple $\langle \mathcal{S}, \Sigma, \delta, s_0, \mathcal{F} \rangle$ where:

- S represents the set of states
- Σ represents a set of symbols (alphabet)
- \blacktriangleright δ represents the transition function ($\delta: \mathcal{S} \times \Sigma \to ...$)
- $ightharpoonup s_0$ represents the start state $(s_0 \in S)$
- $ightharpoonup \mathcal{F}$ represents the set of accepting states ($\mathcal{F} \subseteq \mathcal{S}$)

In two flavours: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NFA)

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- ▶ Deterministic Finite Automata (DFA) $\delta : \mathcal{S} \times \Sigma \to \mathcal{S}$
- ▶ Nondeterministic Finite Automata (NFA) $\delta : \mathcal{S} \times \Sigma \rightarrow \mathscr{P}(\mathcal{S})$

The transition relation δ can be represented in a table (transition table)

 $\mathscr{P}(\mathcal{S})=2^{\mathcal{S}}$ is the powerset of the set \mathcal{S} of states, i.e., the set of all the subsets of \mathcal{S}

Overview of the graphical notation circle and edges (arrows)

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- ▶ Deterministic Finite Automata (DFA) δ : $S \times \Sigma \to S$
- ▶ Nondeterministic Finite Automata (NFA) $\delta : \mathcal{S} \times \Sigma \rightarrow \mathscr{P}(\mathcal{S})$

The transition relation δ can be represented in a table (transition table)

 $\mathscr{P}(\mathcal{S})=2^{\mathcal{S}}$ is the powerset of the set \mathcal{S} of states, i.e., the set of all the subsets of \mathcal{S}

Overview of the graphical notation circle and edges (arrows)

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character c going from a state s to a state s^\prime if

$$\delta(s,c) = s'$$
, written $s \xrightarrow{c} s'$

A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t.

$$\forall k \in \{1, \dots, n\}. \delta(s_{i+k-1}, a_k) = s_{i+k}, \text{ written } s_i \xrightarrow{a} s_j$$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \stackrel{a}{\longrightarrow} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \stackrel{a}{\longrightarrow} s_i$ and $s_i \in \mathcal{F}$

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character c going from a state s to a state s^\prime if

$$\delta(s,c) = s'$$
, written $s \xrightarrow{c} s'$

A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t.

$$\forall k \in \{1,\ldots,n\}.\delta(s_{i+k-1},a_k) = s_{i+k}, \text{ written } s_i \stackrel{a}{\longrightarrow} s_j$$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \xrightarrow{\mathbf{a}} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \stackrel{a}{\longrightarrow} s_i$ and $s_i \in \mathcal{F}$

compilers) 2. Lexical Analysis CS@UNICAM 32/65

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character c going from a state s to a state s^\prime if

$$\delta(s,c) = s'$$
, written $s \xrightarrow{c} s'$

A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t.

$$\forall k \in \{1, \dots, n\}. \delta(s_{i+k-1}, a_k) = s_{i+k}, \text{ written } s_i \stackrel{\mathsf{a}}{\longrightarrow} s_j$$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \stackrel{\textbf{a}}{\longrightarrow} s_i$ and $s_i \in \mathcal{F}$

Compilers) 2. Lexical Analysis CS@UNICAM 32/65

CS@UNICAM

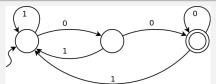
33/65

Exercise

Define the following automata:

- ▶ DFA for a single 1
- ▶ DFA for accepting any number of 1's followed by a single 0
- ▶ DFA for any sequence of a or b (possibly empty) followed by 'abb'

Exercise



Which regular expression corresponds to the automaton?

- (0|1)*
- (1*|0)(1|0)
- **3** 1*|(01)*|(001)*|(000*1)*
- **4** (0|1)*00

ϵ -moves

DFA, NFA and ϵ -moves

- DFA
 - at most one transition for one input in a given state
 - no ϵ -moves
- NFA
 - can have multiple transitions for one input in a given state
 - can have ϵ -moves, i.e., $\delta : \mathcal{S} \times (\Sigma \cup \{\epsilon\}) \to \mathscr{P}(\mathcal{S})$
 - smaller (exponentially)

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character c going from a state s to a state s' if $s' \in \delta(s,c)$, written $s \stackrel{c}{\longrightarrow} s'$

An NFA can move from a state s to a state s' without consuming any input character, written $s \stackrel{\epsilon}{\longrightarrow} s'$

An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of moves $s_i \xrightarrow{x_0} s_{i+1} \xrightarrow{x_1} \dots s_{i+m-1} \xrightarrow{x_{m-1}} s_{i+m} = s_j$ s.t. $\forall k \in \{0, \dots, m-1\}. s_{i+k} \in \delta(s_{i+k}, x_k) \text{ and } x_0 x_1 \cdots x_{m-1} = \mathbf{a}, \text{ written } s_i \stackrel{\mathbf{a}}{\Longrightarrow} s_i$

Acceptance of Strings

An NFA accepts a string **a** if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} : s_0 \stackrel{a}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings **a** such that $\exists s_i \in \mathcal{F} : s_0 \stackrel{a}{\Longrightarrow} s_i$

(Compilers) 2. Lexical Analysis CS@UNICAM 35/65

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character c going from a state s to a state s' if $s' \in \delta(s,c)$, written $s \stackrel{c}{\longrightarrow} s'$

An NFA can move from a state s to a state s' without consuming any input character, written $s \stackrel{\epsilon}{\longrightarrow} s'$

An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of moves $s_i \overset{x_0}{\longrightarrow} s_{i+1} \overset{x_1}{\longrightarrow} \dots s_{i+m-1} \overset{x_{m-1}}{\longrightarrow} s_{i+m} = s_j$ s.t. $\forall k \in \{0, \dots, m-1\}. s_{i+k} \in \delta(s_{i+k}, x_k) \text{ and } x_0 x_1 \cdots x_{m-1} = \mathbf{a}, \text{ written } s_i \overset{\mathbf{a}}{\Longrightarrow} s_i$

Acceptance of Strings

An NFA accepts a string **a** if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} : s_0 \stackrel{\mathbf{a}}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings **a** such that $\exists s_i \in \mathcal{F} : s_0 \stackrel{\mathtt{a}}{\Longrightarrow} s_i$

(Compilers) 2. Lexical Analysis CS@UNICAM

35/65

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character c going from a state s to a state s' if $s' \in \delta(s, c)$, written $s \xrightarrow{c} s'$ An NFA can move from a state s to a state s' without consuming any input character,

written $s \xrightarrow{r} s'$ An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_i if there is a sequence of moves $s_i \xrightarrow{x_0} s_{i+1} \xrightarrow{x_1} \dots s_{i+m-1} \xrightarrow{x_{m-1}} s_{i+m} = s_i$ s.t.

 $\forall k \in \{0, \dots, m-1\}. s_{i+k} \in \delta(s_{i+k}, x_k) \text{ and } x_0 x_1 \cdots x_{m-1} = \mathbf{a}, \text{ written } s_i \stackrel{\mathbf{a}}{\Longrightarrow} s_i$

Acceptance of Strings

An NFA accepts a string a if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} : s_0 \stackrel{a}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings a such that

 $\exists s_i \in \mathcal{F} : s_0 \stackrel{\mathbf{a}}{\Longrightarrow} s_i$

2. Lexical Analysis

From regexp to NFA

Equivalent NFA for a regexp

The Thompson's algorithm permits to automatically derive an NFA from the specification of a regexp. It defines basic NFAs for basic regexps and rules to compose them:

- lacktriangledown for ϵ
- for 'c'
- for ab
- for a + b
- for a*

Now consider the regexp for $(1|0)^*1$

Implementation of Lexical Analyser

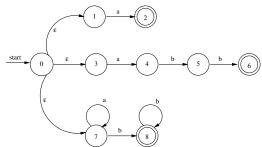
- Recall the matching rules, i.e., the way in which the LA should work to recognise the tokens of a given regular definition $R = \{d_1, \dots, d_m\}$
- We can use Thompson's algorithm to create NFAs A_1 for d_1, \ldots, A_m for d_m
- We can create a fresh new initial state s_0 and connect it with an ϵ transition to all the (unique) initial states of A_1, \ldots, A_m
- The (unique) final state f_i of A_i recognises the lexemes of token i
 for all i
- We can then use this combined NFA to implement the matching rules

Implementation of LA: Example

Let R be :

$$egin{array}{lll} d_1 = & a & \{ { t TOKEN1} \} \ d_2 = & abb & \{ { t TOKEN2} \} \ d_3 = & a^*b^+ & \{ { t TOKEN3} \} \end{array}$$

The combined NFA of the three NFAs obtained from d₁, d₂ and d₃ is the following (the NFA for d₃ is simplified, actually made deterministic):



- The LA must record the last time in which the automaton was in a final state (null at the beginning)
- To do this it implements a lookahead with two variables:
 - Last_Final: it is the set of the last occurred final states (empty at the beginning)
 - Input_Pos_at_Last_Final: it records the position on the input corresponding to the last occurred final state
- These positions must be reset when the lookahead is "too ahead", i.e., the input is terminated or the automaton is blocked
- Simulation of ϵ -transitions will be handled by ϵ -closure(s) (s single state); and
- ϵ -closure(\mathcal{T}) = $\bigcup_{s \in \mathcal{T}} \epsilon$ -closure(s) (\mathcal{T} set of states)

ompilers) 2. Lexical Analysis CS@UNICAM 39/65

- Let's apply this idea to the input aaba
- Initially, the automaton is in the set of states ϵ -closure(0) = {0, 1, 3, 7}
- The first input character a is read and the automaton moves to states ϵ -closure($\delta(\{0,1,3,7\},a)$) = $\{2,3,7\}$
- Now 2 is a final state, so we set Last_Final = {2} and Input_Pos_at_Last_Final = 1. This must be considered a partial result, we need to go ahead because there could be a longer input prefix that corresponds to a lexeme
- The second character a is read making the automaton reach the set of states {7}, which does not contain final states, so we go on
- The third character b is read and the set of states {8} is reached, and 8 is final state. Thus we update: Last_Final = {8} and Input_Pos_at_Last_Final = 3. We go on

- The fourth character a is read and the automaton is blocked because there are no transitions labelled with a from state 8.
- The LA outputs TOKEN3 with lexeme *aab* and resets the variables to the the initial state with the remaining input *a*

The LA restarts with input a:

- Initially, the automaton is in the set of states
 ε-closure(0) = {0,1,3,7}
- The first input character a is read and the automaton moves to states ϵ -closure($\delta(\{0,1,3,7\},a)$) = $\{2,3,7\}$
- Now 2 is a final state, so we set Last_Final = {2} and Input_Pos_at_Last_Final = 1. This must be considered a partial result, we need to go ahead because there could be a longer input prefix that corresponds to a lexeme
- The automaton is blocked because the input is terminated. The LA outputs TOKEN1 with lexeme a and terminates.

(Compilers) 2. Lexical Analysis CS@UNICAM 41/65

- The pattern matching algorithm that we have just given correctly implements the longest match rule
- Note that Last_Final is a set of states
- If it contains more than one state and the LA decides to output the token, the final state corresponding to the highest d_i in R must be considered to correctly implement the first one listed rule

The automaton that is used by the LA is non-deterministic, thus it must simulate the non-determinism and the ϵ -closure:

- A real LA would be more efficient if the given automaton was deterministic
- → we can transform the NFA into an equivalent DFA (possible exponential blow up of states)
- A real LA would be more efficient if the given deterministic automaton had a minimal number of states
- ullet we can minimise the obtained DFA

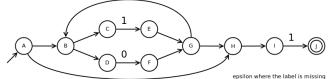
NFA to DFA

NFA 2 DFA

Given an NFA accepting a language $\ensuremath{\mathcal{L}}$ there exists a DFA accepting the same language

- The derivation of a DFA from an NFA is based on the concept of
 ε-closure
- The subset construction algorithm makes the transformation using the following operations:
 - ϵ -closure(s) with $s \in S$
 - ϵ -closure(\mathcal{T}) = $\bigcup_{s \in \mathcal{T}} \epsilon$ -closure(s) where $\mathcal{T} \subseteq \mathcal{S}$
 - $move(\mathcal{T}, a)$ with $\mathcal{T} \subseteq \mathcal{S}$ and $a \in \Sigma$

NFA to DFA



- build the ϵ -closure(...) for different states/sets
- build move(T, a) for different sets and elements

NFA to DFA

Subset Construction Algorithm

The Subset Construction algorithm permits to derive a DFA $\langle \mathcal{S}, \Sigma, \delta_D, s_0, \mathcal{F}_D \rangle$ from an NFA $\langle \mathcal{N}, \Sigma, \delta_N, n_0, \mathcal{F}_N \rangle$

```
s_0 \leftarrow \epsilon-closure(\{n_0\}); S \leftarrow \{s_0\}; \mathcal{F}_D \leftarrow \emptyset; worklist \leftarrow \{s_0\};
if (s_0 \cap \mathcal{F}_N \neq \varnothing) then \mathcal{F}_D \leftarrow \mathcal{F}_D \cup s_0;
end if
while (worklist \neq \emptyset) do
      take and remove q from worklist;
      for all (c \in \Sigma) do
            t \leftarrow \epsilon-closure(move(q, c));
            \delta_D[q,c] \leftarrow t;
            if (t \notin S) then
                  \mathcal{S} \leftarrow \mathcal{S} \cup t; worklist \leftarrow worklist \cup t;
            end if
            if (t \cap \mathcal{F}_N \neq \emptyset) then \mathcal{F}_D \leftarrow \mathcal{F}_D \cup t;
            end if
      end for
end while
```

Simulating DFA and NFA

DFA

```
s = s_0;

c = nextChar();

while (c \neq eof) do

s = move(s, c);

c = nextChar();

end while

if (s \in \mathcal{F}) then return "yes";

else return "no";

end if
```

NFA

```
S = \epsilon\text{-}closure(s_0);
c = nextChar();
while (c \neq eof) do
S = \epsilon\text{-}closure(move(S, c));
c = nextChar();
end while
if (S \cap \mathcal{F} \neq \varnothing) then return "yes";
else return "no";
end if
```

Exercises NFA to DFA

- Derive an NFA for the regexp: $(a|b)^*abb$
- NFA to DFA for the obtained NFA

Exercises NFA to DFA

- Derive an NFA for the regexp: $(a|b)^*abb$
- NFA to DFA for the obtained NFA

DFA to Minimal DFA

Note

Reducing the size of the automaton does not reduce the number of moves needed to recognise a string, nevertheless it reduces the size of the transition table that could more easily fit the size of a cache

Equivalent states

Two states of a DFA are equivalent if they produce the same "behaviour" on any input string.

Let $\mathcal{D} = \langle \mathcal{S}, \Sigma, \delta, q_0, \mathcal{F} \rangle$ be a DFA. Two states s_i and s_j of \mathcal{D} are considered equivalent, written $s_i \equiv s_j$, iff

$$\forall \mathbf{x} \in \Sigma^*. (s_i \xrightarrow{\mathbf{x}} s_i' \land s_i' \in \mathcal{F}) \iff (s_j \xrightarrow{\mathbf{x}} s_j' \land s_j' \in \mathcal{F})$$

(Compilers)

// Now Π contains a set of groups that are a partition of the states S // The algorithm continues with the construction of the minimal DFA

DFA to Minimal DFA – Partition Refinement Algorithm

Deriving a minimal DFA

Transform a DFA $\langle S, \Sigma, \delta_D, s_0, \mathcal{F}_D \rangle$ into a minimal *DFA* $\langle S', \Sigma, \delta'_D, s'_0, \mathcal{F}'_D \rangle$

```
" Π is a partition of the set of states S Π ← \{\mathcal{F}_D, S - \mathcal{F}_D\} // Initially there are only two groups of states: final states and non-final states repeat \Pi_{\mathsf{new}} \leftarrow \Pi // create a working copy \Pi_{\mathsf{new}} for all groups G in \Pi do partition G in subgroups G_1, \ldots, G_n (n \geq 1) such that two states s and t are in the same subgroup G_i iff \forall c \in \Sigma ((s \xrightarrow{f} ) \land (t \xrightarrow{f} )) \land (t \xrightarrow{f} ) \land (t \xrightarrow{f} ) \land (t \xrightarrow{f} ) for some group G in \Pi) // subgroups G_i's may be composed of only one state \Pi_{\mathsf{new}} \leftarrow \Pi_{\mathsf{new}} - G \cup \{G_1, \ldots, G_n\} // Replace G with the obtained subgroups in \Pi_{\mathsf{new}} // the partition is refined: the group G is possibly replaced with a finer partition G_1, \ldots, G_n end for until \Pi_{\mathsf{new}} = \Pi // exit when the partition cannot be refined further
```

4 D > 4 A > 4 B > 4 B > B = 990

mpilers) 2. Lexical Analysis CS@UNICAM 49/65

DFA to Minimal DFA – Partition Refinement Algorithm

```
// Continues from the previous slide . . .
// the states of the minimal DFA are representatives of groups of equivalent states, those that are in \Pi
\mathcal{S}' \leftarrow \emptyset and \mathcal{F}'_{\mathcal{D}} \leftarrow \emptyset
for all groups G in ∏ do
    choose a state in G as the representative for G and add it to S'
    if G \cap \mathcal{F}_D \neq \emptyset // G contains either all final states or all non-final states then
        add the representative state for G also to \mathcal{F}'_{D}
    end if
end for
s_0' \leftarrow the representative state of the group G containing s_0
for all states s \in S' do
    for all charachters c \in \Sigma do
        if \delta_D[s, c] is defined then
             \delta_D'[s,c] \leftarrow the representative state of the group G containing the state \delta_D[s,c]
        end if
    end for
end for
```

Uniqueness of the minimal DFA

There exists a unique DFA, up to isomorphism, that recognises a regular language $\mathscr L$ and has minimal number of states. Two DFA are isomorphic iff they are equal by neglecting the labels of the states.

(Compilers) 2. Lexical Analysis CS@UNICAM 50/65

4 D > 4 B > 4 B > 4 B >

Exercises

RegExp 2 DFA

- ► Minimise the DFA for the regexp (a|b)* abb
- ▶ Consider the regexp $a(b|c)^*$ and derive the minimal accepting DFA
- Define an automated strategy to decide if two regular expressions define the same language combining the algorithms defined so far

Regular Languages properties

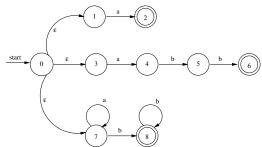
- Specify a DFA accepting all strings of a's and b's that do not contain the substring aab
- ightharpoonup Show that the complement of a regular language, on alphabet Σ , is still a regular language
- ightharpoonup Show that the intersection of two regular languages, on alphabet Σ, is still a regular language

Recall of Implementation of LA: Example

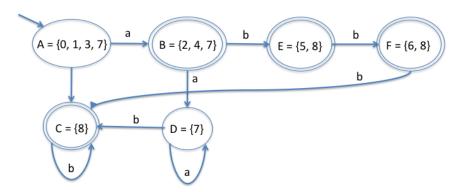
Let R be :

$$egin{array}{lll} \emph{d}_1 = & \emph{a} & \{ \texttt{TOKEN1} \} \ \emph{d}_2 = & \emph{abb} & \{ \texttt{TOKEN2} \} \ \emph{d}_3 = & \emph{a}^*\emph{b}^+ & \{ \texttt{TOKEN3} \} \end{array}$$

The combined NFA of the three NFAs obtained from d₁, d₂ and d₃ is the following (the NFA for d₃ is simplified, actually made deterministic):

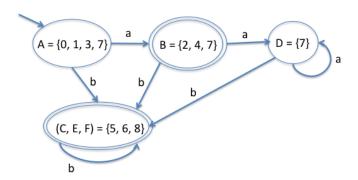


- The behaviour of the LA can be optimised by determinizing the NFA and then by minimising the states
- The DFA obtained from the combined NFA for R is:



(Compilers)

 By performing a standard minimisation the following minimal DFA is obtained:



54/65

mpilers) 2. Lexical Analysis CS@UNICAM

- Let's scan the input aaba
- $A \xrightarrow{a} B$, Last_Final = $\{2\}$, Input_Pos_at_Last_Final = 1
- $\bullet B \xrightarrow{a} D$
- $D \xrightarrow{b} (C, E, F)$, Last_Final = $\{6, 8\}$, Input_Pos_at_Last_Final = 3
- $(C, E, F) \xrightarrow{a}$
- The LA cannot decide which token to output! Final state 6 would call for TOKEN 2 (incorrect!) and final state 8 would call for TOKEN 3!

We need to retain the information on the final states!

CS@UNICAM

55/65

(Compilers) 2. Lexical Analysis

- We must start the minimisation of the DFA by initially splitting the group of final states into subgroups
- A subgroup for each set of reached final states must be created
- subgroup 1 = {B} for TOKEN 1 only final state 2
- subgroup 2 = { C, E} for TOKEN 3 only final state 8
- subgroup 3 = {F} for TOKEN 2 and TOKEN 3 final states {6,8}
- The other non-final states can be grouped together as usual

$$\Pi_1 = \{(A, D), (B), (C, E), (F)\}$$

(Compilers)

- The group (A, D) can be refined: $A \xrightarrow{a} B$ and $D \xrightarrow{a} D$
- $\Pi_2 = \{(A), (D), (B), (C, E), (F)\}$
- The group (C, E) can be refined: $C \xrightarrow{b} C$ and $E \xrightarrow{b} F$
- $\Pi_3 = \{(A), (D), (B), (C), (E), (F)\}$
- Π₃ cannot be refined further!
- The minimal DFA to use for the LA scanning is just the same DFA

- Let's scan the input aaba
- $A \stackrel{a}{\longrightarrow} B$, Last_Final = $\{2\}$, Input_Pos_at_Last_Final = 1
- $B \xrightarrow{a} D$
- $D \xrightarrow{b} C$, Last_Final = $\{8\}$, Input_Pos_at_Last_Final = 3
- $C \xrightarrow{a}$
- The LA outputs TOKEN 3 with lexeme aab, then clear the recognised input and restart
- ullet $A \stackrel{a}{\longrightarrow} B$, Last_Final $= \{2\}$, Input_Pos_at_Last_Final = 1
- B

 → end of input
- The LA outputs TOKEN 1 with lexeme a, then stops.

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q @

ToC

- Lexical Analysis: What does a Lexer do?
- Lexical Analysis: How can we do it?
 - Regular Expressions
 - Finite State Automata
- Short Notes on Formal Languages

Languages

Language

Let Σ be a set of characters generally referred to as the *alphabet*. A language over Σ is a set of strings of characters drawn from Σ

Alphabet = English character \implies Language = English sentences Alphabet = ASCII \implies Language = C programs

Given $\Sigma = \{a, b\}$ examples of simple languages are:

- $\mathcal{L}_1 = \{a, ab, aa\}$
- $\mathcal{L}_2 = \{b, ab, aabb\}$
- $\mathcal{L}_3 = \{s \mid s \text{ has an equal number of } a$'s and b's $\}$
- ...

Grammar Definition

Grammar

A Grammar \mathcal{G} is a tuple $\langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ where:

- $ightharpoonup \mathcal{V}_{\mathcal{T}}$ is a finite and non empty set of terminal symbols (alphabet)
- $ightharpoonup \mathcal{V}_{\mathcal{N}}$ is a finite set of non-terminal symbols s.t. $\mathcal{V}_{\mathcal{N}} \cap \mathcal{V}_{\mathcal{T}} = \varnothing$
- $ightharpoonup \mathcal{S} \in \mathcal{V}_{\mathcal{N}}$ is the start symbol
- ▶ \mathcal{P} is a finite set of productions s.t. $\mathcal{P} \subseteq (\mathcal{V}^* \cdot \mathcal{V}_{\mathcal{N}} \cdot \mathcal{V}^*) \times \mathcal{V}^*$ where $\mathcal{V} = \mathcal{V}_{\mathcal{T}} \cup \mathcal{V}_{\mathcal{N}}$

Derivations

Derivations

Given a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ a derivation is a sequence of strings $\phi_1, \phi_2, ..., \phi_n$ s.t.

$$\forall i \in \{1,..,n\}. \phi_i \in \mathcal{V}^* \land \forall i \in \{1,...,n-1\}. \exists p \in \mathcal{P} \colon \phi_i \rightarrow^p \phi_{i+1}$$

We generally write $\phi_1 \to^* \phi_n$ to indicate that from ϕ_1 it is possible to derive ϕ_n repeatedly applying productions in \mathcal{P}

Generated Language

The language generated by a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ corresponds to: $\mathcal{L}(\mathcal{G}) = \{x \mid x \in \mathcal{V}_{\mathcal{T}}^* \land \mathcal{S} \to^* x\}$

Derivations

Derivations

Given a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ a derivation is a sequence of strings $\phi_1, \phi_2, ..., \phi_n$ s.t.

$$\forall i \in \{1,..,n\}. \phi_i \in \mathcal{V}^* \land \forall i \in \{1,...,n-1\}. \exists p \in \mathcal{P} \colon \phi_i \rightarrow^p \phi_{i+1}$$

We generally write $\phi_1 \to^* \phi_n$ to indicate that from ϕ_1 it is possible to derive ϕ_n repeatedly applying productions in \mathcal{P}

Generated Language

The language generated by a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ corresponds to: $\mathcal{L}(\mathcal{G}) = \{x \mid x \in \mathcal{V}_{\mathcal{T}}^* \land \mathcal{S} \to^* x\}$

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the structure of the productions in set \mathcal{P} ($\alpha, \beta, \gamma \in \mathcal{V}^*, a \in \mathcal{V}_T, A, B \in \mathcal{V}_N$):

- To. Unrestricted Grammars:
 - Production Schema: *no constraints*
 - Recognizing Automaton: Turing Machines
- T1. Context Sensitive Grammars:
 - Production Schema: $\alpha A\beta \rightarrow \alpha \gamma \beta$
 - Recognizing Automaton: Linear Bound Automaton (LBA)
- T2. Context-Free Grammars:
 - Production Schema: $A \rightarrow \gamma$
 - Recognizing Automaton: Non-deterministic Push-down Automaton
- T3. Regular Grammars:
 - Production Schema: $A \rightarrow a$ or $A \rightarrow aB$
 - Recognizing Automaton: Finite State Automaton

Meaning function \mathscr{L}

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function $\mathscr L$ that maps syntax to semantics

- ► e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

Meaning function \mathscr{L}

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function $\mathscr L$ that maps syntax to semantics

- e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

Meaning function \mathscr{L}

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function $\mathscr L$ that maps syntax to semantics

- e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

Summary

Lexical Analysis

Relevant concepts we have encountered:

- Tokens, Patterns, Lexemes
- Regular expressions
- Problems and solutions in matching strings
- DFA and NFA
- Transformations
 - RegExp → NFA
 - $\bullet \ \mathsf{NFA} \to \mathsf{DFA}$
 - DFA → Minimal DFA
- Implementation and optimisation of LA
- Chomsky hierarchy and regular languages

