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Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

Prof. Michele Loreti F#: References and Arrays 55 / 76



Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

The ref operator can be used before a value to create a new reference cell
that encapsulates the value.

Prof. Michele Loreti F#: References and Arrays 55 /76



Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

The ref operator can be used before a value to create a new reference cell
that encapsulates the value.

Operator ! is used to access the content of a cell.

Prof. Michele Loreti F#: References and Arrays 55 /76



Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

The ref operator can be used before a value to create a new reference cell
that encapsulates the value.

Operator ! is used to access the content of a cell.

The content of the cell can be changed because it is mutable.

Prof. Michele Loreti F#: References and Arrays 55 /76



Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

The ref operator can be used before a value to create a new reference cell
that encapsulates the value.

Operator ! is used to access the content of a cell.

The content of the cell can be changed because it is mutable.

// Declare a reference.
let refVar = ref 6

// Change the value referred to by the reference.
refVar := 50

// Dereference by using the ! operator.
printfn "%d” !refVar
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Arrays. ..

Arrays are fixed-size, zero-based, mutable collections of consecutive data
elements that are all of the same type.
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Arrays are fixed-size, zero-based, mutable collections of consecutive data
elements that are all of the same type.
Arrays can be created in different way. . .
B by listing consecutive values between [| and || and separated by
semicolons:
let arrayl = [| 1; 2; 3 |]
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Arrays. ..

Arrays are fixed-size, zero-based, mutable collections of consecutive data
elements that are all of the same type.
Arrays can be created in different way. . .

B by listing consecutive values between [| and || and separated by

semicolons:
let arrayl = [| 1; 2; 3 |]
® . listing each element on a separate line (semicolon is optional):

let arrayl =
[
1
2
3

]
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Arrays. ..

Arrays are fixed-size, zero-based, mutable collections of consecutive data
elements that are all of the same type.
Arrays can be created in different way. . .

B by listing consecutive values between [| and || and separated by

semicolons:
let arrayl = [| 1; 2; 3 |]
® . listing each element on a separate line (semicolon is optional):

let arrayl =

[l
1

2
3

]

® . by using sequence expressions
let array3 = [| for i in 1 .. 10 = i * i |]
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Sequence expressions. . .

A sequence expression is an expression that evaluates to a sequence.
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Sequence expressions. . .

A sequence expression is an expression that evaluates to a sequence.

The simplest form specifies a range:
seq {1 .. 5}

You can also specify an increment (or decrement) between two double
periods:

// Sequence that has an increment.
seq { 0 .. 10 .. 100 }
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Sequence expressions. . .

A sequence expression is an expression that evaluates to a sequence.

The simplest form specifies a range:
seq {1 .. 5}

You can also specify an increment (or decrement) between two double
periods:

// Sequence that has an increment.
seq { 0 .. 10 .. 100 }

Sequences can be also obtained from the evaluation of an expression:

seq { for i in 1 .. 10 —> ixi }
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Sequence expressions. . .

Sequence expressions can be used in. ..
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Sequence expressions. . .

Sequence expressions can be used in. ..
... iterators:

for i in 1 .. 10 do
printf "%d\n" i
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Sequence expressions. . .

Sequence expressions can be used in. ..
. iterators:

for i in 1 .. 10 do
printf "%d\n" i

. list expressions:

let fiblist = [ for i in 1 .. 10 — fib(i) ];;
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Sequence expressions. . .

Sequence expressions can be used in. ..

.. .iterators:
for i in 1 .. 10 do
printf "%d\n" i

... list expressions:
let fiblist = [ for i in 1 10 — fib (i) 1;;

... array expressions:
= for i in 1 .. 10 — fib(i) |]:;

let fibarray = [|
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Example Binary Search Trees

Binary search trees keep their keys in sorted order, so that lookup and
other operations can use the principle of binary search. ..

when looking for a key in a tree (or a place to insert a new key), they
traverse the tree from root to leaf;

making comparisons to keys stored in the nodes of the tree and
deciding, on the basis of the comparison, to continue searching in the
left or right subtrees.
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Example Binary Search Trees

Binary search trees keep their keys in sorted order, so that lookup and
other operations can use the principle of binary search. ..

when looking for a key in a tree (or a place to insert a new key), they
traverse the tree from root to leaf;

making comparisons to keys stored in the nodes of the tree and
deciding, on the basis of the comparison, to continue searching in the
left or right subtrees.

We can use an enumeration to define the set of Binary Search Trees:

type bstree <'T when 'T:comparison> =
EMPTY

| BSTREE of value: 'T *x left: 'T bstree % right: 'T bstree
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Example Binary Search Trees
Operations on trees (1/7)

Adding an element:
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Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)
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Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Check if an element is in the tree:

let rec contains v t =
match t with
EMPTY —> false
| BSTREE(vl,_,_) when vl = v —> true
| BSTREE(v1,!,_) when v<vl —> contains v |
| BSTREE(vl,_,r) —> contains v r
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Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:
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Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl
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Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl

Get max element in the tree:
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Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl

Get max element in the tree:

let rec getMax t =
match t with
EMPTY —> None
| BSTREE(v1,_,EMPTY) —> Some vl
| BSTREE(vl,_,tl) —> getMax tl
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Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:
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Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with

EMPTY — 0
| BSTREE(-,I,r) — 1+(size |)+(size r)
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Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Height of the tree:
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Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Height of the tree:

let rec height t =
match t with

EMPTY — 0
| BSTREE(-,I,r) — 1+(max (height |) (height r))
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Example Binary Search Trees
Operations on trees (4/7Pm )

Ordered list of elements in the tree:

Prof. Michele Loreti Exercises: Binary Search Trees 64 / 76



Example Binary Search Trees
Operations on trees (4/7Pm )

Ordered list of elements in the tree:

let rec listOf t =
match t with
EMPTY —> []
| BSTREE(v1,l,r) — (listOf 1)@(vl::(listOf r))
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Example Binary Search Trees
Operations on trees (4/7Pm )

Ordered list of elements in the tree:

let rec listOf t =
match t with
EMPTY —> []
| BSTREE(v1,l,r) — (listOf 1)@(vl::(listOf r))

Ordered array of elements in the tree:
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Example Binary Search Trees
Operations on trees (4/7Pm )

Ordered list of elements in the tree:

let rec listOf t =
match t with
EMPTY —> []
| BSTREE(v1,l,r) — (listOf 1)@(vl::(listOf r))

Ordered array of elements in the tree:

let arrayOf t =
List.toArray (listOf t)
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Example Binary Search Trees
Operations on trees (5/7)

Create a tree from an array of sorted elements:
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Example Binary Search Trees
Operations on trees (5/7)

Create a tree from an array of sorted elements:

let fromArray <'T when 'T:comparison> (a: 'T []) =
let rec _fromArray i j =
if j<=i then EMPTY
else
let m= i+(j—i)/2
let v = a.[m]
BSTREE(v, _-fromArray i m, _fromArray (m+1) j)
_fromArray 0 (Array.length a)
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Example Binary Search Trees
Operations on trees (5/7)

Create a tree from an array of sorted elements:

let fromArray <'T when 'T:comparison> (a: 'T []) =
let rec _fromArray i j =
if j<=i then EMPTY
else
let m= i+(j—i)/2
let v = a.[m]
BSTREE(v, _-fromArray i m, _fromArray (m+1) j)
_fromArray 0 (Array.length a)

Balance a tree:

let balance t = fromArray (arrayOf t)
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Example Binary Search Trees
Operations on trees (6/7)

Filtering elements:
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Example Binary Search Trees
Operations on trees (6/7)

Filtering elements:

let rec getAllLessThan v t =

match t with

| EMPTY —> EMPTY

| BSTREE(v1,|,r) when vi<v —> BSTREE(v1,|,
getAllLessThan v r)

| BSTREE(v1l,!,r) —> getAllLessThan v |

let rec getAllGreaterThan v t =
match t with
| EMPTY —> EMPTY
| BSTREE(vl,!|,r) when vli<v —> getAllGreaterThan v r
| BSTREE(v1l,l,r) —> BSTREE(vl, getAllGreaterThan v | ,r
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Example Binary Search Trees
Operations on trees (7/7)

Merging two trees:
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Example Binary Search Trees
Operations on trees (7/7)

Merging two trees:

let rec merge tl t2 =
match tl,t2 with
| EMPTY, . —> t2
| - EMPTY — t1
| BSTREE(v1,11,r1),BSTREE(v2,12,r2) when vli<v2 —>
let 111 = getAllLessThan v2 rl
let 112 = getAllGreaterThan v2 rl
let 121 = getAllLessThan vl 12
let 122 = getAllGreaterThan vl 12
BSTREE(v2, BSTREE(vl, merge I1 121 ,merge 111 121),
merge 112 r2)
| BSTREE(v1,I1,r1),BSTREE(v2,12,r2) —> //vl >= v2
let 111 = getAllLessThan v2 rl
let 112 = getAllGreaterThan v2 rl
let 121 = getAllLessThan vl 12
let 122 = getAllGreaterThan vl [2
BSTREE(v1 ,BSTREE(v2,12 ,merge 111 121),merge 112 rl)
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