F#: References and Arrays

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti F#: References and Arrays 54 /76

Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

Prof. Michele Loreti F#: References and Arrays 55 / 76

Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

The ref operator can be used before a value to create a new reference cell
that encapsulates the value.

Prof. Michele Loreti F#: References and Arrays 55 /76

Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

The ref operator can be used before a value to create a new reference cell
that encapsulates the value.

Operator ! is used to access the content of a cell.

Prof. Michele Loreti F#: References and Arrays 55 /76

Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

The ref operator can be used before a value to create a new reference cell
that encapsulates the value.

Operator ! is used to access the content of a cell.

The content of the cell can be changed because it is mutable.

Prof. Michele Loreti F#: References and Arrays 55 /76

Reference Cells. . .

Reference cells are storage locations that enable you to create mutable
values with reference semantics.

The ref operator can be used before a value to create a new reference cell
that encapsulates the value.

Operator ! is used to access the content of a cell.

The content of the cell can be changed because it is mutable.

// Declare a reference.
let refVar = ref 6

// Change the value referred to by the reference.
refVar := 50

// Dereference by using the ! operator.
printfn "%d” !refVar

Prof. Michele Loreti F#: References and Arrays 55 /76

Arrays. ..

Arrays are fixed-size, zero-based, mutable collections of consecutive data
elements that are all of the same type.

Prof. Michele Loreti F#: References and Arrays 56 / 76

Arrays. ..

Arrays are fixed-size, zero-based, mutable collections of consecutive data
elements that are all of the same type.
Arrays can be created in different way. . .
B by listing consecutive values between [| and || and separated by
semicolons:
let arrayl = [| 1; 2; 3 |]

Prof. Michele Loreti F#: References and Arrays 56 / 76

Arrays. ..

Arrays are fixed-size, zero-based, mutable collections of consecutive data
elements that are all of the same type.
Arrays can be created in different way. . .

B by listing consecutive values between [| and || and separated by

semicolons:
let arrayl = [| 1; 2; 3 |]
® . listing each element on a separate line (semicolon is optional):

let arrayl =
[
1
2
3

]

Prof. Michele Loreti F#: References and Arrays 56 / 76

Arrays. ..

Arrays are fixed-size, zero-based, mutable collections of consecutive data
elements that are all of the same type.
Arrays can be created in different way. . .

B by listing consecutive values between [| and || and separated by

semicolons:
let arrayl = [| 1; 2; 3 |]
® . listing each element on a separate line (semicolon is optional):

let arrayl =

[l
1

2
3

]

® . by using sequence expressions
let array3 = [| for i in 1 .. 10 = i * i |]

Prof. Michele Loreti F#: References and Arrays 56 / 76

Sequence expressions. . .

A sequence expression is an expression that evaluates to a sequence.

Prof. Michele Loreti F#: References and Arrays 57 /76

Sequence expressions. . .

A sequence expression is an expression that evaluates to a sequence.

The simplest form specifies a range:
seq {1 .. 5}

Prof. Michele Loreti F#: References and Arrays 57 /76

Sequence expressions. . .

A sequence expression is an expression that evaluates to a sequence.

The simplest form specifies a range:
seq {1 .. 5}

You can also specify an increment (or decrement) between two double
periods:

// Sequence that has an increment.
seq { 0 .. 10 .. 100 }

Prof. Michele Loreti F#: References and Arrays 57 /76

Sequence expressions. . .

A sequence expression is an expression that evaluates to a sequence.

The simplest form specifies a range:
seq {1 .. 5}

You can also specify an increment (or decrement) between two double
periods:

// Sequence that has an increment.
seq { 0 .. 10 .. 100 }

Sequences can be also obtained from the evaluation of an expression:

seq { for i in 1 .. 10 —> ixi }

Prof. Michele Loreti F#: References and Arrays 57 /76

Sequence expressions. . .

Sequence expressions can be used in. ..

Prof. Michele Loreti F#: References and Arrays 58 / 76

Sequence expressions. . .

Sequence expressions can be used in. ..
... iterators:

for i in 1 .. 10 do
printf "%d\n" i

Prof. Michele Loreti F#: References and Arrays 58 / 76

Sequence expressions. . .

Sequence expressions can be used in. ..
. iterators:

for i in 1 .. 10 do
printf "%d\n" i

. list expressions:

let fiblist = [for i in 1 .. 10 — fib(i)];;

Prof. Michele Loreti F#: References and Arrays 58 / 76

Sequence expressions. . .

Sequence expressions can be used in. ..

.. .iterators:
for i in 1 .. 10 do
printf "%d\n" i

... list expressions:
let fiblist = [for i in 1 10 — fib (i) 1;;

... array expressions:
= for i in 1 .. 10 — fib(i) |]:;

let fibarray = [|

Prof. Michele Loreti F#: References and Arrays 58 / 76

Exercises: Binary Search Trees

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Exercises: Binary Search Trees 59 / 76

Example Binary Search Trees

Binary search trees keep their keys in sorted order, so that lookup and
other operations can use the principle of binary search. ..

when looking for a key in a tree (or a place to insert a new key), they
traverse the tree from root to leaf;

making comparisons to keys stored in the nodes of the tree and
deciding, on the basis of the comparison, to continue searching in the
left or right subtrees.

Prof. Michele Loreti Exercises: Binary Search Trees 60 / 76

Example Binary Search Trees

Binary search trees keep their keys in sorted order, so that lookup and
other operations can use the principle of binary search. ..

when looking for a key in a tree (or a place to insert a new key), they
traverse the tree from root to leaf;

making comparisons to keys stored in the nodes of the tree and
deciding, on the basis of the comparison, to continue searching in the
left or right subtrees.

We can use an enumeration to define the set of Binary Search Trees:

type bstree <'T when 'T:comparison> =
EMPTY

| BSTREE of value: 'T *x left: 'T bstree % right: 'T bstree

Prof. Michele Loreti Exercises: Binary Search Trees 60 / 76

Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

Prof. Michele Loreti Exercises: Binary Search Trees 61 /76

Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Prof. Michele Loreti Exercises: Binary Search Trees 61 /76

Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Check if an element is in the tree:

Prof. Michele Loreti Exercises: Binary Search Trees 61 /76

Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Check if an element is in the tree:

let rec contains v t =
match t with
EMPTY —> false
| BSTREE(vl,_,_) when vl = v —> true
| BSTREE(v1,!,_) when v<vl —> contains v |
| BSTREE(vl,_,r) —> contains v r

Prof. Michele Loreti Exercises: Binary Search Trees 61 /76

Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

Prof. Michele Loreti Exercises: Binary Search Trees 62 /76

Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl

Prof. Michele Loreti Exercises: Binary Search Trees 62 / 76

Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl

Get max element in the tree:

Prof. Michele Loreti Exercises: Binary Search Trees

62 / 76

Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl

Get max element in the tree:

let rec getMax t =
match t with
EMPTY —> None
| BSTREE(v1,_,EMPTY) —> Some vl
| BSTREE(vl,_,tl) —> getMax tl

Prof. Michele Loreti Exercises: Binary Search Trees 62 /76

Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

Prof. Michele Loreti Exercises: Binary Search Trees 63 / 76

Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with

EMPTY — 0
| BSTREE(-,I,r) — 1+(size |)+(size r)
Prof. Michele Loreti Exercises: Binary Search Trees

63 /76

Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Height of the tree:

Prof. Michele Loreti Exercises: Binary Search Trees 63 / 76

Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Height of the tree:

let rec height t =
match t with

EMPTY — 0
| BSTREE(-,I,r) — 1+(max (height |) (height r))
Prof. Michele Loreti Exercises: Binary Search Trees

63 /76

Example Binary Search Trees
Operations on trees (4/7Pm)

Ordered list of elements in the tree:

Prof. Michele Loreti Exercises: Binary Search Trees 64 / 76

Example Binary Search Trees
Operations on trees (4/7Pm)

Ordered list of elements in the tree:

let rec listOf t =
match t with
EMPTY —> []
| BSTREE(v1,l,r) — (listOf 1)@(vl::(listOf r))

Prof. Michele Loreti Exercises: Binary Search Trees 64 / 76

Example Binary Search Trees
Operations on trees (4/7Pm)

Ordered list of elements in the tree:

let rec listOf t =
match t with
EMPTY —> []
| BSTREE(v1,l,r) — (listOf 1)@(vl::(listOf r))

Ordered array of elements in the tree:

Prof. Michele Loreti Exercises: Binary Search Trees 64 / 76

Example Binary Search Trees
Operations on trees (4/7Pm)

Ordered list of elements in the tree:

let rec listOf t =
match t with
EMPTY —> []
| BSTREE(v1,l,r) — (listOf 1)@(vl::(listOf r))

Ordered array of elements in the tree:

let arrayOf t =
List.toArray (listOf t)

Prof. Michele Loreti Exercises: Binary Search Trees 64 / 76

Example Binary Search Trees
Operations on trees (5/7)

Create a tree from an array of sorted elements:

Prof. Michele Loreti Exercises: Binary Search Trees 65 / 76

Example Binary Search Trees
Operations on trees (5/7)

Create a tree from an array of sorted elements:

let fromArray <'T when 'T:comparison> (a: 'T []) =
let rec _fromArray i j =
if j<=i then EMPTY
else
let m= i+(j—i)/2
let v = a.[m]
BSTREE(v, _-fromArray i m, _fromArray (m+1) j)
_fromArray 0 (Array.length a)

Prof. Michele Loreti Exercises: Binary Search Trees 65 / 76

Example Binary Search Trees
Operations on trees (5/7)

Create a tree from an array of sorted elements:

let fromArray <'T when 'T:comparison> (a: 'T []) =
let rec _fromArray i j =
if j<=i then EMPTY
else
let m= i+(j—i)/2
let v = a.[m]
BSTREE(v, _-fromArray i m, _fromArray (m+1) j)
_fromArray 0 (Array.length a)

Balance a tree:

Prof. Michele Loreti Exercises: Binary Search Trees 65 / 76

Example Binary Search Trees
Operations on trees (5/7)

Create a tree from an array of sorted elements:

let fromArray <'T when 'T:comparison> (a: 'T []) =
let rec _fromArray i j =
if j<=i then EMPTY
else
let m= i+(j—i)/2
let v = a.[m]
BSTREE(v, _-fromArray i m, _fromArray (m+1) j)
_fromArray 0 (Array.length a)

Balance a tree:

let balance t = fromArray (arrayOf t)

Prof. Michele Loreti Exercises: Binary Search Trees 65 / 76

Example Binary Search Trees
Operations on trees (6/7)

Filtering elements:

Prof. Michele Loreti Exercises: Binary Search Trees 66 / 76

Example Binary Search Trees
Operations on trees (6/7)

Filtering elements:

let rec getAllLessThan v t =

match t with

| EMPTY —> EMPTY

| BSTREE(v1,|,r) when vi<v —> BSTREE(v1,|,
getAllLessThan v r)

| BSTREE(v1l,!,r) —> getAllLessThan v |

let rec getAllGreaterThan v t =
match t with
| EMPTY —> EMPTY
| BSTREE(vl,!|,r) when vli<v —> getAllGreaterThan v r
| BSTREE(v1l,l,r) —> BSTREE(vl, getAllGreaterThan v | ,r

Prof. Michele Loreti Exercises: Binary Search Trees 66 / 76

Example Binary Search Trees
Operations on trees (7/7)

Merging two trees:

Prof. Michele Loreti Exercises: Binary Search Trees 67 / 76

Example Binary Search Trees
Operations on trees (7/7)

Merging two trees:

let rec merge tl t2 =
match tl,t2 with
| EMPTY, . —> t2
| - EMPTY — t1
| BSTREE(v1,11,r1),BSTREE(v2,12,r2) when vli<v2 —>
let 111 = getAllLessThan v2 rl
let 112 = getAllGreaterThan v2 rl
let 121 = getAllLessThan vl 12
let 122 = getAllGreaterThan vl 12
BSTREE(v2, BSTREE(vl, merge I1 121 ,merge 111 121),
merge 112 r2)
| BSTREE(v1,I1,r1),BSTREE(v2,12,r2) —> //vl >= v2
let 111 = getAllLessThan v2 rl
let 112 = getAllGreaterThan v2 rl
let 121 = getAllLessThan vl 12
let 122 = getAllGreaterThan vl [2
BSTREE(v1 ,BSTREE(v2,12 ,merge 111 121),merge 112 rl)

Prof. Michele Loreti Exercises: Binary Search Trees 67 / 76

