Programmazione Avanzata

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Programmazione Avanzata 1/51

Programming paradigms

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Programming paradigms 2 /51

Programming Languages

Prof. Michele Loreti Programming paradigms 3/51

Programming Languages

How we can classify all these languages?

Prof. Michele Loreti Programming paradigms 3/51

Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

Prof. Michele Loreti Programming paradigms 4 /51

Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

A programming paradigm is an approach to programming a computer
based on a mathematical theory or a coherent set of principles.

Prof. Michele Loreti Programming paradigms 4 /51

Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

A programming paradigm is an approach to programming a computer
based on a mathematical theory or a coherent set of principles.

Each paradigm supports a set of concepts that makes it the best for a
certain kind of problem.

Prof. Michele Loreti Programming paradigms 4 /51

Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

A programming paradigm is an approach to programming a computer
based on a mathematical theory or a coherent set of principles.

Each paradigm supports a set of concepts that makes it the best for a
certain kind of problem.

Solving a programming problem requires choosing the right
concepts!

Prof. Michele Loreti Programming paradigms 4 /51

Programming paradigms

mm-mm

— b
|

N
]
[]
m L
[]
]
[]

Each paradigm
Each language realizes consists of a set
one or more paradigms of concepts
Languages Paradigms ——~ Concepts
Prof. Michele Loreti Programming paradigms

5/ 51

Programming paradigms

Common programming paradigms include:

® imperative/procedural: statements are used to change program’s
state. Imperative programming focuses on describing how a program
operates.

Prof. Michele Loreti Programming paradigms 6 /51

Programming paradigms

Common programming paradigms include:

® imperative/procedural: statements are used to change program’s
state. Imperative programming focuses on describing how a program
operates.

® functional: computation is treated as the evaluation of mathematical
functions and avoids changing-state and mutable data.

Prof. Michele Loreti Programming paradigms 6 /51

Programming paradigms

Common programming paradigms include:

® imperative/procedural: statements are used to change program’s
state. Imperative programming focuses on describing how a program
operates.

® functional: computation is treated as the evaluation of mathematical
functions and avoids changing-state and mutable data.

® declarative/logical: expresses the logic of a computation without
describing its control flow. A program consists in a set of sentences in
logical form, expressing facts and rules about some problem domain.

Prof. Michele Loreti Programming paradigms 6 /51

Programming paradigms

Common programming paradigms include:

® imperative/procedural: statements are used to change program’s
state. Imperative programming focuses on describing how a program
operates.

® functional: computation is treated as the evaluation of mathematical
functions and avoids changing-state and mutable data.

® declarative/logical: expresses the logic of a computation without
describing its control flow. A program consists in a set of sentences in
logical form, expressing facts and rules about some problem domain.

B object-oriented: it is based on the concept of objects, which may
contain both data, the fields, and code, the methods.

Prof. Michele Loreti Programming paradigms 6 /51

This lecture. ..

In this lecture. ..

Prof. Michele Loreti Programming paradigms 7 /51

This lecture. ..

In this lecture. ..

... we will first introduce basic notions of functional programming. ..

Prof. Michele Loreti Programming paradigms 7 /51

This lecture. ..

In this lecture. ..

... we will first introduce basic notions of functional programming. ..

...then some basic notions of declarative programming is provided. ..

Prof. Michele Loreti Programming paradigms 7 /51

This lecture. ..

In this lecture. ..

... we will first introduce basic notions of functional programming. ..

...then some basic notions of declarative programming is provided. ..

... after that we focus on object-oriented programming. ..

Prof. Michele Loreti Programming paradigms 7 /51

This lecture. ..

In this lecture. ..

..we will first introduce basic notions of functional programming. ..

.. then some basic notions of declarative programming is provided. . .

. after that we focus on object-oriented programming. ..

.. finally an overview of modern programming languages is provided.

Prof. Michele Loreti Programming paradigms 7 /51

Functional programming in F#: Basic Concepts

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti 8/51
ro ichele Loreti Functional programming in F#: Basic Concepts

Functional programming

Programming in a functional language consists of building definitions end
using the computer to evaluate expressions.

Prof. Michele Loreti 9 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Functional programming

Programming in a functional language consists of building definitions end
using the computer to evaluate expressions.

Functions are first-class values and can be assigned to names (variables).

Prof. Michele Loreti 9/51
ro ichele Loreti Functional programming in F#: Basic Concepts

Functional programming

Programming in a functional language consists of building definitions end
using the computer to evaluate expressions.

Functions are first-class values and can be assigned to names (variables).

Computations consist in the appropriate compositions of defined functions.

Prof. Michele Loreti 9 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Functional programming

Programming in a functional language consists of building definitions end
using the computer to evaluate expressions.

Functions are first-class values and can be assigned to names (variables).

Computations consist in the appropriate compositions of defined functions.

We will consider F#, a modern functional language integrated in the .Net
framework.

Prof. Michele Loreti 9/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

F# (pronounced F sharp). ..
is a strongly typed programming language;

Prof. Michele Loreti 10/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

F# (pronounced F sharp). ..
is a strongly typed programming language;
. supports multi-paradigms (functional, imperative, and
object-oriented);

Prof. Michele Loreti 10/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

F# (pronounced F sharp). ..
is a strongly typed programming language;
supports multi-paradigms (functional, imperative, and
object-oriented);
is used as a cross-platform Common Language Infrastructure (CLI)
language;

Prof. Michele Loreti 10/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

F# (pronounced F sharp). ..
is a strongly typed programming language;
. supports multi-paradigms (functional, imperative, and
object-oriented);
is used as a cross-platform Common Language Infrastructure (CLI)
language;
. can generate JavaScript and Graphics Processing Unit (GPU) code.

Prof. Michele Loreti 10/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

F# (pronounced F sharp). ..
is a strongly typed programming language;
. supports multi-paradigms (functional, imperative, and
object-oriented);
is used as a cross-platform Common Language Infrastructure (CLI)
language;
. can generate JavaScript and Graphics Processing Unit (GPU) code.

Prof. Michele Loreti 10/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

F# (pronounced F sharp). ..
is a strongly typed programming language;
supports multi-paradigms (functional, imperative, and
object-oriented);
is used as a cross-platform Common Language Infrastructure (CLI)
language;
can generate JavaScript and Graphics Processing Unit (GPU) code.

Here we will main consider the functional aspects!

Prof. Michele Loreti 10/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Primitive Types (1/2)

® bool, Boolean values (true or false).

® byte, Unsigned byte (from 0 to 28 — 1).

® sbyte, Signed byte (from —27 to 27 —1).

® int16, 16-bit integer (from —215 to 215 —1).

® uint16, 16-bit integer (from 0 to 216 —1).

® int, 32-bit integer (from —231 5 231 _ 1).

® 4int32, 32-bit unsigned (from 0 to 232 — 1).

® int64, 64-bit integer (from —263 15 263 _ 1).

® uint64, 64-bit unsigned int (from 0 to 264 _ 1).
B char, Unicode character values.

B string, Unicode text.

B decimal, Floating point data type that has at least 28 significant digits.

Prof. Michele Loreti 11/51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language ,

Primitive Types (2/2)

® unit, Indicates the absence of an actual value.
® void, Indicates no type or value.

B float32, A 32-bit floating point type.

B float, A 64-bit floating point type.

Prof. Michele Loreti 12/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language
Values (1/2)

B bool: true, false.

® byte, an integer with postfix y (86y).

B sbyte, an integer with postfix uy (86uy).

® intl6, an integer with postfix s (86s).

® uintl6, an integer with postfix us (86us).

® int, an integer with the optional postfix | (86 or 86l).
® uint32, an integer with postfix u or ul (86u or ul).

® int64, an integer with postfix L (86L).

® uint64, an integer with postfix UL (86UL).

® char, a single symbol surrounded by single quotes ("a’).

Prof. Michele Loreti 13 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language
Values (2/2)

B string, can be:

a sequence of characters surrounded by double quotes
(" Hello\n\n World!");

. a sequence of characters surrounded by double quotes and prefixed
with @ (@"Hello\n\n World!");
a portion of text (possibly on multiple lines) surrounded by """

""" Hello

World I"""

® decimal, a floating point value postfixed with M (0.35M).
B ynit, the value ().

® float32, a floating point postfixed with f or F (0.35f or 035F).

float, a floating point in decimal or exponential form (0.35 or 3.5E—1).

Prof. Michele Loreti 14 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Basic concepts

Basic construct in F# is let that can be used to associate a name with a
value

let num = 10
let str = "F#"

Prof. Michele Loreti 15 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Basic concepts

Basic construct in F# is let that can be used to associate a name with a
value

let num = 10
let str = "F#"

Each name has a type that is inferred from the associated
expression!

Prof. Michele Loreti 15 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Basic concepts

Basic construct in F# is let that can be used to associate a name with a
value

let num = 10
let str = "F#"

Each name has a type that is inferred from the associated

expression!
Above:
® num has type int;
® str has type string;
Prof. Michele Loreti 15 / 51

Functional programming in F#: Basic Concepts

e ey
F# programming language '

Operators

Arithmetic Operators: +, —, *, /, %, **;
Comparison Operators: =, <, <=, >, >=, <>;
Boolean Operators: not, ||, &&;

Bitwise Operators: &&&, |||, """, "~", <<<, >>>;

. Michele Loreti 16/51
Prof. Michele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language ,

Operators

Arithmetic Operators: +, —, *, /, %, **;
Comparison Operators: =, <, <=, >, >=, <>;
Boolean Operators: not, ||, &&;

Bitwise Operators: &&&, |||, """, "~", <<<, >>>;

Arithmetic and Comparison operators are overloaded: the exact
type depends on the type of their argument!

Prof. Michele Loreti 16 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language ,

Operators

Arithmetic Operators: +, —, *, /, %, **;
Comparison Operators: =, <, <=, >, >=, <>;
Boolean Operators: not, ||, &&;

Bitwise Operators: &&&, |||, """, "~", <<<, >>>;

Arithmetic and Comparison operators are overloaded: the exact
type depends on the type of their argument!

Differently from Java, no implicit cast is done!

Prof. Michele Loreti 16 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Simple type errors!

let x = 86u //x has type ubyte
let y 86 //y has type int

let z = x+y //This is an error!!l!

Prof. Michele Loreti 17 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language '

Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:

Prof. Michele Loreti 18 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language '

Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:

let f1 = fun x —> x+1

let f2(x) = x+1

Prof. Michele Loreti 18 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language ,

Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:

let f1 = fun x —> x+1
let f2(x) = x+1

Functions can be passed as arguments of other functions:

let f3(x,f) = f(x+2)+1

let y = f3(1,f)

Prof. Michele Loreti 18 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language '

Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:

let f1 = fun x —> x+1
let f2(x) = x+1

Functions can be passed as arguments of other functions:

let f3(x,f) = f(x+2)+1

let y = f3(1,f)

The type of parameters and the type of returned value can be
omitted

Prof. Michele Loreti 18 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language '

Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:

let f1 = fun x —> x+1
let f2(x) = x+1

Functions can be passed as arguments of other functions:

let f3(x,f) = f(x+2)+1

let y = f3(1,f)

The type of parameters and the type of returned value can be
omittedwhen they can be inferred from the code!

Prof. Michele Loreti 18 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language ,

Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:

let f1 = fun x —> x+1
let f2(x) = x+1

Functions can be passed as arguments of other functions:

let f3(x,f) = f(x+2)+1

let y = f3(1,f)

The type of parameters and the type of returned value can be
omittedwhen they can be inferred from the code!

Function types have the form: typel —> type2

Prof. Michele Loreti 18 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language ,

Type inference

The idea of type inference is that you do not have to specify the types of
F# constructs except when the compiler cannot conclusively deduce the

type.

Prof. Michele Loreti 19/51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language '

Type inference

The idea of type inference is that you do not have to specify the types of
F# constructs except when the compiler cannot conclusively deduce the

type.

This does not mean that F# is a dynamically typed language or
that values in F# are weakly typed.

Prof. Michele Loreti 19/51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language '

Type inference

The idea of type inference is that you do not have to specify the types of
F# constructs except when the compiler cannot conclusively deduce the
type.

This does not mean that F# is a dynamically typed language or
that values in F# are weakly typed.

F+#, like almost all functional languages, is statically typed!

Prof. Michele Loreti 19/51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language ,

Type inference

The idea of type inference is that you do not have to specify the types of
F# constructs except when the compiler cannot conclusively deduce the

type.

This does not mean that F# is a dynamically typed language or
that values in F# are weakly typed.

F+#, like almost all functional languages, is statically typed!

Type annotations can be used to help the compiler to infer the expected
type.

Prof. Michele Loreti 19/51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Type inference

//No annotation, inferred type: intxint —> int
let f(x,y) = x+y

Prof. Michele Loreti 20 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Type inference

//No annotation, inferred type: intxint —> int
let f(x,y) = x+y

//Parameter x is annotated as float, inferred type: floatx
float —> float
let f(x: float, y) = x+y

Prof. Michele Loreti 20 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Type inference

//No annotation, inferred type: intxint —> int
let f(x,y) = x+y

//Parameter x is annotated as float, inferred type: floatx
float —> float

let f(x: float, y) = x+y

//Name x is annotated as float, inferred type: floatxfloat
—> float

let f(x,y) = (x: float)+y

Prof. Michele Loreti 20 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Type inference

//No annotation, inferred type: intxint —> int
let f(x,y) = x+y

//Parameter x is annotated as float, inferred type: floatx
float —> float
let f(x: float, y) = x+y

//Name x is annotated as float, inferred type: floatxfloat
—> float

let f(x,y) = (x: float)+y

//Return type of f is float,
// inferred type: floatxfloat —> float
let f(x,y):float = x+y

Prof. Michele Loreti 20 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y

let f2 x y = x+y

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y

Function f1 has type:

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y

Function f1 has type:

val fl : x:int % y:int —> int

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y

Function f1 has type:
val fl : x:int % y:int —> int

Function f2 has type:

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y
Function f1 has type:
val fl : x:int % y:int —> int
Function f2 has type:

val f2 : x:int —> y:int —> int

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

S
F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y
Function f1 has type:
val fl : x:int % y:int —> int
Function f2 has type:
val f2 : x:int —> y:int —> int
Function f2 can be partially evaluate:
let inc = f2 1

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Partial evaluation

Let us consider the following functions:
let fl(x,y) = x+y
let f2 x y = x+y
Function f1 has type:
val fl : x:int % y:int —> int
Function f2 has type:
val f2 : x:int —> y:int —> int
Function f2 can be partially evaluate:
let inc = f2 1

The two approaches are in fact equivalent! The second one is the
standard (and more efficient).

Prof. Michele Loreti 21 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Type parameters. . .

Let us consider the following definition:

let select x y zw = if (x=y) then z else w

Prof. Michele Loreti 22/ 51
ro ichele Loreti Functional programming in F#: Basic Concepts

Type parameters. . .

Let us consider the following definition:

let select x y zw = if (x=y) then z else w

The compiler has not info for inferring as type for x, y, z and w.

Prof. Michele Loreti 22/ 51
ro ichele Loreti Functional programming in F#: Basic Concepts

Type parameters. . .

Let us consider the following definition:

let select x y zw = if (x=y) then z else w

The compiler has not info for inferring as type for x, y, z and w.
However, we know that:

1. x and y must have the same type (say it a);

Prof. Michele Loreti 22/ 51
ro ichele Loreti Functional programming in F#: Basic Concepts

Type parameters. ..

Let us consider the following definition:
let select x y zw = if (x=y) then z else w
The compiler has not info for inferring as type for x, y, z and w.
However, we know that:
1. x and y must have the same type (say it a);
2. z and w must have the same type (say it b);

Prof. Michele L i 22 /51
rof. Michele Loreti Functional programming in F#: Basic Concepts

Type parameters. ..

Let us consider the following definition:
let select x y zw = if (x=y) then z else w
The compiler has not info for inferring as type for x, y, z and w.
However, we know that:
1. x and y must have the same type (say it a);
2. z and w must have the same type (say it b);
3. values of type a must support equality.

Prof. Michele L i 22 /51
rof. Michele Loreti Functional programming in F#: Basic Concepts

Type parameters. ..

Let us consider the following definition:
let select x y zw = if (x=y) then z else w
The compiler has not info for inferring as type for x, y, z and w.
However, we know that:
1. x and y must have the same type (say it a);
2. z and w must have the same type (say it b);
3. values of type a must support equality.

Prof. Michele L i 22 /51
rof. Michele Loreti Functional programming in F#: Basic Concepts

Type parameters. . .

Let us consider the following definition:
let select x y zw = if (x=y) then z else w
The compiler has not info for inferring as type for x, y, z and w.
However, we know that:
1. x and y must have the same type (say it a);
2. z and w must have the same type (say it b);
3. values of type a must support equality.

Any type satisfying the expected properties (equality for a) can be
used in place of a and b, that can be considered as type parameters!

Prof. Michele Loreti 22 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Type parameters. ..

Let us consider the following definition:

let select x y zw = if (x=y) then z else w
The compiler has not info for inferring as type for x, y, z and w.
However, we know that:

1. x and y must have the same type (say it a);

2. z and w must have the same type (say it b);

3. values of type a must support equality.

Any type satisfying the expected properties (equality for a) can be
used in place of a and b, that can be considered as type parameters!

The following type is inferred for function select:
val select : x:'a —>y:'a—>z:'b —>w:'b—>"b
when 'a : equality

Prof. Michele Loreti 22 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Recursive functions. . .

In functional programming the use of recursive definition is crucial.

Prof. Michele Loreti 23 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Recursive functions. . .

In functional programming the use of recursive definition is crucial.

let fib x =
if x<1 then
1
else
(fib x—=1)+(fib x—2)

Prof. Michele Loreti 23 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Recursive functions. . .

In functional programming the use of recursive definition is crucial.

let fib x =
if x<1 then
1
else
(fib x—=1)+(fib x—2)

This definition is not correct! The symbol fib is not defined when
the body of the function is evaluated!

Prof. Michele Loreti 23 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

F# programming language

Recursive functions. . .

In functional programming the use of recursive definition is crucial.

let fib x =
if x<1 then
1
else
(fib x—=1)+(fib x—2)

This definition is not correct! The symbol fib is not defined when
the body of the function is evaluated!

i

let rec fib(x) = //Note here the use of 'rec
if x<=2 then
1
else
(fib x—=1)+(fib x—-2)

Prof. Michele Loreti 23 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language '

Tuples. ..
A tuple is a grouping of unnamed but ordered values, possibly of different

types.

(element, ... , element)

Prof. Michele Loreti 24 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language ,

Tuples. ..
A tuple is a grouping of unnamed but ordered values, possibly of different

types.

(element, ... , element)
Example:
let fib(x) =
let rec _fib(x) =
if x<=2 then
(1,1)
else
let (a,b)=_fib(x-1)
in
(at+b,a)
in
let (a,-) = _fib(x)
in
a

24 / 51

Prof. Michele Loreti . Lo .
Functional programming in F#: Basic Concepts

e ey
F# programming language '

Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type 'a list .

Prof. Michele Loreti 25 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language u

Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type 'a list .

You can define a list by explicitly listing out the elements, separated by
semicolons and enclosed in square brackets;

let 1ist123 = [1; 2; 3] //Type int list
let emptylist = [] //Type 'a list!

Prof. Michele Loreti 25 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language u

Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type 'a list .

You can define a list by explicitly listing out the elements, separated by
semicolons and enclosed in square brackets;

let 1ist123 = [1; 2; 3] //Type int list
let emptylist = [] //Type 'a list!

You can also define list elements by using a range indicated by integers
separated by the range operator ..:

let listl = [1..10]

Prof. Michele Loreti 25 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

e ey
F# programming language U

Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type 'a list .
You can define a list by explicitly listing out the elements, separated by
semicolons and enclosed in square brackets;

let list123 = [1; 2; 3] //Type int list

let emptylist = [] //Type 'a list!

You can also define list elements by using a range indicated by integers
separated by the range operator ..:

let listl = [1..10]

List operations:
B : js used to add an element at the beginning of the list: a:: listl
® @ is used to concatenate two lists: 11@I2

Prof. Michele Loreti 25 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Pattern matching. ..

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

Prof. Michele Loreti 26 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Pattern matching. ..

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match expression.

match test—expression with

| patternl [when condition] —> result—expressionl
| pattern2 [when condition] —> result—expression2

Prof. Michele Loreti 26 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Pattern matching. ..

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match expression.

match test—expression with

| patternl [when condition] —> result—expressionl
| pattern2 [when condition] —> result—expression2

Pattern can be used to inspect the structure of a value and bind values to
variables:

match Ist with

| [] = exp-1
| v:i:tail —> exp-2
Prof. Michele Loreti 26 /51

Functional programming in F#: Basic Concepts

Pattern matching. ..

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match expression.

match test—expression with

| patternl [when condition] —> result—expressionl
| pattern2 [when condition] —> result—expression2

Pattern can be used to inspect the structure of a value and bind values to
variables:

match Ist with
| 1] = exp-1
| v:i:tail —> exp-2

Conditions are boolean expressions that can be used to limit the selection.

Prof. Michele Loreti 26 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Example: Polynomial evaluation

A polynomial in a single indeterminate x is an expression o the form:

aan+"'+31X+ao

Prof. Michele Loreti 27 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Example: Polynomial evaluation

A polynomial in a single indeterminate x is an expression o the form:

aan+"'+31X+ao

A polynomial can be represented as the list of its coefficients:

let poly = [an; ... al; a0]

Prof. Michele Loreti 27 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Example: Polynomial evaluation

A polynomial in a single indeterminate x is an expression o the form:

aan+"‘+31X+ao

A polynomial can be represented as the list of its coefficients:

let poly = [an; ... al; a0]

Write a function eval that received in input a list of coefficients and a
value x computes the value of the polynomial.

Prof. Michele Loreti 27 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Example: Polynomial evaluation

Solution 1:

let rec eval clist (x: float) =
match clist with
| [I — 0.0
| c::tail —> cx(x*xfloat(clist.Length—1))+(eval tail x)

Prof. Michele Loreti 28 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Example: Polynomial evaluation

Solution 1:

let rec eval clist (x: float) =
match clist with
| [I — 0.0
| c::tail —> cx(x*xfloat(clist.Length—1))+(eval tail x)

Solution 2:

let eval2 clist (x: float)
let rec _eval2 clist v =
match clist with

| [= v
| c::tail = _eval2 tail (vsx+c)
in
_eval2 clist 0.0
Prof. Michele Loreti 28 /51

Functional programming in F#: Basic Concepts

Option type. ..

The option type is used when an actual value might not exist for a named
value or variable.

Prof. Michele Loreti 29 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Option type. ..

The option type is used when an actual value might not exist for a named
value or variable.

An option has an underlying type and can hold a value of that type, or it
might not have a value

"a option

Prof. Michele Loreti 29 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Option type. ..

The option type is used when an actual value might not exist for a named
value or variable.

An option has an underlying type and can hold a value of that type, or it
might not have a value

"a option

Find the first element in a list matching a predicate:

let rec findFirstMatching pred | =

match | with
| [] = None
| v::tail = if (pred v) then Some v
else findFirstMatching pred tail
Prof. Michele Loreti 29 / 51

Functional programming in F#: Basic Concepts

Option type. ..

The option type is used when an actual value might not exist for a named
value or variable.

An option has an underlying type and can hold a value of that type, or it
might not have a value

"a option

Find the first element in a list matching a predicate:

let rec findFirstMatching pred | =

match | with
| [] = None
| vi:tail — if (pred v) then Some v

else findFirstMatching pred tail

The type of findFirstMatching is:
pred:('a —> bool) —> I:"a list —> 'a option

Prof. Michele Loreti 29 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

Excercises. . .

Ex. 0: Download and install F# developing environment. See instructions
available here:

https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/

Ex. 1: Write a function that given in input a and b computes their mcd.

Ex. 2: Write a function that given in input n returns true if nis a prime
number and false otherwise.

Ex. 3: Write a function that given in input an integer n computes the list
of its prime factors.

Prof. Michele Loreti 30 /51
ro ichele Loreti Functional programming in F#: Basic Concepts

https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/

