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Prof. Michele Loreti Programming paradigms 3/51



Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

Prof. Michele Loreti Programming paradigms 4 /51



Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

A programming paradigm is an approach to programming a computer
based on a mathematical theory or a coherent set of principles.

Prof. Michele Loreti Programming paradigms 4 /51



Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

A programming paradigm is an approach to programming a computer
based on a mathematical theory or a coherent set of principles.

Each paradigm supports a set of concepts that makes it the best for a
certain kind of problem.

Prof. Michele Loreti Programming paradigms 4 /51



Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

A programming paradigm is an approach to programming a computer
based on a mathematical theory or a coherent set of principles.

Each paradigm supports a set of concepts that makes it the best for a
certain kind of problem.

Solving a programming problem requires choosing the right
concepts!
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Each paradigm
Each language realizes consists of a set
one or more paradigms of concepts
Languages Paradigms ——~ Concepts
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Programming paradigms

Common programming paradigms include:

® imperative/procedural: statements are used to change program’s
state. Imperative programming focuses on describing how a program
operates.
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Programming paradigms

Common programming paradigms include:

® imperative/procedural: statements are used to change program’s
state. Imperative programming focuses on describing how a program
operates.

® functional: computation is treated as the evaluation of mathematical
functions and avoids changing-state and mutable data.

® declarative/logical: expresses the logic of a computation without
describing its control flow. A program consists in a set of sentences in
logical form, expressing facts and rules about some problem domain.

B object-oriented: it is based on the concept of objects, which may
contain both data, the fields, and code, the methods.
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This lecture. ..

In this lecture. ..

..we will first introduce basic notions of functional programming. ..

.. then some basic notions of declarative programming is provided. . .

. after that we focus on object-oriented programming. ..

.. finally an overview of modern programming languages is provided.
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Functional programming

Programming in a functional language consists of building definitions end
using the computer to evaluate expressions.
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Functional programming

Programming in a functional language consists of building definitions end
using the computer to evaluate expressions.

Functions are first-class values and can be assigned to names (variables).

Computations consist in the appropriate compositions of defined functions.

We will consider F#, a modern functional language integrated in the .Net
framework.
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F# programming language

F# (pronounced F sharp). ..
is a strongly typed programming language;
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F# programming language

F# (pronounced F sharp). ..
is a strongly typed programming language;
supports multi-paradigms (functional, imperative, and
object-oriented);
is used as a cross-platform Common Language Infrastructure (CLI)
language;
can generate JavaScript and Graphics Processing Unit (GPU) code.

Here we will main consider the functional aspects!
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F# programming language

Primitive Types (1/2)

® bool, Boolean values (true or false).

® byte, Unsigned byte (from 0 to 28 — 1).

® sbyte, Signed byte (from —27 to 27 —1).

® int16, 16-bit integer (from —215 to 215 —1).

® uint16, 16-bit integer (from 0 to 216 —1).

® int, 32-bit integer (from —231 5 231 _ 1).

® 4int32, 32-bit unsigned (from 0 to 232 — 1).

® int64, 64-bit integer (from —263 15 263 _ 1).

® uint64, 64-bit unsigned int (from 0 to 264 _ 1).
B char, Unicode character values.

B string, Unicode text.

B decimal, Floating point data type that has at least 28 significant digits.
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F# programming language ,

Primitive Types (2/2)

® unit, Indicates the absence of an actual value.
® void, Indicates no type or value.

B float32, A 32-bit floating point type.

B float, A 64-bit floating point type.
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F# programming language
Values (1/2)

B bool: true, false.

® byte, an integer with postfix y (86y).

B sbyte, an integer with postfix uy (86uy).

® intl6, an integer with postfix s (86s).

® uintl6, an integer with postfix us (86us).

® int, an integer with the optional postfix | (86 or 86l).
® uint32, an integer with postfix u or ul (86u or ul).

® int64, an integer with postfix L (86L).

® uint64, an integer with postfix UL (86UL).

® char, a single symbol surrounded by single quotes ("a’).
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F# programming language
Values (2/2)

B string, can be:

a sequence of characters surrounded by double quotes
(" Hello\n\n World!");

. a sequence of characters surrounded by double quotes and prefixed
with @ (@"Hello\n\n World!");
a portion of text (possibly on multiple lines) surrounded by """

""" Hello

World I"""

® decimal, a floating point value postfixed with M (0.35M).
B ynit, the value ().

® float32, a floating point postfixed with f or F (0.35f or 035F).

float, a floating point in decimal or exponential form (0.35 or 3.5E—1).
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F# programming language

Basic concepts

Basic construct in F# is let that can be used to associate a name with a
value

let num = 10
let str = "F#"
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let num = 10
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Each name has a type that is inferred from the associated
expression!
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F# programming language

Basic concepts

Basic construct in F# is let that can be used to associate a name with a
value

let num = 10
let str = "F#"

Each name has a type that is inferred from the associated

expression!
Above:
® num has type int;
® str has type string;
Prof. Michele Loreti 15 / 51
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Operators

Arithmetic Operators: +, —, *, /, %, **;
Comparison Operators: =, <, <=, >, >=, <>;
Boolean Operators: not, ||, &&;

Bitwise Operators: &&&, |||, """, "~", <<<, >>>;
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Operators

Arithmetic Operators: +, —, *, /, %, **;
Comparison Operators: =, <, <=, >, >=, <>;
Boolean Operators: not, ||, &&;

Bitwise Operators: &&&, |||, """, "~", <<<, >>>;

Arithmetic and Comparison operators are overloaded: the exact
type depends on the type of their argument!

Differently from Java, no implicit cast is done!
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F# programming language

Simple type errors!

let x = 86u //x has type ubyte
let y 86 //y has type int

let z = x+y //This is an error!!l!
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F# programming language '

Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:
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Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:

let f1 = fun x —> x+1
let f2(x) = x+1

Functions can be passed as arguments of other functions:

let f3(x,f) = f(x+2)+1

let y = f3(1,f)

The type of parameters and the type of returned value can be
omittedwhen they can be inferred from the code!

Function types have the form: typel —> type2
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F# programming language ,

Type inference

The idea of type inference is that you do not have to specify the types of
F# constructs except when the compiler cannot conclusively deduce the

type.
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Type inference

The idea of type inference is that you do not have to specify the types of
F# constructs except when the compiler cannot conclusively deduce the

type.

This does not mean that F# is a dynamically typed language or
that values in F# are weakly typed.

F+#, like almost all functional languages, is statically typed!

Type annotations can be used to help the compiler to infer the expected
type.
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F# programming language

Type inference

//No annotation, inferred type: intxint —> int
let f(x,y) = x+y
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F# programming language

Type inference

//No annotation, inferred type: intxint —> int
let f(x,y) = x+y

//Parameter x is annotated as float, inferred type: floatx
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let f(x: float, y) = x+y

Prof. Michele Loreti 20 /51
ro ichele Loreti Functional programming in F#: Basic Concepts



F# programming language

Type inference

//No annotation, inferred type: intxint —> int
let f(x,y) = x+y

//Parameter x is annotated as float, inferred type: floatx
float —> float

let f(x: float, y) = x+y

//Name x is annotated as float, inferred type: floatxfloat
—> float

let f(x,y) = (x: float)+y
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F# programming language

Type inference

//No annotation, inferred type: intxint —> int
let f(x,y) = x+y

//Parameter x is annotated as float, inferred type: floatx
float —> float
let f(x: float, y) = x+y

//Name x is annotated as float, inferred type: floatxfloat
—> float

let f(x,y) = (x: float)+y

//Return type of f is float,
// inferred type: floatxfloat —> float
let f(x,y):float = x+y
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F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y

let f2 x y = x+y

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts



F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y

Function f1 has type:

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts



F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y

Function f1 has type:

val fl : x:int % y:int —> int

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts



F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y

Function f1 has type:
val fl : x:int % y:int —> int

Function f2 has type:

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts



F# programming language

Partial evaluation

Let us consider the following functions:
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F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y
Function f1 has type:
val fl : x:int % y:int —> int
Function f2 has type:
val f2 : x:int —> y:int —> int
Function f2 can be partially evaluate:
let inc = f2 1
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F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y
Function f1 has type:
val fl : x:int % y:int —> int
Function f2 has type:
val f2 : x:int —> y:int —> int
Function f2 can be partially evaluate:
let inc = f2 1

The two approaches are in fact equivalent! The second one is the
standard (and more efficient).
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Type parameters. . .

Let us consider the following definition:

let select x y zw = if (x=y) then z else w
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let select x y zw = if (x=y) then z else w
The compiler has not info for inferring as type for x, y, z and w.
However, we know that:
1. x and y must have the same type (say it a);
2. z and w must have the same type (say it b);
3. values of type a must support equality.

Any type satisfying the expected properties (equality for a) can be
used in place of a and b, that can be considered as type parameters!
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Type parameters. ..

Let us consider the following definition:

let select x y zw = if (x=y) then z else w
The compiler has not info for inferring as type for x, y, z and w.
However, we know that:

1. x and y must have the same type (say it a);

2. z and w must have the same type (say it b);

3. values of type a must support equality.

Any type satisfying the expected properties (equality for a) can be
used in place of a and b, that can be considered as type parameters!

The following type is inferred for function select:
val select : x:'a —>y:'a—>z:'b —>w:'b—>"b
when 'a : equality
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F# programming language

Recursive functions. . .

In functional programming the use of recursive definition is crucial.
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Recursive functions. . .

In functional programming the use of recursive definition is crucial.

let fib x =
if x<1 then
1
else
(fib x—=1)+(fib x—2)
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F# programming language

Recursive functions. . .

In functional programming the use of recursive definition is crucial.

let fib x =
if x<1 then
1
else
(fib x—=1)+(fib x—2)

This definition is not correct! The symbol fib is not defined when
the body of the function is evaluated!
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F# programming language

Recursive functions. . .

In functional programming the use of recursive definition is crucial.

let fib x =
if x<1 then
1
else
(fib x—=1)+(fib x—2)

This definition is not correct! The symbol fib is not defined when
the body of the function is evaluated!

i

let rec fib(x) = //Note here the use of 'rec
if x<=2 then
1
else
(fib x—=1)+(fib x—-2)

Prof. Michele Loreti 23 /51
ro ichele Loreti Functional programming in F#: Basic Concepts



e ey
F# programming language '

Tuples. ..
A tuple is a grouping of unnamed but ordered values, possibly of different

types.

(element, ... , element)
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Tuples. ..
A tuple is a grouping of unnamed but ordered values, possibly of different

types.

(element, ... , element)
Example:
let fib(x) =
let rec _fib(x) =
if x<=2 then
(1,1)
else
let (a,b)=_fib(x-1)
in
(at+b,a)
in
let (a,-) = _fib(x)
in
a
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Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type 'a list .
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Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type 'a list .

You can define a list by explicitly listing out the elements, separated by
semicolons and enclosed in square brackets;

let 1ist123 = [ 1; 2; 3 ] //Type int list
let emptylist = [] //Type 'a list!
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Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type 'a list .

You can define a list by explicitly listing out the elements, separated by
semicolons and enclosed in square brackets;

let 1ist123 = [ 1; 2; 3 ] //Type int list
let emptylist = [] //Type 'a list!

You can also define list elements by using a range indicated by integers
separated by the range operator ..:

let listl = [ 1..10 ]
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F# programming language U

Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type 'a list .
You can define a list by explicitly listing out the elements, separated by
semicolons and enclosed in square brackets;

let list123 = [ 1; 2; 3 ] //Type int list

let emptylist = [] //Type 'a list!

You can also define list elements by using a range indicated by integers
separated by the range operator ..:

let listl = [ 1..10 ]

List operations:
B : js used to add an element at the beginning of the list: a:: listl
® @ is used to concatenate two lists: 11@I2
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Pattern matching. ..

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.
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Pattern matching. ..

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match expression.

match test—expression with

| patternl [ when condition ] —> result—expressionl
| pattern2 [ when condition ] —> result—expression2
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Pattern matching. ..

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match expression.

match test—expression with

| patternl [ when condition ] —> result—expressionl
| pattern2 [ when condition ] —> result—expression2

Pattern can be used to inspect the structure of a value and bind values to
variables:

match Ist with

| [] = exp-1
| v:i:tail —> exp-2
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Pattern matching. ..

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match expression.

match test—expression with

| patternl [ when condition ] —> result—expressionl
| pattern2 [ when condition ] —> result—expression2

Pattern can be used to inspect the structure of a value and bind values to
variables:

match Ist with
| 1] = exp-1
| v:i:tail —> exp-2

Conditions are boolean expressions that can be used to limit the selection.
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Example: Polynomial evaluation

A polynomial in a single indeterminate x is an expression o the form:

aan+"'+31X+ao
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Example: Polynomial evaluation

A polynomial in a single indeterminate x is an expression o the form:

aan+"'+31X+ao

A polynomial can be represented as the list of its coefficients:

let poly = [ an; ... al; a0 ]
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Example: Polynomial evaluation

A polynomial in a single indeterminate x is an expression o the form:

aan+"‘+31X+ao

A polynomial can be represented as the list of its coefficients:

let poly = [ an; ... al; a0 ]

Write a function eval that received in input a list of coefficients and a
value x computes the value of the polynomial.

Prof. Michele Loreti 27 /51
ro ichele Loreti Functional programming in F#: Basic Concepts



Example: Polynomial evaluation

Solution 1:

let rec eval clist (x: float) =
match clist with
| [I — 0.0
| c::tail —> cx(x*xfloat(clist.Length—1))+(eval tail x)
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Example: Polynomial evaluation

Solution 1:

let rec eval clist (x: float) =
match clist with
| [I — 0.0
| c::tail —> cx(x*xfloat(clist.Length—1))+(eval tail x)

Solution 2:

let eval2 clist (x: float)
let rec _eval2 clist v =
match clist with

| [ = v
| c::tail = _eval2 tail (vsx+c)
in
_eval2 clist 0.0
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Option type. ..

The option type is used when an actual value might not exist for a named
value or variable.
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Option type. ..

The option type is used when an actual value might not exist for a named
value or variable.

An option has an underlying type and can hold a value of that type, or it
might not have a value

"a option
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Option type. ..

The option type is used when an actual value might not exist for a named
value or variable.

An option has an underlying type and can hold a value of that type, or it
might not have a value

"a option

Find the first element in a list matching a predicate:

let rec findFirstMatching pred | =

match | with
| [] = None
| v::tail = if (pred v) then Some v
else findFirstMatching pred tail
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Option type. ..

The option type is used when an actual value might not exist for a named
value or variable.

An option has an underlying type and can hold a value of that type, or it
might not have a value

"a option

Find the first element in a list matching a predicate:

let rec findFirstMatching pred | =

match | with
| [] = None
| vi:tail — if (pred v) then Some v

else findFirstMatching pred tail

The type of findFirstMatching is:
pred:('a —> bool) —> I:"a list —> 'a option
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Excercises. . .

Ex. 0: Download and install F# developing environment. See instructions
available here:

https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/

Ex. 1: Write a function that given in input a and b computes their mcd.

Ex. 2: Write a function that given in input n returns true if nis a prime
number and false otherwise.

Ex. 3: Write a function that given in input an integer n computes the list
of its prime factors.
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