Functional programming in F#: Data Structures

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti 31/51
ro ichele Loreti Functional programming in F#: Data Structures



Summary of previous lectures

In the previous lecture we have. . .:

® introduced basic principles of programming paradigms;
® introduced basic concept of a functional language, F#:
B elementary types;
B expressions;
B function definitions;
B type inference;
® |ists.

Prof. Michele Loreti 32/51
ro ichele Loreti Functional programming in F#: Data Structures



Exercises: solutions

Ex. 1: Write a function that given in input a and b computes their mcd.

Prof. Michele Loreti 33 /51
ro ichele Loreti Functional programming in F#: Data Structures



Exercises: solutions '

Ex. 1: Write a function that given in input a and b computes their mcd.

let med (a: uint32) (b: uint32) =
let rec _mcd x y =
if y=0u then x
else _mcd y (x%y)

-mcd (max a b) (min a b)

Prof. Michele Loreti 33 /51
ro ichele Loreti Functional programming in F#: Data Structures



Exercises: solutions

Ex. 2: Write a function that given in input n returns true if nis a prime
number and false otherwise:

Prof. Michele Loreti 34 /51
ro ichele Loreti Functional programming in F#: Data Structures



Exercises: solutions

Ex. 2: Write a function that given in input n returns true if nis a prime
number and false otherwise:

let isPrime n =
let limit = int(sqrt(float(n)))+1
let rec test n x =
if x>=limit then true
else if n%x = 0 then false
else test n (x+1)

test n 2

Prof. Michele Loreti 34/51
ro ichele Loreti Functional programming in F#: Data Structures



Exercises: solutions

Ex. 3: Write a function that given in input an integer n computes the list
of its prime factors.

Prof. Michele Loreti 35 /51
ro ichele Loreti Functional programming in F#: Data Structures



Exercises: solutions

Ex. 3: Write a function that given in input an integer n computes the list
of its prime factors.

let primeFactors n =
let rec divP x y =
if x%y<>0 then (x,0)
else
let (z,p) = divP (x/y) vy
in
(z,p+1)
let rec combP x y =
if x<2 then []
else
match divP x y with
| (-,0) —> combP x (y+1)
| (z.p) = y::(combP z (y+1))

combP n 2

35/ 51

Prof. Michele Loreti . -
Functional programming in F#: Data Structures



Imperative statements

To simplify coding, standard imperative statements are often included in
functional languages.

Prof. Michele Loreti 36 /51
ro ichele Loreti Functional programming in F#: Data Structures



Imperative statements

To simplify coding, standard imperative statements are often included in
functional languages.
You can use the keyword mutable to specify a variable that can be changed.

Prof. Michele Loreti 36 /51
ro ichele Loreti Functional programming in F#: Data Structures



Imperative statements

To simplify coding, standard imperative statements are often included in
functional languages.
You can use the keyword mutable to specify a variable that can be changed.

let mutable x =1 //declaration
x <— x + 1 //assignment

Prof. Michele Loreti 36 /51
ro ichele Loreti Functional programming in F#: Data Structures



Imperative statements

To simplify coding, standard imperative statements are often included in
functional languages.

You can use the keyword mutable to specify a variable that can be changed.

let mutable x =1 //declaration
x <— x + 1 //assignment

Mutable variables in F# should generally have a limited scope, either as a
field of a type or as a local value.

Prof. Michele Loreti 36 /51
ro ichele Loreti Functional programming in F#: Data Structures



Imperative statements

To simplify coding, standard imperative statements are often included in
functional languages.

You can use the keyword mutable to specify a variable that can be changed.

let mutable x =1 //declaration
x <— x + 1 //assignment

Mutable variables in F# should generally have a limited scope, either as a
field of a type or as a local value.

Use of mutable variables may introduce side effects!

Prof. Michele Loreti 36 /51
ro ichele Loreti Functional programming in F#: Data Structures



Imperative statements

To simplify coding, standard imperative statements are often included in
functional languages.
You can use the keyword mutable to specify a variable that can be changed.

let mutable x =1 //declaration
x <— x + 1 //assignment

Mutable variables in F# should generally have a limited scope, either as a

field of a type or as a local value.

Use of mutable variables may introduce side effects!

let mutable counter = 0

let step () = x <— x+1;x

36 / 51

Prof. Michele Loreti . -
Functional programming in F#: Data Structures



Loop expressions. . .

The for ... to expression is used to iterate in a loop over a range of values
of a loop variable:

for identifier = start [ to | downto | finish do
body—expression

Prof. Michele Loreti 37/ 51
ro ichele Loreti Functional programming in F#: Data Structures



Loop expressions. . .

The for ... to expression is used to iterate in a loop over a range of values
of a loop variable:

for identifier = start [ to | downto | finish do
body—expression

The while ... do expression is used to perform iterative execution (looping)
while a specified test condition is true:

while test—expression do
body—expression

Prof. Michele Loreti 37/51
ro ichele Loreti Functional programming in F#: Data Structures



Examples: list of prime factors. ..

let primeFactors2 n =
let compP x y =
let mutable count = 0
let mutable v = x
while v%y = 0 do
v <— v/y
count <— count+l
(v, count)

let mutable v = n
let mutable count = 2
let mutable res = []

while v >= 2 do
let (r,p) = divP v count
v <— r;
if p>0 then res <— count::res;
count <— count+1;
res

Prof. Michele Loreti 38 /51
ro ichele Loreti Functional programming in F#: Data Structures



Custom data type: Records. ..

Records represent simple aggregates of named values

Prof. Michele Loreti 39 /51
ro ichele Loreti Functional programming in F#: Data Structures



S e
Custom data type: Records. .. '

Records represent simple aggregates of named values

type typename = {
[ mutable ] labell : typel;
[ mutable ] label2 : type2;

Prof. Michele Loreti 39 /51
ro ichele Loreti Functional programming in F#: Data Structures



Custom data type: Records. ..

Records represent simple aggregates of named values

type typename = {
[ mutable ] labell : typel;
[ mutable ] label2 : type2;

Example:

type MyPoint = { x: float ; y: float }

Prof. Michele Loreti 39 /51
ro ichele Loreti Functional programming in F#: Data Structures



Custom data type: Records. ..

Records represent simple aggregates of named values

type typename = {
[ mutable ] labell : typel;
[ mutable ] label2 : type2;

Example:

type MyPoint = { x: float ; y: float }

You can initialize records by using the labels that are defined in the record:
let p={ x=10.0 ; y=10.0 }

Prof. Michele Loreti 39 /51
ro ichele Loreti Functional programming in F#: Data Structures



Custom data type: Records. ..

Fields in a record are accessible via the standard name.field notation:

Prof. Michele Loreti 40 /51
ro ichele Loreti Functional programming in F#: Data Structures



Custom data type: Records. ..

Fields in a record are accessible via the standard name.field notation:

let distance pl p2 =
((pl.x—p2.x)*%2.0+(pl.y—p2.y)*%2.0)*x0.5

Prof. Michele Loreti 40 /51
ro ichele Loreti Functional programming in F#: Data Structures



Custom data type: Records. ..

Fields in a record are accessible via the standard name.field notation:

let distance pl p2 =
((pl.x—p2.x)*%2.0+(pl.y—p2.y)*%2.0)*x0.5

Records can be used with pattern matching. You can specify some fields
explicitly and provide variables for other fields:

let pointlnfo p =
match p with
| { x=0.0 ; y=0.0 } —>
printf "This is the origin!”
| { x=0.0 ; y=_ } —>
printf "This point is located on the x—axes!”

| { x=- ; y=0.0 } —
printf " This point is located on the y—axes!”
| { x=xval ; y=yval } —

printf "This point is located at (%f,%f)"” xval yval

Prof. Michele Loreti 40/51
ro ichele Loreti Functional programming in F#: Data Structures



Custom data type: Discriminated Unions. . .

Discriminated unions provide support for values that can be one of a
number of named cases, possibly each with different values and types:

type type—name =

| case—identifierl [of [ fieldnamel : ] typel [ x [
fieldname2 : ] type2 ...]

| case—identifier2 [of [fieldname3 : ]Jtype3 [ * [
fieldname4 : Jtyped ...]

Prof. Michele Loreti 41 /51

Functional programming in F#: Data Structures



Custom data type: Discriminated Unions. . .

Discriminated unions provide support for values that can be one of a
number of named cases, possibly each with different values and types:

type type—name =
| case—identifierl [of [ fieldnamel : ] typel [ x [
fieldname2 : ] type2 ...]
| case—identifier2 [of [fieldname3 : ]Jtype3 [ * [
fieldname4 : Jtyped ...]

Example:

type Shape =
| Rectangle of width : float * length : float
| Circle of radius : float

| Prism of width : float % float x height : float

Prof. Michele Loreti 4a/s1
ro ichele Loreti Functional programming in F#: Data Structures



Example: Binary Search Trees!

Binary search trees keep their keys in sorted order:
® elements are inserted/removed from the tree by following the principle
of binary search;

® elements traverse the tree from root to leaf by making decisions on
the base of comparison.

Prof. Michele Loreti 42/51
ro ichele Loreti Functional programming in F#: Data Structures



Example: Binary Search Trees!

Binary search trees keep their keys in sorted order:
® elements are inserted/removed from the tree by following the principle
of binary search;

® elements traverse the tree from root to leaf by making decisions on
the base of comparison.

Exercise:
1. develop a data type for BST;

2. implement basic operations on BST. ..
B insertion;
B search;
B deletion.

Prof. Michele Loreti 42/51
ro ichele Loreti Functional programming in F#: Data Structures



Example: Binary Search Trees!

Data type:

type bstree =
EMPTY
| NODE of value: int % left: bstree % right: bstree

Prof. Michele Loreti 43 /51
ro ichele Loreti Functional programming in F#: Data Structures



Example: Binary Search Trees!

Data type:

type bstree =
EMPTY
| NODE of value: int % left: bstree % right: bstree

Add a value in the tree:

let rec add v t =
match t with
| EMPTY —> NODE(v ,EMPTY,EMPTY)
| NODE(v1l,!,r) when vli<v —> NODE(vl,|,add v r)
| NODE(v1l,!,r) —> NODE(vl,add v |, r)

Prof. Michele Loreti 43 /51
ro ichele Loreti Functional programming in F#: Data Structures



Example: Binary Search Trees!

Search for an element:

let rec contains v t =
match t with
| EMPTY —> false
| NODE(v1l,_,_) when vl=v —> true
| NODE(v1l,!,r) when vl<v —> contains v r
| NODE(v1l,!,r) —> contains v |

Prof. Michele Loreti 44 /51
ro ichele Loreti Functional programming in F#: Data Structures



Example: Binary Search Trees!

Search for an element:

let rec contains v t =
match t with
| EMPTY —> false
| NODE(v1l,_,_) when vl=v —> true
| NODE(v1l,!,r) when vl<v —> contains v r
| NODE(v1l,!,r) —> contains v |

Merging trees:

let rec merge tl t2 =

match tl,t2 with

| EMPTY,_ — t2

| - ,EMPTY —> tl1

| NODE(v1,I1,r1),NODE(v2,12,r2) when vli<v2 —>
NODE(vl, 1, merge rl t2)

| NODE(v1,I1,rl) NODE(v2,12,r2) —>
NODE(v2,12 ,merge r2 tl)

Prof. Michele Loreti 44 /51
ro ichele Loreti Functional programming in F#: Data Structures



Example: Binary Search Trees!

Removing an element:

let rec remove v t =
match t with
| EMPTY —> EMPTY
| NODE(v1l,!,r) when vl=v —> merge | r
| NODE(v1l,!,r) when vl<v —> NODE(vl,|,remove v r)
| NODE(v1l,!,r) —> NODE(vl, remove v |, r)

Prof. Michele Loreti 45 /51
ro ichele Loreti Functional programming in F#: Data Structures



Exercises. . .

Ex. 4 Implement function size that given a tree t computes the number of
elements stored in t.

Ex. 5 Implement function height that given a tree t computes its height
(an empty BST has height equal to 0).

Ex. 6 Implement function balance that given a tree t computes a tree t1
with the same elements its height (an empty BST has height equal to 0).

Ex. 7 Implement AVL data structure.

Prof. Michele Loreti 46/ 51
ro ichele Loreti Functional programming in F#: Data Structures



Remarks. . .

The type bstree can only contain integer values.

Prof. Michele Loreti 47 /51
ro ichele Loreti Functional programming in F#: Data Structures



Remarks. . .

The type bstree can only contain integer values.

It could be convenient, like we already observed for lists, define this type
as parametrised!

Prof. Michele Loreti 47 /51
ro ichele Loreti Functional programming in F#: Data Structures



Remarks. . .

The type bstree can only contain integer values.

It could be convenient, like we already observed for lists, define this type
as parametrised!

The exact type of elements in a bstree could be chosen by the programmer!

Prof. Michele Loreti 47 /51
ro ichele Loreti Functional programming in F#: Data Structures



Remarks. . .

The type bstree can only contain integer values.

It could be convenient, like we already observed for lists, define this type
as parametrised!

The exact type of elements in a bstree could be chosen by the programmer!

We can use Generics!

Prof. Michele Loreti 47 /51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Generic programming is a style of computer programming in which
elements of a program (procedures, functions, data-types,...) are written
in terms of types to-be-specified-later.

Prof. Michele Loreti 48 / 51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Generic programming is a style of computer programming in which
elements of a program (procedures, functions, data-types,...) are written
in terms of types to-be-specified-later.

These type parameters are then instantiated when needed for specific
types provided as parameters.

Prof. Michele Loreti 48/51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Generic programming is a style of computer programming in which
elements of a program (procedures, functions, data-types,...) are written
in terms of types to-be-specified-later.

These type parameters are then instantiated when needed for specific
types provided as parameters.

A generic indicates values, methods, properties, and aggregate types such
as classes, records, and discriminated unions can be generic.

Prof. Michele Loreti 48/51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Generic programming is a style of computer programming in which
elements of a program (procedures, functions, data-types,...) are written
in terms of types to-be-specified-later.

These type parameters are then instantiated when needed for specific
types provided as parameters.

A generic indicates values, methods, properties, and aggregate types such
as classes, records, and discriminated unions can be generic.

In F# function values, methods, properties, and aggregate types such as
classes, records, and discriminated unions can be generic.

Prof. Michele Loreti 48/51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Prof. Michele Loreti 49/51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Generic constructs contain at least one type parameter, which is usually
supplied by the user of the generic construct.

Prof. Michele Loreti 49 /51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Generic constructs contain at least one type parameter, which is usually
supplied by the user of the generic construct.

Generic functions and types enable you to write code that works with a
variety of types without repeating the code for each type:

/ Explicitly generic function.
let function —name<type—parameters> parameter—list =
function —body

// Explicitly generic type.
type type—name<type—parameters> type—definition

Prof. Michele Loreti 49/51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Automatic Generation: Type Inference

The F# compiler, when it performs type inference on a function,
determines whether a given parameter can be generic.

Prof. Michele Loreti 50 / 51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Automatic Generation: Type Inference

The F# compiler, when it performs type inference on a function,
determines whether a given parameter can be generic.

The compiler examines each parameter and determines whether the
function has a dependency on the specific type of that parameter. If it
does not, the type is inferred to be generic.

Prof. Michele Loreti 50 / 51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Automatic Generation: Type Inference

The F# compiler, when it performs type inference on a function,
determines whether a given parameter can be generic.

The compiler examines each parameter and determines whether the
function has a dependency on the specific type of that parameter. If it
does not, the type is inferred to be generic.

Example:

let max a b = if a > b then a else b

This function has type 'a —> 'a —> 'a when 'a comparison.

Prof. Michele Loreti 50 / 51
ro ichele Loreti Functional programming in F#: Data Structures



Generics. . .

Automatic Generation: Type Inference

The F# compiler, when it performs type inference on a function,
determines whether a given parameter can be generic.

The compiler examines each parameter and determines whether the
function has a dependency on the specific type of that parameter. If it
does not, the type is inferred to be generic.

Example:

let max a b = if a > b then a else b

This function has type 'a —> 'a —> 'a when 'a comparison.

Above when 'a comparison is a constraint.

Prof. Michele Loreti 50 / 51
ro ichele Loreti Functional programming in F#: Data Structures



Example. ..

We can change the definition of bstree as follows:

type bstree <'T when 'T: comparison> =
EMPTY
| NODE of value: 'T % left: 'T bstree % right: 'T bstree

Prof. Michele Loreti 51 /51
ro ichele Loreti Functional programming in F#: Data Structures



Example. ..

We can change the definition of bstree as follows:

type bstree <'T when 'T: comparison> =
EMPTY
| NODE of value: 'T % left: 'T bstree % right: 'T bstree

We have not to change the functions add, contains, and remove!

Prof. Michele Loreti 51 /51
ro ichele Loreti Functional programming in F#: Data Structures



