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Interfaces and Lambda expressions

Interfaces are a key feature of object-oriented programming. . .

. . . they specify what should be done

. . . without having to provide an implementation.

Recently functional programming has risen in importance because it is well
suited for concurrent and event-driven programming.

Java integrates aspects of functional programming in the object-oriented
approach.
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Interaces

An interface is a mechanism for spelling out a contract between two
parties:

� the supplier of a service;

� the classes that want their objects to be usable with the service.

Example: Consider a service that works on sequences of integers,
reporting the average of the first n values:

p u b l i c s t a t i c d o u b l e a v e r a g e ( I n t S e q u e n c e seq , i n t n )

Such sequence can take many forms!
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Interfaces at work

For a sequence of integers we have to consider, at least, two methods:

� test if there is another element in the list;

� get the next element.

These informal descriptions allow us to derive the following interface:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
b o o l e a n hasNext ( ) ;
i n t n e x t ( ) ;

}
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Interfaces at work

This interface allow us to implement method average:

p u b l i c s t a t i c d o u b l e a v e r a g e ( I n t S e q u e n c e seq , i n t n ) {
i n t count = 0 ;
d o u b l e sum = 0 ;
w h i l e ( seq . hasNext ( ) && count<n ) {

count++;
sum += seq . n e x t ( ) ;

}
r e t u r n count == 0 ? 0 : sum/ count ;

}

We don’t know the exact implementation of IntSequence!
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Implementing an Interface

The classes that want to be usable with the average method must
implement the IntSequence interface

p u b l i c c l a s s SquareSequence implements I n t S e q u e n c e {

p r i v a t e i n t i =0;

p u b l i c b o o l e a n hasNext ( ) {
r e t u r n t r u e ;

}

p u b l i c i n t n e x t ( ) {
i ++;

r e t u r n i ∗ i ;
}

}
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Example: Fibonacci Sequence

p u b l i c c l a s s F i b o n a c c i S e q u e n c e implements I n t S e q u e n c e {

p r i v a t e i n t a = 1 ;
p r i v a t e i n t b = 1 ;

p u b l i c b o o l e a n hasNext ( ) {
r e t u r n t r u e ;

}

p u b l i c i n t n e x t ( ) {
i n t r e s = a ;
a = b ;
b = r e s+a ;
r e t u r n r e s ;

}

}
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Example: Digit Sequence

p u b l i c c l a s s D i g i t S e q u e n c e implements I n t S e q u e n c e {
p r i v a t e i n t number ;
p u b l i c D i g i t S e q u e n c e ( i n t number ) {

t h i s . number = number ;
}
p u b l i c b o o l e a n hasNext ( ) {

r e t u r n t h i s . number != 0 ;
}
p u b l i c i n t n e x t ( ) {

i n t r e s u l t = t h i s . number % 1 0 ;
t h i s . number /= 1 0 ;
r e t u r n r e s u l t ;

}
p u b l i c i n t r e s t ( ) {

r e t u r n t h i s . number ;
}

}
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Interface type

Let us consider the following portion of code:

I n t S e q u e n c e seq = new D i g i t S e q u e n c e (19876) ;
d o u b l e avg = U t i l . a v e r a g e ( seq , 100) ;

The type of variable seq is IntSequence!

Terminology: S is a supertype of T (the subtype) when any value of T

can be assigned to a variable of type S (without cast).

Occasionally, you may need to convert a variable of supertype in a specific
subtype with the cast operation! It is dangerous and in general Wrong!

If really needed use instanceof to checlk the correctness of the operation.
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Extending Interfaces

An interface can extend another, requiring or providing additional methods
on top of the original ones.

Example:

p u b l i c i n t e r f a c e C l o s e a b l e {
v o i d c l o s e ( ) ;

}

p u b l i c i n t e r f a c e Channel e x t e n d s C l o s e a b l e {
b o o l e a n isOpen ( ) ;

}
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Implementing Multiple Interfaces

A class can implement any number of interfaces.

All the methods defined in all the implemented interfaces must be
provided.

Warning: handle possible clash of names!
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Constants

An interface can contain definitions of constants.

Each field defined in the interface is automatically considered as
public static final .

These fields can be accessed via the standard . notation.

Example:

SwingConstants .NORTH
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Methods in the Interface

In the previous versions of Java all methods in an interface was abstract
(that is without body).

In the latest version of Java an interface can contain three kinds of
methods with a concrete implementation:

� static;

� default;

� private methods.
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Static Methods

It may be convenient to equip interfaces with static methods (like the
factory methods) that provide generic functionalities for a given type.

p u b l i c i n t e r f a c e I n t S e q u e n c e {

. . .

s t a t i c I n t S e q u e n c e d i g i t s O f ( i n t n ) {
r e t u r n new D i g i t S e q u e n c e ( n ) ;

}

}
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Default Methods

Starting from Java 1.9, we can provide a default implementation for any
interface method:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
d e f a u l t b o o l e a n hasNext ( ) { r e t u r n t r u e ; }
i n t n e x t ( ) ;
. . .

}

A class implementing an interface can choose to override or not the
default implementation.

The use of default methods is particularly useful for interface evolutions!
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Resolving default methods conflict

Let us consider the following interfaces:

p u b l i c i n t e r f a c e Person {
S t r i n g getName ( ) ;
d e f a u l t i n t g e t I d ( ) { r e t u r n 0 ; }

}

p u b l i c i n t e r f a c e I d e n t i f i e d {
d e f a u l t i n t g e t I d ( ) { r e t u r n Math . abs ( hashCode ( ) ) ; }

}

Consider now the class Employee defined as follows:

p u b l i c c l a s s Employee implements Person , I d e n t i f i e d {
. . .

}

There is a conflict that we have to resolve by providing an
implementation of getId.
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Private methods

An interface can also contain private methods.

These can be static or not, and can be used only by other methods defined
in the interface.

These private methods typically implement utility features and their use
should be limited.
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Examples. . .

Many interfaces are provided within Java API:

� Comparable<T>;

� Comparator<T>;

� Runnable;

� EventHandler<T>.
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Lambda Expressions

A lambda expression is a block of code that you can pass around so it can
be executed later, once or multiple time.

It can be defined as a sequence
of parameters followed by a an expression

( S t r i n g f i r s t , S t r i n g second )−> f i r s t . l e n g t h ( )−second . l e n g t h ( )

or a block:

( S t r i n g f i r s t , S t r i n g second ) −> {
i n t d i f f e r e n c e = f i r s t . l e n g t h ( )−second . l e n g t h ( ) ;
i f ( d i f f e r e n c e <0) r e t u r n −1;
e l s e i f ( d i f f e r e n c e >0) r e t u r n 1 ;
e l s e r e t u r n 0 ;

}
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Functional Interfaces

Lambda expressions are compatible with Functional Interfaces.

These are interfaces that contains a single abstract method.

We can use a lambda expression (with the appropriate type) when a
functional interface is expected:

A r r a y s . s o r t ( anArray , ( x , y ) −> x . l e n g t h ( )−y . l e n g t h ( ) ) ;

The type of parameters can be inferred!
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Method References

Suppose that we want to sort strings regardless of letter case. We could
call:

A r r a y s . s o r t ( s t r i n g s , ( x , y ) −> x . compareToIgnoreCase ( y ) ) ;

Alternatively, we can pass directly the method reference:

A r r a y s . s o r t ( s t r i n g s , S t r i n g : : compareToIgnoreCase ) ;

There are many examples of use:

� list .remove(Objects:: isNull )

� list .forEach(System.out:: println )
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Method References

There are three variations for method references:

� Class :: instanceMethod

� Class :: staticMethod

� object :: instanceMethod

� Class :: new
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Scope of a Lambda Expression

A lambda expression has the same scope as a nested block

This means that a lambda expression can access to all the names defined
in the enclosing scope.

Example:

p u b l i c c l a s s AClass {
p r i v a t e i n t v a l u e = 0 ;

p u b l i c v o i d s e t V a l u e ( i n t v a l u e ) {
t h i s . v a l u e = v a l u e ;

}

p u b l i c Funct ion<I n t e g e r , I n t e g e r > getLambda ( ) {
r e t u r n ( x ) −> t h i s . v a l u e+x ;

}
}
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To be continued. . .
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