

Andrea Polini, Luca Tesei

Compilers MSc in Computer Science University of Camerino

(Co		

2. Lexical Analysis

CS@UNICAM 1/65

• • • • • • • • • • •

ToC

Lexical Analysis: What does a Lexer do?

Lexical Analysis: How can we do it?
Regular Expressions

Finite State Automata

3) Short Notes on Formal Languages

< 6 b

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

(Cc		

・ロト ・ 四ト ・ ヨト ・ ヨト

\tif (i==j) \n\t\tz=0; \n\telse\n\t\tz=1;

(Compilers)

CS@UNICAM 3/65

э

イロト イヨト イヨト イヨト

Token, Pattern Lexeme

Token

A token is a pair consisting of a token name and an optional attribute value. The token names are the input symbols that the parser processes.

Pattern

A pattern is a description of the form that the lexemes of a token may take. In the case of a keyword as a token, the pattern is just the sequence of characters that form the keyword.

Lexeme

A lexeme is a sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token.

(Compilers)

2. Lexical Analysis

- Token Class (or Class)
 - In English: Noun, Verb, Adjective, Adverb, Article, ...
 - In a programming language: Identifier, Keywords, "(", ")", Numbers,
 - . . .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", .
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

(C	om	nile	irs)
	••••	P0	

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

	ers)	

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", .
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

\sim			
ι.	n	nıı	
		۳.,	

< ロ > < 同 > < 回 > < 回 >

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

(C		

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Therefore the role of the lexical analyser (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Why is not wise to merge the two components?

			2.40
(Compilers)	2. Lexical Analysis	CS@UNICAM	7/65

4 D N 4 B N 4 B N 4 B N

-

Therefore the role of the lexical analyser (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Why is not wise to merge the two components?

		< ⊡ >	< Ξ	▶ ▲ 王	▶ <u>₹</u>	$\mathcal{O}\mathcal{Q}$
(Compilers)	2. Lexical Analysis			CS@UN	IICAM	7/65

Therefore the role of the lexical analyser (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Why is not wise to merge the two components?

(Comp	ilere

Let's analyse these lines of code:

$$x=0; \n\twhile (x<10) {\n\tx++; n}$$

Token Classes: Identifier, Integer, Keyword, Whitespace

Com	pilers	

• • • • • • • • • • • • •

Therefore an implementation of a lexical analyser must do two things:

- Recognise substrings corresponding to tokens
 - the lexemes
- Identify the token class for each lexemes

FORTRAN rule: whitespace is insignificant

- i.e. VA R1 is the same as VAR1
- DO 5 I = 1,25
- DO 5 I = 1.25

In FORTRAN the "5" refers to a label you will find in the following of the program code

< ロ > < 同 > < 回 > < 回 >

- The goal is to partition the string. This is implemented by reading left-to-right, recognising one token at a time
- "Lookahead" may be required to decide where one token ends and the next token begins
- PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN)

Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(: on	npilei	(S)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The goal is to partition the string. This is implemented by reading left-to-right, recognising one token at a time
- "Lookahead" may be required to decide where one token ends and the next token begins
- PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN) Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

- 1	$(: \cap m)$	pilers)

< ロ > < 同 > < 回 > < 回 >

- The goal is to partition the string. This is implemented by reading left-to-right, recognising one token at a time
- "Lookahead" may be required to decide where one token ends and the next token begins
- PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN)

Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

5)	pilers	,0111	(U

• C++ template syntax:

Foo<Bar>

• C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• C++ template syntax:

Foo<Bar>

• C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

	ilers)

< ロ > < 同 > < 回 > < 回 >

ToC

Lexical Analysis: What does a Lexer do?

2 Lexical Analysis: How can we do it?

- Regular Expressions
- Finite State Automata

Languages

We need to define which is the set of strings in any token class. Therefore we need to choose the right mechanisms to describe such sets:

- Reducing at minimum the complexity needed to recognise lexemes
- Identifying effective and simple ways to describe the patterns
- Regular languages seem to be enough powerful to define all the lexemes in any token class
- Regular expressions are a suitable way to syntactically identify strings belonging to a regular language

	ers)

Strings

Parts of a string

Terms related to strings:

- a prefix of a string s is the string obtained removing zero or more characters from the end of s
- a suffix of a string s is the string obtained removing zero or more characters from the beginning of s
- a substring of a string s is obtained deleting any prefix and any suffix from s
- proper prefixes, suffixes and substrings of a string s are those prefixes, suffixes and substrings of s, respectively, that are not empty (ε) or not equal to s itself
- a subsequence of a string s is any string formed by deleting zero or more not necessarily consecutive positions of s

Regular expressions (regexp): Syntax

To form a syntactically correct regexp on a given alphabet $\boldsymbol{\Sigma}$ we have the following rules:

- Single character: 'c' is a regexp for each $c \in \Sigma$;
- Epsilon: ϵ is a regexp;
- Union: $r_1 + r_1$ is a regexp if r_1 and r_1 are regexps (also written $r_1|r_2$);
- Concatenation: r₁ · r₂ is a regexp if r₁ and r₂ are regexps (also written r₁r₂);
- Iteration (Kleene star): r* is a regexp if r is a regexp;
- Brackets: (r) is a regexp if r is a regexp

Regular expressions (regexp): Syntax

To avoid too much brackets we fix the following precedence and associativity rules:

- * has the highest precedence and is left associative
- has the second highest precedence and is left associative
- + has the lowest precedence and is left associative
- e.g., a + bc* means a + (b(c*)); abc + d + e means (((ab)c) + d) + e; ...

Moreover we will use the following shorthands:

- At least one: $r^+ \equiv rr^*$
- Option: $r? \equiv r + \epsilon$
- Range: $[a z] \equiv 'a' + 'b' + \dots + 'z'$
- Excluded range: $[^{A}a z] \equiv \text{complement of } [a z]$

Meaning function $\mathscr L$

The meaning function *L* maps syntax to semantics: *L*(*e*) = *M* where *e* is a regexp and *M* is a set of strings

Given an alphabet Σ and regular expressions r, r_1 and r_2 over Σ :

•
$$\mathscr{L}(\epsilon) = \{\epsilon\}$$

•
$$\mathscr{L}(c') = \{c\}$$
, where $c \in \Sigma$

• $\mathscr{L}(r_1 + r_2) = \mathscr{L}(r_1) \cup \mathscr{L}(r_2)$

•
$$\mathscr{L}(r_1r_2) = \mathscr{L}(r_1) \odot \mathscr{L}(r_2)$$

•
$$\mathscr{L}(r^*) = \bigcup_{i \ge 0} \mathscr{L}(r)^i$$
 where $\begin{cases} \mathscr{L}(r)^0 = \{\epsilon\} \\ \mathscr{L}(r)^i = \mathscr{L}(r) \odot \mathscr{L}(r)^{i-1} \end{cases}$

 \odot is the concatenation of languages:

$$L_1 \odot L_2 = \{s_1 s_2 \mid s_1 \in L_1 \land s_2 \in L_2\}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Some equivalence laws for regexps

Given regexps r_1 and r_2 , they are equivalent, written $r_1 \equiv r_2$, if and only if $\mathscr{L}(r_1) = \mathscr{L}(r_2)$

Let r, r_1, r_2, r_3 be regexps, then:

$$r_{1} + r_{2} \equiv r_{2} + r_{1}$$

$$r_{1} + (r_{2} + r_{3}) \equiv (r_{1} + r_{2}) + r_{1}$$

$$r + r \equiv r$$

$$r_{1}(r_{2}r_{3}) \equiv (r_{1}r_{2})r_{3}$$

$$r_{1}(r_{2} + r_{3}) \equiv r_{1}r_{2} + r_{1}r_{3}$$

$$(r_{1} + r_{2})r_{3} \equiv r_{1}r_{3} + r_{2}r_{3}$$

$$r \epsilon \equiv \epsilon r \equiv r$$

$$(\epsilon + r)^{*} \equiv r^{*}$$

$$r^{**} \equiv r^{*}$$

- + is commutative
- r_3 + is associative
 - + is idempotent
 - · is associative
 - \cdot distributes over + on the left
 - \cdot distributes over + on the right
 - ϵ is the identity for \cdot
 - ϵ is guaranteed in a closure the Kleene star is idempotent

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Regular Languages

Semantics of Regular Expressions

Regular expressions (syntax) specify regular languages (semantics)

A language *L* is regular if and only if there exists a regular expression *r* such that $\mathcal{L}(r) = L$

Closure Properties of Regular Languages

Regular languages are closed with respect to union, intersection, complement

If L_1 and L_2 are regular languages then $L_1 \cup L_2$, $L_1 \cap L_2$ and L_1^c are regular languages

Consider $\Sigma = \{0, 1\}$. What are the sets defined by the following REs?

- ▶ 1*
- ▶ (1+0)1
- ► 0* + 1*
- ▶ (0+1)*

Exercise

Given the regular language identified by $(0 + 1)^* 1(0 + 1)^*$ which are the regular expressions identifying the same language among the following one:

- ▶ $(01+11)^*(0+1)^*$
- $(0+1)^*(10+11+1)(0+1)^*$
- $(1+0)^*1(1+0)^*$
- $(0+1)^*(0+1)(0+1)^*$

Consider $\Sigma = \{0, 1\}$. What are the sets defined by the following REs?

- ▶ 1*
- ▶ (1+0)1
- ▶ 0* + 1*
- ► (0 + 1)*

Exercise

Given the regular language identified by $(0+1)^*1(0+1)^*$ which are the regular expressions identifying the same language among the following one:

• $(01+11)^*(0+1)^*$

•
$$(0+1)^*(10+11+1)(0+1)^*$$

• $(1+0)^*1(1+0)^*$

•
$$(0+1)^*(0+1)(0+1)^*$$

Choose the regular languages that are correct specifications of the following English-language description:

Twelve-hour times of the form "04:13PM". Minutes should always be a two digit number, but hours may be a single digit

•
$$(0+1)?[0-9]: [0-5][0-9](AM+PM)$$

- $((0+\epsilon)[0-9]+1[0-2]): [0-5][0-9](AM+PM)$
- $(0^*[0-9] + 1[0-2]) : [0-5][0-9](AM + PM)$
- (0?[0-9]+1(0+1+2)): [0-5][0-9](A+P)M

Describe the languages denoted by the following RegExp:

- ► a(a|b)*a
- a*ba*ba*ba*
- ► ((*ϵ*|*a*)*b**)*

\sim						
ι.	n	m	۱Ľ		rs	

< ロ > < 同 > < 回 > < 回 >

Regular definitions

For notational convenience we give names to certain regular expressions. A regular definition, on the alphabet Σ is sequence of definitions of the form:

•
$$d_1 \rightarrow r_1$$

• $d_2 \rightarrow r_2$

•
$$d_n \rightarrow r_n$$

where:

- Each d_i is a new symbol, not in Σ, and not the same as any other of the d's
- Each r_i is a regular expression over the alphabet $\Sigma \cup \{d_1, d_2, \dots, d_{i-1}\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Using regular definitions

The tokens of a language can be defined as:

- letter $\rightarrow a|b|...|z|A|B|...|Z$
- $letter_
 ightarrow letter|_$
 - compact syntax: [*a zA B*]
- digit $\rightarrow 0|1|...|9$
 - compact syntax: [0 9]
- integers $\rightarrow (-|\epsilon)$ digit \cdot digit*
- identifiers → letter_(letter_|digit)*
- *expnot* \rightarrow *digit*(.*digit*⁺*E*(+|-)*digit*⁺)? (Exponential Notation)

Exercise

Write regular definitions for the following languages:

- All strings of lowercase letters that contains the five vowels in order
- All strings of lowercase letters in which the letters are in ascending lexicographic order
- All strings of digits with no repeated digits
- All strings with an even number of a's and and an odd number of b's

∃ ► < ∃</p>

How does the lexical analyser work?

Suppose we are given a regular definition $R = \{d_1, \ldots, d_m\}$

- Let the input be $x_0 \cdots x_n \in \Sigma^*$ For $0 \le i \le n$ check if $x_0 \cdots x_i \in \mathcal{L}(d_k)$ for some $k \in \{1, \dots, m\}$
- ② if success then we know that $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some *k*
- **o** remove $x_0 \cdots x_i$ from input and go to 1

However, things are not so simple... consider the following regular definition:

- $d_1 \rightarrow a$ token T1
- 2 $d_2 \rightarrow abb$ token T2
- (a) $d_3 \rightarrow a^*b^+$ token T3

Input: aaba, which are the tokens to recognise?

Regular Expressions

LA matching rules

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern dk is recognised

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

Regular Expressions

LA matching rules

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(\mathbf{d}_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern dk is recognised

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

LA matching rules

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(\mathbf{d}_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Compilers)

LA matching rules

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Compilers)

2. Lexical Analysis

CS@UNICAM 28/65

Regular Expressions

LA matching rules

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Compilers

2. Lexical Analysis

CS@UNICAM 28/65

Regular Expressions

LA matching rules

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k, and
- $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some h

Which is the match to consider?

longest match rule, i.e., pattern d_h is recognised

Suppose that at the same time for $i \in \{0, ..., n\}$ and k < h, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., pattern d_k is recognised

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Compilers

2. Lexical Analysis

CS@UNICAM 28/65

Implementation of LA

- How to implement this algorithm for any given regular definition?
- First, it would be convenient to use a device that is able to recognise automatically the lexemes corresponding to each pattern
- Finite Automata are the devices that are more convenient from an algorithmic point of view
- Then, we should find a way to combine these automata for all the patterns of the given regular definition and to implement the matching rules
- Non-determinism will do the trick
- Finally, we should try to optimise everything, which will be done by eliminating non-determinism and by minimising the resulting deterministic automaton

・ロト ・ 四ト ・ ヨト ・ ヨト

Finite State Automata

Finite Automata

- Regular Expressions = specification of tokens
- Finite Automata = recognition of tokens

Finite Automaton

- A Finite Automaton \mathcal{A} is a tuple $\langle \mathcal{S}, \Sigma, \delta, s_0, \mathcal{F} \rangle$ where:
 - S represents the set of states
 - Σ represents a set of symbols (alphabet)
 - δ represents the transition function ($\delta : S \times \Sigma \to \ldots$)
 - s_0 represents the start state ($s_0 \in S$)
 - \mathcal{F} represents the set of accepting states ($\mathcal{F} \subseteq \mathcal{S}$)

In two flavours: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NFA)

	ers

ヘロト ヘヨト ヘヨト ヘヨト

Finite Automata

- Regular Expressions = specification of tokens
- Finite Automata = recognition of tokens

Finite Automaton

- A Finite Automaton \mathcal{A} is a tuple $\langle \mathcal{S}, \Sigma, \delta, s_0, \mathcal{F} \rangle$ where:
 - S represents the set of states
 - Σ represents a set of symbols (alphabet)
 - δ represents the transition function ($\delta : S \times \Sigma \rightarrow ...$)
 - s_0 represents the start state ($s_0 \in S$)
 - \mathcal{F} represents the set of accepting states ($\mathcal{F} \subseteq \mathcal{S}$)

In two flavours: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NFA)

(Compilers)

2. Lexical Analysis

CS@UNICAM 30/65

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Finite Automata

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- Deterministic Finite Automata (DFA) $\delta : S \times \Sigma \to S$
- ► Nondeterministic Finite Automata (NFA) $\delta : S \times \Sigma \rightarrow \mathscr{P}(S)$

The transition relation δ can be represented in a table (transition table)

 $\mathscr{P}(\mathcal{S}) = 2^{\mathcal{S}}$ is the powerset of the set \mathcal{S} of states, i.e., the set of all the subsets of \mathcal{S}

Overview of the graphical notation circle and edges (arrows)

(Co	hmn	ilerg	
	γιιιρ		

Finite Automata

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- Deterministic Finite Automata (DFA) $\delta : S \times \Sigma \to S$
- ► Nondeterministic Finite Automata (NFA) $\delta : S \times \Sigma \rightarrow \mathscr{P}(S)$

The transition relation δ can be represented in a table (transition table)

 $\mathscr{P}(\mathcal{S}) = 2^{\mathcal{S}}$ is the powerset of the set \mathcal{S} of states, i.e., the set of all the subsets of \mathcal{S}

Overview of the graphical notation circle and edges (arrows)

・ロト ・ 四ト ・ ヨト ・ ヨト

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character *c* going from a state *s* to a state *s'* if $\delta(s,c) = s'$, written $s \xrightarrow{c} s'$ A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t. $\forall k \in \{1, \ldots, n\} . \delta(s_{i+k-1}, a_k) = s_{i+k}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \stackrel{a}{\longrightarrow} s_i$ and $s_i \in \mathcal{F}$

(Compilers)

CS@UNICAM 32/65

ヘロン 人間 とくほ とくほ とうけい

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character *c* going from a state *s* to a state *s'* if $\delta(s,c) = s'$, written $s \xrightarrow{c} s'$ A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t. $\forall k \in \{1, \ldots, n\} . \delta(s_{i+k-1}, a_k) = s_{i+k}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \stackrel{\sim}{\longrightarrow} s_i$ and $s_i \in \mathcal{F}$

(Compilers)

2. Lexical Analysis

CS@UNICAM 32/65

ヘロン 人間 とくほ とくほ とうほう

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character *c* going from a state *s* to a state *s'* if $\delta(s,c) = s'$, written $s \xrightarrow{c} s'$ A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t. $\forall k \in \{1, \ldots, n\} . \delta(s_{i+k-1}, a_k) = s_{i+k}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

(Compilers)

2. Lexical Analysis

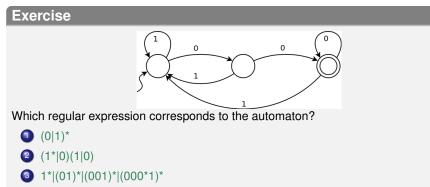
CS@UNICAM 32/65

Finite State Automata

Exercise

Define the following automata:

- DFA for a single 1
- DFA for accepting any number of 1's followed by a single 0
- DFA for any sequence of a or b (possibly empty) followed by 'abb'



④ (0|1)*00

ϵ-moves

DFA, NFA and $\epsilon\text{-moves}$

- DFA
 - at most one transition for one input in a given state
 - no ϵ -moves
- NFA
 - can have multiple transitions for one input in a given state
 - can have ϵ -moves, i.e., $\delta : S \times (\Sigma \cup \{\epsilon\}) \to \mathscr{P}(S)$
 - smaller (exponentially)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character *c* going from a state *s* to a state *s'* if $s' \in \delta(s, c)$, written $s \xrightarrow{c} s'$ An NFA can move from a state *s* to a state *s'* without consuming any input character, written $s \xrightarrow{\epsilon} s'$ An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of moves $s_i \xrightarrow{x_0} s_{i+1} \xrightarrow{x_1} \dots s_{i+m-1} \xrightarrow{x_{m-1}} s_{i+m} = s_j$ s.t. $\forall k \in \{0, \dots, m-1\}.s_{i+k} \in \delta(s_{i+k}, x_k)$ and $x_0 x_1 \cdots x_{m-1} = \mathbf{a}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

An NFA accepts a string **a** if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} : s_0 \stackrel{a}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings **a** such that

(Compilers)

2. Lexical Analysis

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character *c* going from a state *s* to a state *s'* if $s' \in \delta(s, c)$, written $s \xrightarrow{c} s'$ An NFA can move from a state *s* to a state *s'* without consuming any input character, written $s \xrightarrow{\epsilon} s'$ An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of moves $s_i \xrightarrow{x_0} s_{i+1} \xrightarrow{x_1} \dots s_{i+m-1} \xrightarrow{x_{m-1}} s_{i+m} = s_j$ s.t. $\forall k \in \{0, \dots, m-1\}.s_{i+k} \in \delta(s_{i+k}, x_k)$ and $x_0 x_1 \cdots x_{m-1} = \mathbf{a}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

An NFA accepts a string **a** if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} \colon s_0 \stackrel{a}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings **a** such that

(Compilers)

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character *c* going from a state *s* to a state *s'* if $s' \in \delta(s, c)$, written $s \xrightarrow{c} s'$ An NFA can move from a state *s* to a state *s'* without consuming any input character, written $s \xrightarrow{\epsilon} s'$ An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of moves $s_i \xrightarrow{x_0} s_{i+1} \xrightarrow{x_1} \dots s_{i+m-1} \xrightarrow{x_{m-1}} s_{i+m} = s_j$ s.t. $\forall k \in \{0, \dots, m-1\}.s_{i+k} \in \delta(s_{i+k}, x_k)$ and $x_0 x_1 \cdots x_{m-1} = \mathbf{a}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

An NFA accepts a string **a** if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} \colon s_0 \stackrel{a}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings **a** such that $\exists s_i \in \mathcal{F} \colon s_0 \stackrel{a}{\Longrightarrow} s_i$

(Compilers

From regexp to NFA

Equivalent NFA for a regexp

The Thompson's algorithm permits to automatically derive an NFA from the specification of a regexp. It defines basic NFAs for basic regexps and rules to compose them:

- **()** for ϵ
- Ifor 'c'
- Ifor ab
- Ifor a + b
- for a*

Now consider the regexp for $(1|0)^*1$

< ロ > < 同 > < 回 > < 回 >

Implementation of Lexical Analyser

- Recall the matching rules, i.e., the way in which the LA should work to recognise the tokens of a given regular definition R = {d₁,..., d_m}
- We can use Thompson's algorithm to create NFAs A_1 for d_1, \ldots, A_m for d_m
- We can create a fresh new initial state s₀ and connect it with an e transition to all the (unique) initial states of A₁, ..., A_m
- The (unique) final state f_i of A_i recognises the lexemes of token i for all i
- We can then use this combined NFA to implement the matching rules

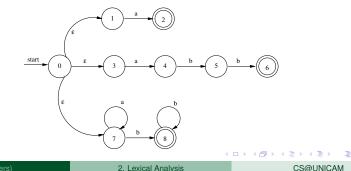
・ロト ・ 四ト ・ ヨト ・ ヨト

Implementation of LA: Example

• Let *R* be :

$$d_1 = a$$
 {TOKEN1}
 $d_2 = abb$ {TOKEN2}
 $d_3 = a^*b^+$ {TOKEN3}

The combined NFA of the three NFAs obtained from d₁, d₂ and d₃ is the following (the NFA for d₃ is simplified, actually made deterministic):



38/65

- The LA must record the last time in which the automaton was in a final state (null at the beginning)
- To do this it implements a lookahead with two variables:
 - Last_Final: it is the set of the last occurred final states (empty at the beginning)
 - Input_Pos_at_Last_Final: it records the position on the input corresponding to the last occurred final state
- These positions must be reset when the the lookahead is "too ahead", i.e., the input is terminated or the automaton is blocked
- Simulation of *ϵ*-transitions will be handled by *ϵ*-*closure*(*s*) (*s* single state); and
- ϵ -closure(\mathcal{T}) = $\bigcup_{s \in \mathcal{T}} \epsilon$ -closure(s) (\mathcal{T} set of states)

- Let's apply this idea to the input aaba
- Initially, the automaton is in the set of states *ε*-*closure*(0) = {0, 1, 3, 7}
- The first input character *a* is read and the automaton moves to states *ε*-*closure*(δ({0, 1, 3, 7}, *a*)) = {2, 3, 7}
- Now 2 is a final state, so we set Last_Final = {2} and Input_Pos_at_Last_Final = 1. This must be considered a partial result, we need to go ahead because there could be a longer input prefix that corresponds to a lexeme
- The second character a is read making the automaton reach the set of states {7}, which does not contain final states, so we go on
- The third character *b* is read and the set of states {8} is reached, and 8 is final state. Thus we update: Last_Final = {8} and Input_Pos_at_Last_Final = 3. We go on

- The fourth character *a* is read and the automaton is blocked because there are no transitions labelled with *a* from state 8.
- The LA outputs TOKEN3 with lexeme *aab* and resets the variables to the the initial state with the remaining input *a*
- The LA restarts with input *a*:
 - Initially, the automaton is in the set of states
 ϵ-*closure*(0) = {0, 1, 3, 7}
 - The first input character *a* is read and the automaton moves to states *ε*-*closure*(δ({0, 1, 3, 7}, *a*)) = {2, 3, 7}
 - Now 2 is a final state, so we set Last_Final = {2} and Input_Pos_at_Last_Final = 1. This must be considered a partial result, we need to go ahead because there could be a longer input prefix that corresponds to a lexeme
 - The automaton is blocked because the input is terminated. The LA outputs TOKEN1 with lexeme *a* and terminates.

(Compilers)

2. Lexical Analysis

- The pattern matching algorithm that we have just given correctly implements the longest match rule
- Note that Last_Final is a set of states
- If it contains more than one state and the LA decides to output the token, the final state corresponding to the highest *d_i* in *R* must be considered to correctly implement the first one listed rule

The automaton that is used by the LA is non-deterministic, thus it must simulate the non-determinism and the ϵ -closure:

- A real LA would be more efficient if the given automaton was deterministic
- \rightarrow we can transform the NFA into an equivalent DFA (possible exponential blow up of states)
- A real LA would be more efficient if the given deterministic automaton had a minimal number of states
- ullet ightarrow we can minimise the obtained DFA

NFA to DFA

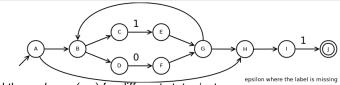
NFA 2 DFA

Given an NFA accepting a language ${\mathscr L}$ there exists a DFA accepting the same language

- The derivation of a DFA from an NFA is based on the concept of ϵ -closure
- The subset construction algorithm makes the transformation using the following operations:
 - ϵ -closure(s) with $s \in S$
 - ϵ -closure(\mathcal{T}) = $\bigcup_{s \in \mathcal{T}} \epsilon$ -closure(s) where $\mathcal{T} \subseteq S$
 - $move(\mathcal{T}, a)$ with $\mathcal{T} \subseteq \mathcal{S}$ and $a \in \Sigma$

イロト イ団ト イヨト イヨト

NFA to DFA



- build the ε-closure(...) for different states/sets
- build move(T, a) for different sets and elements

11:0	mnil	ers)
(00	ΠPΠ	

< ロ > < 同 > < 回 > < 回 >

NFA to DFA

Subset Construction Algorithm

The Subset Construction algorithm permits to derive a DFA $\langle S, \Sigma, \delta_D, s_0, \mathcal{F}_D \rangle$ from an NFA $\langle \mathcal{N}, \Sigma, \delta_N, n_0, \mathcal{F}_N \rangle$

```
s_0 \leftarrow \epsilon-closure(\{n_0\}); S \leftarrow \{s_0\}; \mathcal{F}_D \leftarrow \emptyset; worklist \leftarrow \{s_0\};
if (s_0 \cap \mathcal{F}_N \neq \emptyset) then \mathcal{F}_D \leftarrow \mathcal{F}_D \cup s_0;
end if
while (worklist \neq \emptyset) do
     take and remove q from worklist;
     for all (c \in \Sigma) do
            t \leftarrow \epsilon-closure(move(q, c));
           \delta_D[q, c] \leftarrow t;
           if (t \notin S) then
                 \mathcal{S} \leftarrow \mathcal{S} \cup t; worklist \leftarrow worklist \cup t;
           end if
           if (t \cap \mathcal{F}_N \neq \emptyset) then \mathcal{F}_D \leftarrow \mathcal{F}_D \cup t;
           end if
     end for
end while
                                                                                             2. Lexical Analysis
```

Simulating DFA and NFA

DFA

 $s = s_0;$ c = nextChar();while (c \neq eof) do s = move(s, c); c = nextChar();end while if (s \in \mathcal{F}) then return "yes"; else return "no"; end if

NFA

$$\begin{split} S &= \epsilon \text{-closure}(s_0);\\ c &= nextChar();\\ \text{while } (c \neq \text{eof) do}\\ S &= \epsilon \text{-closure}(move(S,c));\\ c &= nextChar();\\ \text{end while}\\ \text{if } (S \cap \mathcal{F} \neq \varnothing) \text{ then return "yes";}\\ \text{else return "no";}\\ \text{end if} \end{split}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Exercises NFA to DFA

- Derive an NFA for the regexp: $(a|b)^*abb$
- NFA to DFA for the obtained NFA

(Compilers)	2.
-------------	----

< ロ > < 同 > < 回 > < 回 >

Exercises NFA to DFA

- Derive an NFA for the regexp: $(a|b)^*abb$
- NFA to DFA for the obtained NFA

ompilers

< ロ > < 同 > < 回 > < 回 >

DFA to Minimal DFA

Note

Reducing the size of the automaton does not reduce the number of moves needed to recognise a string, nevertheless it reduces the size of the transition table that could more easily fit the size of a cache

Equivalent states

Two states of a DFA are equivalent if they produce the same "behaviour" on any input string.

Let $\mathcal{D} = \langle S, \Sigma, \delta, q_0, \mathcal{F} \rangle$ be a DFA. Two states s_i and s_j of \mathcal{D} are considered equivalent, written $s_i \equiv s_j$, iff

$$\forall \mathbf{x} \in \Sigma^*. (s_i \xrightarrow{\mathbf{x}} s'_i \land s'_i \in \mathcal{F}) \iff (s_j \xrightarrow{\mathbf{x}} s'_j \land s'_j \in \mathcal{F})$$

DFA to Minimal DFA – Partition Refinement Algorithm

Deriving a minimal DFA

Transform a DFA $\langle S, \Sigma, \delta_D, s_0, \mathcal{F}_D \rangle$ into a minimal *DFA* $\langle S', \Sigma, \delta'_D, s'_0, \mathcal{F}'_D \rangle$

// Π is a partition of the set of states *S* Π ← {*F*_D, *S* − *F*_D} // Initially there are only two groups of states: final states and non-final states **repeat** Π_{new} ← Π // create a working copy Π_{new} **for all** groups *G* in Π **do** partition *G* in subgroups *G*₁, . . . , *G*_n (*n* ≥ 1) such that two states *s* and *t* are in the same subgroup *G*_i iff ∀*c* ∈ Σ ((*s*−+) ∧ (*t*−+))) ∨ ((*s*−+) *s'*) ∧ (*t* −) ∧ (*s'*, *t'* ∈ *G*) for some group *G* in Π) // subgroups *G*_i s may be composed of only one state Π_{new} ← Π_{new} − *G* ∪ {*G*₁, . . . , *G*_n // Replace *G* with the obtained subgroups in Π_{new} // the partition is refined: the group *G* is possibly replaced with a finer partition *G*₁, . . . , *G*_n **end for until** Π_{new} = Π // exit when the partition cannot be refined further // The algorithm contains a set of groups that are a partition of the states *S* // The algorithm contains a set of groups that are a partition of the states *S*

 ۰n	nn	Пe	

DFA to Minimal DFA – Partition Refinement Algorithm

```
// Continues from the previous slide . . .
// the states of the minimal DFA are representatives of groups of equivalent states, those that are in \Pi
\mathcal{S}' \leftarrow \varnothing and \mathcal{F}'_{\mathcal{D}} \leftarrow \varnothing
for all groups G in II do
    choose a state in G as the representative for G and add it to S'
    if G \cap \mathcal{F}_D \neq \emptyset \parallel G contains either all final states or all non-final states then
         add the representative state for G also to \mathcal{F}'_{D}
    end if
end for
s'_0 \leftarrow the representative state of the group G containing s_0
for all states s \in S' do
    for all charachters c \in \Sigma do
         if \delta_D[s, c] is defined then
             \delta'_D[s, c] \leftarrow the representative state of the group G containing the state \delta_D[s, c]
         end if
    end for
end for
```

Uniqueness of the minimal DFA

There exists a unique DFA, up to isomorphism, that recognises a regular language \mathscr{L} and has minimal number of states. Two DFA are isomorphic iff they are equal by neglecting the labels of the states.

()	nn	nn	ers)

Exercises

RegExp 2 DFA

- Minimise the DFA for the regexp (a|b)* abb
- Consider the regexp $a(b|c)^*$ and derive the minimal accepting DFA
- Define an automated strategy to decide if two regular expressions define the same language combining the algorithms defined so far

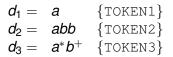
Regular Languages properties

- Specify a DFA accepting all strings of a's and b's that do not contain the substring aab
- Show that the complement of a regular language, on alphabet Σ, is still a regular language
- Show that the intersection of two regular languages, on alphabet Σ, is still a regular language

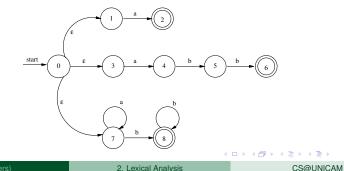
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall of Implementation of LA: Example

• Let *R* be :

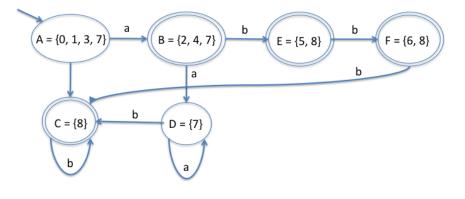


The combined NFA of the three NFAs obtained from d₁, d₂ and d₃ is the following (the NFA for d₃ is simplified, actually made deterministic):



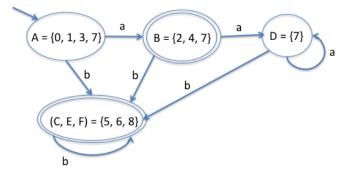
52/65

- The behaviour of the LA can be optimised by determinizing the NFA and then by minimising the states
- The DFA obtained from the combined NFA for *R* is:



3 > 4 3

• By performing a standard minimisation the following minimal DFA is obtained:



A (10) > A (10) > A (10)

- Let's scan the input aaba
- $A \xrightarrow{a} B$, Last_Final = {2}, Input_Pos_at_Last_Final = 1
- $B \xrightarrow{a} D$
- $D \xrightarrow{b} (C, E, F)$, Last_Final = {6,8}, Input_Pos_at_Last_Final = 3
- $(C, E, F) \xrightarrow{a}$
- The LA cannot decide which token to output! Final state 6 would call for TOKEN 2 (incorrect!) and final state 8 would call for TOKEN 3!

We need to retain the information on the final states!

(I) > (A) > (A) > (A) > (A)

- We must start the minimisation of the DFA by initially splitting the group of final states into subgroups
- A subgroup for each set of reached final states must be created
- subgroup 1 = {B} for TOKEN 1 only final state 2
- subgroup $2 = \{C, E\}$ for TOKEN 3 only final state 8
- subgroup 3 = {F} for TOKEN 2 and TOKEN 3 final states {6,8}
- The other non-final states can be grouped together as usual

 $\Pi_1 = \{ (A, D), (B), (C, E), (F) \}$

- The group (A, D) can be refined: $A \xrightarrow{a} B$ and $D \xrightarrow{a} D$
- $\Pi_2 = \{(A), (D), (B), (C, E), (F)\}$
- The group (C, E) can be refined: $C \xrightarrow{b} C$ and $E \xrightarrow{b} F$
- $\Pi_3 = \{(A), (D), (B), (C), (E), (F)\}$
- Π₃ cannot be refined further!
- The minimal DFA to use for the LA scanning is just the same DFA

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Let's scan the input aaba
- $A \xrightarrow{a} B$, Last_Final = {2}, Input_Pos_at_Last_Final = 1
- $B \xrightarrow{a} D$
- $D \xrightarrow{b} C$, Last_Final = {8}, Input_Pos_at_Last_Final = 3 • $C \xrightarrow{a}$
- The LA outputs TOKEN 3 with lexeme *aab*, then clear the recognised input and restart
- $A \xrightarrow{a} B$, Last_Final = {2}, Input_Pos_at_Last_Final = 1
- $B \not\longrightarrow$ end of input
- The LA outputs TOKEN 1 with lexeme *a*, then stops.

ToC

Lexical Analysis: How can we do it?
 Regular Expressions

Finite State Automata

< 6 b

Languages

Language

Let Σ be a set of characters generally referred to as the *alphabet*. A language over Σ is a set of strings of characters drawn from Σ

Alphabet = English character \implies Language = English sentences Alphabet = ASCII \implies Language = C programs

Given $\Sigma = \{a, b\}$ examples of simple languages are:

- $\mathcal{L}_1 = \{a, ab, aa\}$
- $\mathcal{L}_2 = \{b, ab, aabb\}$
- $\mathcal{L}_3 = \{s \mid s \text{ has an equal number of } a$'s and b's $\}$

(Compilers)

• . . .

Grammar Definition

Grammar

A Grammar \mathcal{G} is a tuple $\langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ where:

- V_T is a finite and non empty set of terminal symbols (alphabet)
- ▶ V_N is a finite set of non-terminal symbols s.t. $V_N \cap V_T = \emptyset$
- $\blacktriangleright \ \mathcal{S} \in \mathcal{V}_{\mathcal{N}} \text{ is the start symbol}$
- \mathcal{P} is a finite set of productions s.t. $\mathcal{P} \subseteq (\mathcal{V}^* \cdot \mathcal{V}_{\mathcal{N}} \cdot \mathcal{V}^*) \times \mathcal{V}^*$ where $\mathcal{V} = \mathcal{V}_{\mathcal{T}} \cup \mathcal{V}_{\mathcal{N}}$

Derivations

Derivations

Given a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ a derivation is a sequence of strings $\phi_1, \phi_2, ..., \phi_n$ s.t. $\forall i \in \{1, ..., n\}. \phi_i \in \mathcal{V}^* \land \forall i \in \{1, ..., n-1\}. \exists p \in \mathcal{P}: \phi_i \rightarrow^p \phi_{i+1}$ We generally write $\phi_1 \rightarrow^* \phi_n$ to indicate that from ϕ_1 it is possible to derive ϕ_n repeatedly applying productions in \mathcal{P}

Generated Language

The language generated by a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ corresponds to: $\mathcal{L}(\mathcal{G}) = \{x \mid x \in \mathcal{V}_{\mathcal{T}}^* \land \mathcal{S} \to^* x\}$

	ers)

イロン イロン イヨン 「ヨ

Derivations

Derivations

Given a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ a derivation is a sequence of strings $\phi_1, \phi_2, ..., \phi_n$ s.t. $\forall i \in \{1, ..., n\}. \phi_i \in \mathcal{V}^* \land \forall i \in \{1, ..., n-1\}. \exists p \in \mathcal{P}: \phi_i \rightarrow^p \phi_{i+1}$ We generally write $\phi_1 \rightarrow^* \phi_n$ to indicate that from ϕ_1 it is possible to derive ϕ_n repeatedly applying productions in \mathcal{P}

Generated Language

The language generated by a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ corresponds to: $\mathcal{L}(\mathcal{G}) = \{ x \mid x \in \mathcal{V}_{\mathcal{T}}^* \land \mathcal{S} \to^* x \}$

	ers	

イロン イロン イヨン イヨン 二日

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the structure of the productions in set \mathcal{P} ($\alpha, \beta, \gamma \in \mathcal{V}^*, a \in \mathcal{V}_T, A, B \in \mathcal{V}_N$):

T0. Unrestricted Grammars:

- Production Schema: no constraints
- Recognizing Automaton: Turing Machines
- T1. Context Sensitive Grammars:
 - Production Schema: $\alpha A \beta \rightarrow \alpha \gamma \beta$
 - Recognizing Automaton: Linear Bound Automaton (LBA)
- T2. Context-Free Grammars:
 - Production Schema: $\mathbf{A} \rightarrow \gamma$
 - Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:

- Production Schema: $A \rightarrow a$ or $A \rightarrow aB$
- Recognizing Automaton: Finite State Automaton

Meaning function $\mathscr L$

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function \mathscr{L} that maps syntax to semantics

- e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

. () :	nm	nıl	ers)
		P''	0,0,

Meaning function $\mathscr L$

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function \mathscr{L} that maps syntax to semantics

- e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

(Compilers)

2. Lexical Analysis

CS@UNICAM 64/65

< 日 > < 同 > < 回 > < 回 > < 回 > <

Meaning function $\mathscr L$

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function \mathscr{L} that maps syntax to semantics

- e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

(Compilers)

2. Lexical Analysis

CS@UNICAM 64/65

3

Summary

Lexical Analysis

Relevant concepts we have encountered:

- Tokens, Patterns, Lexemes
- Regular expressions
- Problems and solutions in matching strings
- DFA and NFA
- Transformations
 - $\bullet \ \text{RegExp} \to \text{NFA}$
 - $\bullet \ \mathsf{NFA} \to \mathsf{DFA}$
 - $\bullet \ \mathsf{DFA} \to \mathsf{Minimal} \ \mathsf{DFA}$
- Implementation and optimisation of LA
- Chomsky hierarchy and regular languages

< ロ > < 同 > < 回 > < 回 >