
Interfaces and Lambda Expressions

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Interfaces and Lambda Expressions 115 / 143

Interfaces and Lambda expressions

Interfaces are a key feature of object-oriented programming. . .

. . . they specify what should be done

. . . without having to provide an implementation.

Recently functional programming has risen in importance because it is well
suited for concurrent and event-driven programming.

Java integrates aspects of functional programming in the object-oriented
approach.

Prof. Michele Loreti Interfaces and Lambda Expressions 116 / 143

Interfaces and Lambda expressions

Interfaces are a key feature of object-oriented programming. . .

. . . they specify what should be done

. . . without having to provide an implementation.

Recently functional programming has risen in importance because it is well
suited for concurrent and event-driven programming.

Java integrates aspects of functional programming in the object-oriented
approach.

Prof. Michele Loreti Interfaces and Lambda Expressions 116 / 143

Interfaces and Lambda expressions

Interfaces are a key feature of object-oriented programming. . .

. . . they specify what should be done

. . . without having to provide an implementation.

Recently functional programming has risen in importance because it is well
suited for concurrent and event-driven programming.

Java integrates aspects of functional programming in the object-oriented
approach.

Prof. Michele Loreti Interfaces and Lambda Expressions 116 / 143

Interfaces and Lambda expressions

Interfaces are a key feature of object-oriented programming. . .

. . . they specify what should be done

. . . without having to provide an implementation.

Recently functional programming has risen in importance because it is well
suited for concurrent and event-driven programming.

Java integrates aspects of functional programming in the object-oriented
approach.

Prof. Michele Loreti Interfaces and Lambda Expressions 116 / 143

Interfaces and Lambda expressions

Interfaces are a key feature of object-oriented programming. . .

. . . they specify what should be done

. . . without having to provide an implementation.

Recently functional programming has risen in importance because it is well
suited for concurrent and event-driven programming.

Java integrates aspects of functional programming in the object-oriented
approach.

Prof. Michele Loreti Interfaces and Lambda Expressions 116 / 143

Interaces

An interface is a mechanism for spelling out a contract between two
parties:

� the supplier of a service;

� the classes that want their objects to be usable with the service.

Example: Consider a service that works on sequences of integers,
reporting the average of the first n values:

p u b l i c s t a t i c d o u b l e a v e r a g e (I n t S e q u e n c e seq , i n t n)

Such sequence can take many forms!

Prof. Michele Loreti Interfaces and Lambda Expressions 117 / 143

Interaces

An interface is a mechanism for spelling out a contract between two
parties:

� the supplier of a service;

� the classes that want their objects to be usable with the service.

Example: Consider a service that works on sequences of integers,
reporting the average of the first n values:

p u b l i c s t a t i c d o u b l e a v e r a g e (I n t S e q u e n c e seq , i n t n)

Such sequence can take many forms!

Prof. Michele Loreti Interfaces and Lambda Expressions 117 / 143

Interaces

An interface is a mechanism for spelling out a contract between two
parties:

� the supplier of a service;

� the classes that want their objects to be usable with the service.

Example: Consider a service that works on sequences of integers,
reporting the average of the first n values:

p u b l i c s t a t i c d o u b l e a v e r a g e (I n t S e q u e n c e seq , i n t n)

Such sequence can take many forms!

Prof. Michele Loreti Interfaces and Lambda Expressions 117 / 143

Interaces

An interface is a mechanism for spelling out a contract between two
parties:

� the supplier of a service;

� the classes that want their objects to be usable with the service.

Example: Consider a service that works on sequences of integers,
reporting the average of the first n values:

p u b l i c s t a t i c d o u b l e a v e r a g e (I n t S e q u e n c e seq , i n t n)

Such sequence can take many forms!

Prof. Michele Loreti Interfaces and Lambda Expressions 117 / 143

Interaces

An interface is a mechanism for spelling out a contract between two
parties:

� the supplier of a service;

� the classes that want their objects to be usable with the service.

Example: Consider a service that works on sequences of integers,
reporting the average of the first n values:

p u b l i c s t a t i c d o u b l e a v e r a g e (I n t S e q u e n c e seq , i n t n)

Such sequence can take many forms!

Prof. Michele Loreti Interfaces and Lambda Expressions 117 / 143

Interfaces at work

For a sequence of integers we have to consider, at least, two methods:

� test if there is another element in the list;

� get the next element.

These informal descriptions allow us to derive the following interface:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
b o o l e a n hasNext () ;
i n t n e x t () ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 118 / 143

Interfaces at work

For a sequence of integers we have to consider, at least, two methods:

� test if there is another element in the list;

� get the next element.

These informal descriptions allow us to derive the following interface:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
b o o l e a n hasNext () ;
i n t n e x t () ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 118 / 143

Interfaces at work

For a sequence of integers we have to consider, at least, two methods:

� test if there is another element in the list;

� get the next element.

These informal descriptions allow us to derive the following interface:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
b o o l e a n hasNext () ;
i n t n e x t () ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 118 / 143

Interfaces at work

For a sequence of integers we have to consider, at least, two methods:

� test if there is another element in the list;

� get the next element.

These informal descriptions allow us to derive the following interface:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
b o o l e a n hasNext () ;
i n t n e x t () ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 118 / 143

Interfaces at work

This interface allow us to implement method average:

p u b l i c s t a t i c d o u b l e a v e r a g e (I n t S e q u e n c e seq , i n t n) {
i n t count = 0 ;
d o u b l e sum = 0 ;
w h i l e (seq . hasNext () && count<n) {

count++;
sum += seq . n e x t () ;

}
r e t u r n count == 0 ? 0 : sum/ count ;

}

We don’t know the exact implementation of IntSequence!

Prof. Michele Loreti Interfaces and Lambda Expressions 119 / 143

Interfaces at work

This interface allow us to implement method average:

p u b l i c s t a t i c d o u b l e a v e r a g e (I n t S e q u e n c e seq , i n t n) {
i n t count = 0 ;
d o u b l e sum = 0 ;
w h i l e (seq . hasNext () && count<n) {

count++;
sum += seq . n e x t () ;

}
r e t u r n count == 0 ? 0 : sum/ count ;

}

We don’t know the exact implementation of IntSequence!

Prof. Michele Loreti Interfaces and Lambda Expressions 119 / 143

Interfaces at work

This interface allow us to implement method average:

p u b l i c s t a t i c d o u b l e a v e r a g e (I n t S e q u e n c e seq , i n t n) {
i n t count = 0 ;
d o u b l e sum = 0 ;
w h i l e (seq . hasNext () && count<n) {

count++;
sum += seq . n e x t () ;

}
r e t u r n count == 0 ? 0 : sum/ count ;

}

We don’t know the exact implementation of IntSequence!

Prof. Michele Loreti Interfaces and Lambda Expressions 119 / 143

Implementing an Interface

The classes that want to be usable with the average method must
implement the IntSequence interface

p u b l i c c l a s s SquareSequence implements I n t S e q u e n c e {

p r i v a t e i n t i =0;

p u b l i c b o o l e a n hasNext () {
r e t u r n t r u e ;

}

p u b l i c i n t n e x t () {
i ++;

r e t u r n i ∗ i ;
}

}

Prof. Michele Loreti Interfaces and Lambda Expressions 120 / 143

Implementing an Interface

The classes that want to be usable with the average method must
implement the IntSequence interface

p u b l i c c l a s s SquareSequence implements I n t S e q u e n c e {

p r i v a t e i n t i =0;

p u b l i c b o o l e a n hasNext () {
r e t u r n t r u e ;

}

p u b l i c i n t n e x t () {
i ++;

r e t u r n i ∗ i ;
}

}

Prof. Michele Loreti Interfaces and Lambda Expressions 120 / 143

Example: Fibonacci Sequence

p u b l i c c l a s s F i b o n a c c i S e q u e n c e implements I n t S e q u e n c e {

p r i v a t e i n t a = 1 ;
p r i v a t e i n t b = 1 ;

p u b l i c b o o l e a n hasNext () {
r e t u r n t r u e ;

}

p u b l i c i n t n e x t () {
i n t r e s = a ;
a = b ;
b = r e s+a ;
r e t u r n r e s ;

}

}

Prof. Michele Loreti Interfaces and Lambda Expressions 121 / 143

Example: Digit Sequence

p u b l i c c l a s s D i g i t S e q u e n c e implements I n t S e q u e n c e {
p r i v a t e i n t number ;
p u b l i c D i g i t S e q u e n c e (i n t number) {

t h i s . number = number ;
}
p u b l i c b o o l e a n hasNext () {

r e t u r n t h i s . number != 0 ;
}
p u b l i c i n t n e x t () {

i n t r e s u l t = t h i s . number % 1 0 ;
t h i s . number /= 1 0 ;
r e t u r n r e s u l t ;

}
p u b l i c i n t r e s t () {

r e t u r n t h i s . number ;
}

}

Prof. Michele Loreti Interfaces and Lambda Expressions 122 / 143

Interface type

Let us consider the following portion of code:

I n t S e q u e n c e seq = new D i g i t S e q u e n c e (19876) ;
d o u b l e avg = U t i l . a v e r a g e (seq , 100) ;

The type of variable seq is IntSequence!

Terminology: S is a supertype of T (the subtype) when any value of T

can be assigned to a variable of type S (without cast).

Occasionally, you may need to convert a variable of supertype in a specific
subtype with the cast operation! It is dangerous and in general Wrong!

If really needed use instanceof to checlk the correctness of the operation.

Prof. Michele Loreti Interfaces and Lambda Expressions 123 / 143

Interface type

Let us consider the following portion of code:

I n t S e q u e n c e seq = new D i g i t S e q u e n c e (19876) ;
d o u b l e avg = U t i l . a v e r a g e (seq , 100) ;

The type of variable seq is IntSequence!

Terminology: S is a supertype of T (the subtype) when any value of T

can be assigned to a variable of type S (without cast).

Occasionally, you may need to convert a variable of supertype in a specific
subtype with the cast operation! It is dangerous and in general Wrong!

If really needed use instanceof to checlk the correctness of the operation.

Prof. Michele Loreti Interfaces and Lambda Expressions 123 / 143

Interface type

Let us consider the following portion of code:

I n t S e q u e n c e seq = new D i g i t S e q u e n c e (19876) ;
d o u b l e avg = U t i l . a v e r a g e (seq , 100) ;

The type of variable seq is IntSequence!

Terminology: S is a supertype of T (the subtype) when any value of T

can be assigned to a variable of type S (without cast).

Occasionally, you may need to convert a variable of supertype in a specific
subtype with the cast operation! It is dangerous and in general Wrong!

If really needed use instanceof to checlk the correctness of the operation.

Prof. Michele Loreti Interfaces and Lambda Expressions 123 / 143

Interface type

Let us consider the following portion of code:

I n t S e q u e n c e seq = new D i g i t S e q u e n c e (19876) ;
d o u b l e avg = U t i l . a v e r a g e (seq , 100) ;

The type of variable seq is IntSequence!

Terminology: S is a supertype of T (the subtype) when any value of T

can be assigned to a variable of type S (without cast).

Occasionally, you may need to convert a variable of supertype in a specific
subtype with the cast operation!

It is dangerous and in general Wrong!

If really needed use instanceof to checlk the correctness of the operation.

Prof. Michele Loreti Interfaces and Lambda Expressions 123 / 143

Interface type

Let us consider the following portion of code:

I n t S e q u e n c e seq = new D i g i t S e q u e n c e (19876) ;
d o u b l e avg = U t i l . a v e r a g e (seq , 100) ;

The type of variable seq is IntSequence!

Terminology: S is a supertype of T (the subtype) when any value of T

can be assigned to a variable of type S (without cast).

Occasionally, you may need to convert a variable of supertype in a specific
subtype with the cast operation! It is dangerous and in general Wrong!

If really needed use instanceof to checlk the correctness of the operation.

Prof. Michele Loreti Interfaces and Lambda Expressions 123 / 143

Interface type

Let us consider the following portion of code:

I n t S e q u e n c e seq = new D i g i t S e q u e n c e (19876) ;
d o u b l e avg = U t i l . a v e r a g e (seq , 100) ;

The type of variable seq is IntSequence!

Terminology: S is a supertype of T (the subtype) when any value of T

can be assigned to a variable of type S (without cast).

Occasionally, you may need to convert a variable of supertype in a specific
subtype with the cast operation! It is dangerous and in general Wrong!

If really needed use instanceof to checlk the correctness of the operation.

Prof. Michele Loreti Interfaces and Lambda Expressions 123 / 143

Extending Interfaces

An interface can extend another, requiring or providing additional methods
on top of the original ones.

Example:

p u b l i c i n t e r f a c e C l o s e a b l e {
v o i d c l o s e () ;

}

p u b l i c i n t e r f a c e Channel e x t e n d s C l o s e a b l e {
b o o l e a n isOpen () ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 124 / 143

Extending Interfaces

An interface can extend another, requiring or providing additional methods
on top of the original ones.

Example:

p u b l i c i n t e r f a c e C l o s e a b l e {
v o i d c l o s e () ;

}

p u b l i c i n t e r f a c e Channel e x t e n d s C l o s e a b l e {
b o o l e a n isOpen () ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 124 / 143

Extending Interfaces

An interface can extend another, requiring or providing additional methods
on top of the original ones.

Example:

p u b l i c i n t e r f a c e C l o s e a b l e {
v o i d c l o s e () ;

}

p u b l i c i n t e r f a c e Channel e x t e n d s C l o s e a b l e {
b o o l e a n isOpen () ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 124 / 143

Implementing Multiple Interfaces

A class can implement any number of interfaces.

All the methods defined in all the implemented interfaces must be
provided.

Warning: handle possible clash of names!

Prof. Michele Loreti Interfaces and Lambda Expressions 125 / 143

Implementing Multiple Interfaces

A class can implement any number of interfaces.

All the methods defined in all the implemented interfaces must be
provided.

Warning: handle possible clash of names!

Prof. Michele Loreti Interfaces and Lambda Expressions 125 / 143

Implementing Multiple Interfaces

A class can implement any number of interfaces.

All the methods defined in all the implemented interfaces must be
provided.

Warning: handle possible clash of names!

Prof. Michele Loreti Interfaces and Lambda Expressions 125 / 143

Constants

An interface can contain definitions of constants.

Each field defined in the interface is automatically considered as
public static final .

These fields can be accessed via the standard . notation.

Example:

SwingConstants .NORTH

Prof. Michele Loreti Interfaces and Lambda Expressions 126 / 143

Constants

An interface can contain definitions of constants.

Each field defined in the interface is automatically considered as
public static final .

These fields can be accessed via the standard . notation.

Example:

SwingConstants .NORTH

Prof. Michele Loreti Interfaces and Lambda Expressions 126 / 143

Constants

An interface can contain definitions of constants.

Each field defined in the interface is automatically considered as
public static final .

These fields can be accessed via the standard . notation.

Example:

SwingConstants .NORTH

Prof. Michele Loreti Interfaces and Lambda Expressions 126 / 143

Constants

An interface can contain definitions of constants.

Each field defined in the interface is automatically considered as
public static final .

These fields can be accessed via the standard . notation.

Example:

SwingConstants .NORTH

Prof. Michele Loreti Interfaces and Lambda Expressions 126 / 143

Methods in the Interface

In the previous versions of Java all methods in an interface was abstract
(that is without body).

In the latest version of Java an interface can contain three kinds of
methods with a concrete implementation:

� static;

� default;

� private methods.

Prof. Michele Loreti Interfaces and Lambda Expressions 127 / 143

Methods in the Interface

In the previous versions of Java all methods in an interface was abstract
(that is without body).

In the latest version of Java an interface can contain three kinds of
methods with a concrete implementation:

� static;

� default;

� private methods.

Prof. Michele Loreti Interfaces and Lambda Expressions 127 / 143

Methods in the Interface

In the previous versions of Java all methods in an interface was abstract
(that is without body).

In the latest version of Java an interface can contain three kinds of
methods with a concrete implementation:

� static;

� default;

� private methods.

Prof. Michele Loreti Interfaces and Lambda Expressions 127 / 143

Methods in the Interface

In the previous versions of Java all methods in an interface was abstract
(that is without body).

In the latest version of Java an interface can contain three kinds of
methods with a concrete implementation:

� static;

� default;

� private methods.

Prof. Michele Loreti Interfaces and Lambda Expressions 127 / 143

Static Methods

It may be convenient to equip interfaces with static methods (like the
factory methods) that provide generic functionalities for a given type.

p u b l i c i n t e r f a c e I n t S e q u e n c e {

. . .

s t a t i c I n t S e q u e n c e d i g i t s O f (i n t n) {
r e t u r n new D i g i t S e q u e n c e (n) ;

}

}

Prof. Michele Loreti Interfaces and Lambda Expressions 128 / 143

Default Methods

Starting from Java 1.9, we can provide a default implementation for any
interface method:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
d e f a u l t b o o l e a n hasNext () { r e t u r n t r u e ; }
i n t n e x t () ;
. . .

}

A class implementing an interface can choose to override or not the
default implementation.

The use of default methods is particularly useful for interface evolutions!

Prof. Michele Loreti Interfaces and Lambda Expressions 129 / 143

Default Methods

Starting from Java 1.9, we can provide a default implementation for any
interface method:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
d e f a u l t b o o l e a n hasNext () { r e t u r n t r u e ; }
i n t n e x t () ;
. . .

}

A class implementing an interface can choose to override or not the
default implementation.

The use of default methods is particularly useful for interface evolutions!

Prof. Michele Loreti Interfaces and Lambda Expressions 129 / 143

Default Methods

Starting from Java 1.9, we can provide a default implementation for any
interface method:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
d e f a u l t b o o l e a n hasNext () { r e t u r n t r u e ; }
i n t n e x t () ;
. . .

}

A class implementing an interface can choose to override or not the
default implementation.

The use of default methods is particularly useful for interface evolutions!

Prof. Michele Loreti Interfaces and Lambda Expressions 129 / 143

Default Methods

Starting from Java 1.9, we can provide a default implementation for any
interface method:

p u b l i c i n t e r f a c e I n t S e q u e n c e {
d e f a u l t b o o l e a n hasNext () { r e t u r n t r u e ; }
i n t n e x t () ;
. . .

}

A class implementing an interface can choose to override or not the
default implementation.

The use of default methods is particularly useful for interface evolutions!

Prof. Michele Loreti Interfaces and Lambda Expressions 129 / 143

Resolving default methods conflict

Let us consider the following interfaces:

p u b l i c i n t e r f a c e Person {
S t r i n g getName () ;
d e f a u l t i n t g e t I d () { r e t u r n 0 ; }

}

p u b l i c i n t e r f a c e I d e n t i f i e d {
d e f a u l t i n t g e t I d () { r e t u r n Math . abs (hashCode ()) ; }

}

Consider now the class Employee defined as follows:

p u b l i c c l a s s Employee implements Person , I d e n t i f i e d {
. . .

}

There is a conflict that we have to resolve by providing an
implementation of getId.

Prof. Michele Loreti Interfaces and Lambda Expressions 130 / 143

Resolving default methods conflict

Let us consider the following interfaces:

p u b l i c i n t e r f a c e Person {
S t r i n g getName () ;
d e f a u l t i n t g e t I d () { r e t u r n 0 ; }

}

p u b l i c i n t e r f a c e I d e n t i f i e d {
d e f a u l t i n t g e t I d () { r e t u r n Math . abs (hashCode ()) ; }

}

Consider now the class Employee defined as follows:

p u b l i c c l a s s Employee implements Person , I d e n t i f i e d {
. . .

}

There is a conflict that we have to resolve by providing an
implementation of getId.

Prof. Michele Loreti Interfaces and Lambda Expressions 130 / 143

Resolving default methods conflict

Let us consider the following interfaces:

p u b l i c i n t e r f a c e Person {
S t r i n g getName () ;
d e f a u l t i n t g e t I d () { r e t u r n 0 ; }

}

p u b l i c i n t e r f a c e I d e n t i f i e d {
d e f a u l t i n t g e t I d () { r e t u r n Math . abs (hashCode ()) ; }

}

Consider now the class Employee defined as follows:

p u b l i c c l a s s Employee implements Person , I d e n t i f i e d {
. . .

}

There is a conflict that we have to resolve by providing an
implementation of getId.

Prof. Michele Loreti Interfaces and Lambda Expressions 130 / 143

Private methods

An interface can also contain private methods.

These can be static or not, and can be used only by other methods defined
in the interface.

These private methods typically implement utility features and their use
should be limited.

Prof. Michele Loreti Interfaces and Lambda Expressions 131 / 143

Private methods

An interface can also contain private methods.

These can be static or not, and can be used only by other methods defined
in the interface.

These private methods typically implement utility features and their use
should be limited.

Prof. Michele Loreti Interfaces and Lambda Expressions 131 / 143

Private methods

An interface can also contain private methods.

These can be static or not, and can be used only by other methods defined
in the interface.

These private methods typically implement utility features and their use
should be limited.

Prof. Michele Loreti Interfaces and Lambda Expressions 131 / 143

Examples. . .

Many interfaces are provided within Java API:

� Comparable<T>;

� Comparator<T>;

� Runnable;

� EventHandler<T>.

Prof. Michele Loreti Interfaces and Lambda Expressions 132 / 143

Examples. . .

Many interfaces are provided within Java API:

� Comparable<T>;

� Comparator<T>;

� Runnable;

� EventHandler<T>.

Prof. Michele Loreti Interfaces and Lambda Expressions 132 / 143

Examples. . .

Many interfaces are provided within Java API:

� Comparable<T>;

� Comparator<T>;

� Runnable;

� EventHandler<T>.

Prof. Michele Loreti Interfaces and Lambda Expressions 132 / 143

Examples. . .

Many interfaces are provided within Java API:

� Comparable<T>;

� Comparator<T>;

� Runnable;

� EventHandler<T>.

Prof. Michele Loreti Interfaces and Lambda Expressions 132 / 143

Lambda Expressions

A lambda expression is a block of code that you can pass around so it can
be executed later, once or multiple time.

It can be defined as a sequence
of parameters followed by a an expression

(S t r i n g f i r s t , S t r i n g second)−> f i r s t . l e n g t h ()−second . l e n g t h ()

or a block:

(S t r i n g f i r s t , S t r i n g second) −> {
i n t d i f f e r e n c e = f i r s t . l e n g t h ()−second . l e n g t h () ;
i f (d i f f e r e n c e <0) r e t u r n −1;
e l s e i f (d i f f e r e n c e >0) r e t u r n 1 ;
e l s e r e t u r n 0 ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 133 / 143

Lambda Expressions

A lambda expression is a block of code that you can pass around so it can
be executed later, once or multiple time. It can be defined as a sequence
of parameters followed by a an expression

(S t r i n g f i r s t , S t r i n g second)−> f i r s t . l e n g t h ()−second . l e n g t h ()

or a block:

(S t r i n g f i r s t , S t r i n g second) −> {
i n t d i f f e r e n c e = f i r s t . l e n g t h ()−second . l e n g t h () ;
i f (d i f f e r e n c e <0) r e t u r n −1;
e l s e i f (d i f f e r e n c e >0) r e t u r n 1 ;
e l s e r e t u r n 0 ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 133 / 143

Lambda Expressions

A lambda expression is a block of code that you can pass around so it can
be executed later, once or multiple time. It can be defined as a sequence
of parameters followed by a an expression

(S t r i n g f i r s t , S t r i n g second)−> f i r s t . l e n g t h ()−second . l e n g t h ()

or a block:

(S t r i n g f i r s t , S t r i n g second) −> {
i n t d i f f e r e n c e = f i r s t . l e n g t h ()−second . l e n g t h () ;
i f (d i f f e r e n c e <0) r e t u r n −1;
e l s e i f (d i f f e r e n c e >0) r e t u r n 1 ;
e l s e r e t u r n 0 ;

}

Prof. Michele Loreti Interfaces and Lambda Expressions 133 / 143

Functional Interfaces

Lambda expressions are compatible with Functional Interfaces.

These are interfaces that contains a single abstract method.

We can use a lambda expression (with the appropriate type) when a
functional interface is expected:

A r r a y s . s o r t (anArray , (x , y) −> x . l e n g t h ()−y . l e n g t h ()) ;

The type of parameters can be inferred!

Prof. Michele Loreti Interfaces and Lambda Expressions 134 / 143

Functional Interfaces

Lambda expressions are compatible with Functional Interfaces.

These are interfaces that contains a single abstract method.

We can use a lambda expression (with the appropriate type) when a
functional interface is expected:

A r r a y s . s o r t (anArray , (x , y) −> x . l e n g t h ()−y . l e n g t h ()) ;

The type of parameters can be inferred!

Prof. Michele Loreti Interfaces and Lambda Expressions 134 / 143

Functional Interfaces

Lambda expressions are compatible with Functional Interfaces.

These are interfaces that contains a single abstract method.

We can use a lambda expression (with the appropriate type) when a
functional interface is expected:

A r r a y s . s o r t (anArray , (x , y) −> x . l e n g t h ()−y . l e n g t h ()) ;

The type of parameters can be inferred!

Prof. Michele Loreti Interfaces and Lambda Expressions 134 / 143

Functional Interfaces

Lambda expressions are compatible with Functional Interfaces.

These are interfaces that contains a single abstract method.

We can use a lambda expression (with the appropriate type) when a
functional interface is expected:

A r r a y s . s o r t (anArray , (x , y) −> x . l e n g t h ()−y . l e n g t h ()) ;

The type of parameters can be inferred!

Prof. Michele Loreti Interfaces and Lambda Expressions 134 / 143

Method References

Suppose that we want to sort strings regardless of letter case. We could
call:

A r r a y s . s o r t (s t r i n g s , (x , y) −> x . compareToIgnoreCase (y)) ;

Alternatively, we can pass directly the method reference:

A r r a y s . s o r t (s t r i n g s , S t r i n g : : compareToIgnoreCase) ;

There are many examples of use:

� list .remove(Objects:: isNull)

� list .forEach(System.out:: println)

Prof. Michele Loreti Interfaces and Lambda Expressions 135 / 143

Method References

Suppose that we want to sort strings regardless of letter case. We could
call:

A r r a y s . s o r t (s t r i n g s , (x , y) −> x . compareToIgnoreCase (y)) ;

Alternatively, we can pass directly the method reference:

A r r a y s . s o r t (s t r i n g s , S t r i n g : : compareToIgnoreCase) ;

There are many examples of use:

� list .remove(Objects:: isNull)

� list .forEach(System.out:: println)

Prof. Michele Loreti Interfaces and Lambda Expressions 135 / 143

Method References

Suppose that we want to sort strings regardless of letter case. We could
call:

A r r a y s . s o r t (s t r i n g s , (x , y) −> x . compareToIgnoreCase (y)) ;

Alternatively, we can pass directly the method reference:

A r r a y s . s o r t (s t r i n g s , S t r i n g : : compareToIgnoreCase) ;

There are many examples of use:

� list .remove(Objects:: isNull)

� list .forEach(System.out:: println)

Prof. Michele Loreti Interfaces and Lambda Expressions 135 / 143

Method References

Suppose that we want to sort strings regardless of letter case. We could
call:

A r r a y s . s o r t (s t r i n g s , (x , y) −> x . compareToIgnoreCase (y)) ;

Alternatively, we can pass directly the method reference:

A r r a y s . s o r t (s t r i n g s , S t r i n g : : compareToIgnoreCase) ;

There are many examples of use:

� list .remove(Objects:: isNull)

� list .forEach(System.out:: println)

Prof. Michele Loreti Interfaces and Lambda Expressions 135 / 143

Method References

There are three variations for method references:

� Class :: instanceMethod

� Class :: staticMethod

� object :: instanceMethod

� Class :: new

Prof. Michele Loreti Interfaces and Lambda Expressions 136 / 143

Scope of a Lambda Expression

A lambda expression has the same scope as a nested block

This means that a lambda expression can access to all the names defined
in the enclosing scope.

Example:

p u b l i c c l a s s AClass {
p r i v a t e i n t v a l u e = 0 ;

p u b l i c v o i d s e t V a l u e (i n t v a l u e) {
t h i s . v a l u e = v a l u e ;

}

p u b l i c Funct ion<I n t e g e r , I n t e g e r > getLambda () {
r e t u r n (x) −> t h i s . v a l u e+x ;

}
}

Prof. Michele Loreti Interfaces and Lambda Expressions 137 / 143

Scope of a Lambda Expression

A lambda expression has the same scope as a nested block

This means that a lambda expression can access to all the names defined
in the enclosing scope.

Example:

p u b l i c c l a s s AClass {
p r i v a t e i n t v a l u e = 0 ;

p u b l i c v o i d s e t V a l u e (i n t v a l u e) {
t h i s . v a l u e = v a l u e ;

}

p u b l i c Funct ion<I n t e g e r , I n t e g e r > getLambda () {
r e t u r n (x) −> t h i s . v a l u e+x ;

}
}

Prof. Michele Loreti Interfaces and Lambda Expressions 137 / 143

Scope of a Lambda Expression

A lambda expression has the same scope as a nested block

This means that a lambda expression can access to all the names defined
in the enclosing scope.

Example:

p u b l i c c l a s s AClass {
p r i v a t e i n t v a l u e = 0 ;

p u b l i c v o i d s e t V a l u e (i n t v a l u e) {
t h i s . v a l u e = v a l u e ;

}

p u b l i c Funct ion<I n t e g e r , I n t e g e r > getLambda () {
r e t u r n (x) −> t h i s . v a l u e+x ;

}
}

Prof. Michele Loreti Interfaces and Lambda Expressions 137 / 143

To be continued. . .

Prof. Michele Loreti Interfaces and Lambda Expressions 138 / 143

