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Programming paradigms

Programming paradigms are a way to classify programming languages
based on their features.

A programming paradigm is an approach to programming a computer
based on a mathematical theory or a coherent set of principles.

Each paradigm supports a set of concepts that makes it the best for a
certain kind of problem.

Solving a programming problem requires choosing the right
concepts!
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Programming paradigms

Peter Van Roy

Figure 1. Languages, paradigms, and concepts

origins in the 1970s. It uses sophisticated algorithms to find solutions that satisfy global
conditions. This means that it genuinely delivers on its ambitious claims.

Conclusions and suggestions for going further Section 8 concludes by reiterating
why programming languages should support several paradigms. To understand the“soul”
of each paradigm and to gain experience programming with di↵erent paradigms, we
recommend the use of a multiparadigm language. A multiparadigm language permits
programming in each paradigm without interference from other paradigms. The two
most extensive multiparadigm languages are the dynamically typed language Oz [50]
and the statically typed language Alice [38].

2 Languages, paradigms, and concepts

This section gives the big picture of programming paradigms, the languages that realize
them, and the concepts they contain. There are many fewer programming paradigms
than programming languages. That is why it is interesting to focus on paradigms rather
than languages. From this viewpoint, such languages as Java, Javascript, C#, Ruby, and
Python are all virtually identical: they all implement the object-oriented paradigm with
only minor di↵erences, at least from the vantage point of paradigms.

Figure 1 shows the path from languages to paradigms and concepts. Each program-
ming language realizes one or more paradigms. Each paradigm is defined by a set of
programming concepts, organized into a simple core language called the paradigm’s ker-
nel language. There are a huge number of programming languages, but many fewer
paradigms. But there are still a lot of paradigms. This chapter mentions 27 di↵erent
paradigms that are actually used. All have good implementations and practical applica-
tions. Fortunately, paradigms are not islands: they have a lot in common. We present a
taxonomy that shows how paradigms are related.

12
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Programming paradigms

Common programming paradigms include:

� imperative/procedural: statements are used to change program’s
state. Imperative programming focuses on describing how a program
operates.

� functional: computation is treated as the evaluation of mathematical
functions and avoids changing-state and mutable data.

� declarative/logical: expresses the logic of a computation without
describing its control flow. A program consists in a set of sentences in
logical form, expressing facts and rules about some problem domain.

� object-oriented: it is based on the concept of objects, which may
contain both data, the fields, and code, the methods.
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This lecture. . .

In this lecture. . .

. . . we will first introduce basic notions of functional programming. . .

. . . after that we focus on object-oriented programming. . .

. . . finally an overview of modern programming languages is provided.

Prof. Michele Loreti Programming paradigms 7 / 461



This lecture. . .

In this lecture. . .

. . . we will first introduce basic notions of functional programming. . .

. . . after that we focus on object-oriented programming. . .

. . . finally an overview of modern programming languages is provided.

Prof. Michele Loreti Programming paradigms 7 / 461



This lecture. . .

In this lecture. . .

. . . we will first introduce basic notions of functional programming. . .

. . . after that we focus on object-oriented programming. . .

. . . finally an overview of modern programming languages is provided.

Prof. Michele Loreti Programming paradigms 7 / 461



This lecture. . .

In this lecture. . .

. . . we will first introduce basic notions of functional programming. . .

. . . after that we focus on object-oriented programming. . .

. . . finally an overview of modern programming languages is provided.

Prof. Michele Loreti Programming paradigms 7 / 461



Functional programming in F#: Basic Concepts
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Functional programming

Programming in a functional language consists of building definitions end
using the computer to evaluate expressions.

Functions are first-class values and can be assigned to names (variables).

Computations consist in the appropriate compositions of defined functions.

We will consider F#, a modern functional language integrated in the .Net
framework.
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F# programming language

F# (pronounced F sharp). . .

. . . is a strongly typed programming language;

. . . supports multi-paradigms (functional, imperative, and
object-oriented);

. . . is used as a cross-platform Common Language Infrastructure (CLI)
language;

. . . can generate JavaScript and Graphics Processing Unit (GPU) code.

Here we will main consider the functional aspects!
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F# programming language
Primitive Types (1/2)

� bool, Boolean values (true or false).

� byte, Unsigned byte (from 0 to 28 − 1).

� sbyte, Signed byte (from −27 to 27 − 1).

� int16, 16-bit integer (from −215 to 215 − 1).

� uint16, 16-bit integer (from 0 to 216 − 1).

� int , 32-bit integer (from −231 to 231 − 1).

� uint32, 32-bit unsigned (from 0 to 232 − 1).

� int64, 64-bit integer (from −263 to 263 − 1).

� uint64, 64-bit unsigned int (from 0 to 264 − 1).

� char, Unicode character values.

� string , Unicode text.

� decimal, Floating point data type that has at least 28 significant digits.
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F# programming language
Primitive Types (2/2)

� unit, Indicates the absence of an actual value.

� void, Indicates no type or value.

� float32 , A 32-bit floating point type.

� float , A 64-bit floating point type.
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F# programming language
Values (1/2)

� bool: true, false .

� byte, an integer with postfix y (86y).

� sbyte, an integer with postfix uy (86uy).

� int16, an integer with postfix s (86s).

� uint16, an integer with postfix us (86us).

� int , an integer with the optional postfix l (86 or 86l).

� uint32, an integer with postfix u or ul (86u or ul).

� int64, an integer with postfix L (86L).

� uint64, an integer with postfix UL (86UL).

� char, a single symbol surrounded by single quotes ( ’a’).
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F# programming language
Values (2/2)

� string , can be:

. . . a sequence of characters surrounded by double quotes
(”Hello\n\n World!”);

. . . a sequence of characters surrounded by double quotes and prefixed
with @ (@”Hello\n\n World!”);

. . . a portion of text (possibly on multiple lines) surrounded by ”””

””” H e l l o

World ! ”””

� decimal, a floating point value postfixed with M (0.35M).

� unit, the value ().

� float32 , a floating point postfixed with f or F (0.35f or 035F).

� float , a floating point in decimal or exponential form (0.35 or 3.5E−1).
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F# programming language
Basic concepts

Basic construct in F# is let that can be used to associate a name with a
value

l e t num = 10
l e t s t r = ”F#”

Each name has a type that is inferred from the associated
expression!

Above:

� num has type int ;

� str has type string ;
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F# programming language
Operators

Arithmetic Operators: +, −, ∗, /, %, ∗∗;

Comparison Operators: =, <, <=, >, >=, <>;

Boolean Operators: not, || , &&;

Bitwise Operators: &&&, ||| , ˆˆˆ, ˜˜˜, <<<, >>>;

Arithmetic and Comparison operators are overloaded: the exact
type depends on the type of their argument!

Differently from Java, no implicit cast is done!
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F# programming language
Simple type errors!

l e t x = 86u // x has t y p e ubyte
l e t y = 86 // y has t y p e i n t

l e t z = x+y // This i s an e r r o r ! ! ! !
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F# programming language
Basic concepts

Functions are first-class values and can be associated with names as any
other built-in types:

l e t f 1 = fun x −> x+1

l e t f 2 ( x ) = x+1

Functions can be passed as arguments of other functions:

l e t f 3 ( x , f ) = f ( x+2)+1

l e t y = f 3 ( 1 , f )

The type of parameters and the type of returned value can be
omittedwhen they can be inferred from the code!

Function types have the form: type1 −> type2
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F# programming language
Type inference

The idea of type inference is that you do not have to specify the types of
F# constructs except when the compiler cannot conclusively deduce the
type.

This does not mean that F# is a dynamically typed language or
that values in F# are weakly typed.

F#, like almost all functional languages, is statically typed!

Type annotations can be used to help the compiler to infer the expected
type.
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F# programming language
Type inference

//No a n n o t a t i o n , i n f e r r e d t y p e : i n t ∗ i n t −> i n t
l e t f ( x , y ) = x+y

// Parameter x i s a n n o t a t e d as f l o a t , i n f e r r e d t y p e : f l o a t ∗
f l o a t −> f l o a t

l e t f ( x : f l o a t , y ) = x+y

//Name x i s a n n o t a t e d as f l o a t , i n f e r r e d t y p e : f l o a t ∗
f l o a t −> f l o a t

l e t f ( x , y ) = ( x : f l o a t )+y

// Return t y p e o f f i s f l o a t ,
// i n f e r r e d t y p e : f l o a t ∗ f l o a t −> f l o a t

l e t f ( x , y ) : f l o a t = x+y
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l e t f ( x : f l o a t , y ) = x+y

//Name x i s a n n o t a t e d as f l o a t , i n f e r r e d t y p e : f l o a t ∗
f l o a t −> f l o a t

l e t f ( x , y ) = ( x : f l o a t )+y

// Return t y p e o f f i s f l o a t ,
// i n f e r r e d t y p e : f l o a t ∗ f l o a t −> f l o a t

l e t f ( x , y ) : f l o a t = x+y
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F# programming language
Partial evaluation

Let us consider the following functions:

l e t f 1 ( x , y ) = x+y

l e t f 2 x y = x+y

Function f1 has type:

v a l f 1 : x : i n t ∗ y : i n t −> i n t

Function f2 has type:

v a l f 2 : x : i n t −> y : i n t −> i n t

Function f2 can be partially evaluate:

l e t i n c = f 2 1

The two approaches are in fact equivalent! The second one is the
standard (and more efficient).
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Type parameters. . .

Let us consider the following definition:

l e t s e l e c t x y z w = i f ( x=y ) then z e l s e w

The compiler has not info for inferring as type for x, y, z and w.
However, we know that:

1. x and y must have the same type (say it a);

2. z and w must have the same type (say it b);

3. values of type a must support equality.

Any type satisfying the expected properties (equality for a) can be
used in place of a and b, that can be considered as type parameters!

The following type is inferred for function select :

v a l s e l e c t : x : ’ a −> y : ’ a −> z : ’ b −> w : ’ b −> ’ b
when ’ a : e q u a l i t y
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F# programming language
Recursive functions. . .

In functional programming the use of recursive definition is crucial.

l e t f i b x =
i f x<1 then

1
e l s e

( f i b x−1)+( f i b x−2)

This definition is not correct! The symbol fib is not defined when
the body of the function is evaluated!

l e t r e c f i b ( x ) = // Note h e r e t he use o f ’ rec ’
i f x<=2 then

1
e l s e

( f i b x−1)+( f i b x−2)
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F# programming language
Tuples. . .

A tuple is a grouping of unnamed but ordered values, possibly of different
types.

( e lement , . . . , e l e m e n t )

Example:

l e t f i b ( x ) =
l e t r e c f i b ( x ) =

i f x<=2 then
( 1 , 1 )

e l s e
l e t ( a , b )= f i b ( x−1)
i n

( a+b , a )
i n

l e t ( a , ) = f i b ( x )
i n

a
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F# programming language
Lists. . .

A list in F# is an ordered, immutable series of elements of the same type.
Lists have type ’a list .

You can define a list by explicitly listing out the elements, separated by
semicolons and enclosed in square brackets;

l e t l i s t 1 2 3 = [ 1 ; 2 ; 3 ] // Type i n t l i s t
l e t e m p t y l i s t = [ ] // Type ’ a l i s t !

List operations:

� :: is used to add an element at the beginning of the list: a :: list1

� @ is used to concatenate two lists: l1@l2
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F# programming language
Lists. . .

You can also define list elements by using a range indicated by integers
separated by the range operator .. :

l e t l i s t 1 = [ 1 . . 1 0 ]

List can be generated in a symbolic way expressions:

l e t f i b l i s t = [ f o r i i n 1 . . 10 −> f i b ( i ) ] ; ;
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Pattern matching. . .

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match e x p r e s s i o n .
match t e s t−e x p r e s s i o n w i t h
| p a t t e r n 1 [ when c o n d i t i o n ] −> r e s u l t −e x p r e s s i o n 1
| p a t t e r n 2 [ when c o n d i t i o n ] −> r e s u l t −e x p r e s s i o n 2
| . . .

Pattern can be used to inspect the structure of a value and bind values to
variables:

match l s t w i t h
| [ ] −> e x p 1
| v : : t a i l −> e x p 2

Conditions are boolean expressions that can be used to limit the selection.

Prof. Michele Loreti
Functional programming in F#: Basic Concepts

27 / 461



Pattern matching. . .

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match e x p r e s s i o n .
match t e s t−e x p r e s s i o n w i t h
| p a t t e r n 1 [ when c o n d i t i o n ] −> r e s u l t −e x p r e s s i o n 1
| p a t t e r n 2 [ when c o n d i t i o n ] −> r e s u l t −e x p r e s s i o n 2
| . . .

Pattern can be used to inspect the structure of a value and bind values to
variables:

match l s t w i t h
| [ ] −> e x p 1
| v : : t a i l −> e x p 2

Conditions are boolean expressions that can be used to limit the selection.

Prof. Michele Loreti
Functional programming in F#: Basic Concepts

27 / 461



Pattern matching. . .

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match e x p r e s s i o n .
match t e s t−e x p r e s s i o n w i t h
| p a t t e r n 1 [ when c o n d i t i o n ] −> r e s u l t −e x p r e s s i o n 1
| p a t t e r n 2 [ when c o n d i t i o n ] −> r e s u l t −e x p r e s s i o n 2
| . . .

Pattern can be used to inspect the structure of a value and bind values to
variables:

match l s t w i t h
| [ ] −> e x p 1
| v : : t a i l −> e x p 2

Conditions are boolean expressions that can be used to limit the selection.

Prof. Michele Loreti
Functional programming in F#: Basic Concepts

27 / 461



Pattern matching. . .

The match expression provides branching control that is based on the
comparison of an expression with a set of patterns.

// Match e x p r e s s i o n .
match t e s t−e x p r e s s i o n w i t h
| p a t t e r n 1 [ when c o n d i t i o n ] −> r e s u l t −e x p r e s s i o n 1
| p a t t e r n 2 [ when c o n d i t i o n ] −> r e s u l t −e x p r e s s i o n 2
| . . .

Pattern can be used to inspect the structure of a value and bind values to
variables:

match l s t w i t h
| [ ] −> e x p 1
| v : : t a i l −> e x p 2

Conditions are boolean expressions that can be used to limit the selection.

Prof. Michele Loreti
Functional programming in F#: Basic Concepts

27 / 461



Example: Polynomial evaluation

A polynomial in a single indeterminate x is an expression o the form:

anx
n + · · · + a1x + a0

A polynomial can be represented as the list of its coefficients:

l e t p o l y = [ an ; . . . a1 ; a0 ]

Write a function eval that received in input a list of coefficients and a
value x computes the value of the polynomial.
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Example: Polynomial evaluation

Solution 1:

l e t r e c e v a l c l i s t ( x : f l o a t ) =
match c l i s t w i t h
| [ ] −> 0 . 0
| c : : t a i l −> c ∗( x∗∗ f l o a t ( c l i s t . Length−1) )+( e v a l t a i l

x )

Solution 2:

l e t e v a l 2 c l i s t ( x : f l o a t ) =
l e t r e c e v a l 2 c l i s t v =

match c l i s t w i t h
| [ ] −> v
| c : : t a i l −> e v a l 2 t a i l ( v∗x+c )

i n
e v a l 2 c l i s t 0 . 0
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Option type. . .

The option type is used when an actual value might not exist for a named
value or variable.

An option has an underlying type and can hold a value of that type, or it
might not have a value

’ a o p t i o n

Find the first element in a list matching a predicate:

l e t r e c f i n d F i r s t M a t c h i n g pred l =
match l w i t h
| [ ] −> None
| v : : t a i l −> i f ( p red v ) then Some v

e l s e f i n d F i r s t M a t c h i n g pred t a i l

The type of findFirstMatching is:

pred : ( ’ a −> b o o l ) −> l : ’ a l i s t −> ’ a o p t i o n
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l e t r e c f i n d F i r s t M a t c h i n g pred l =
match l w i t h
| [ ] −> None
| v : : t a i l −> i f ( p red v ) then Some v

e l s e f i n d F i r s t M a t c h i n g pred t a i l

The type of findFirstMatching is:

pred : ( ’ a −> b o o l ) −> l : ’ a l i s t −> ’ a o p t i o n
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Custom data type: Discriminated Unions. . .

Discriminated unions provide support for values that can be one of a
number of named cases, possibly each with different values and types:

t y p e type−name =
| case− i d e n t i f i e r 1 [ o f [ f i e l d n a m e 1 : ] ty p e 1 [ ∗ [

f i e l d n a m e 2 : ] t y p e 2 . . . ]
| case− i d e n t i f i e r 2 [ o f [ f i e l d n a m e 3 : ] t y p e3 [ ∗ [

f i e l d n a m e 4 : ] t yp e 4 . . . ]

Example:

t y p e Shape =
| R e c t a n g l e o f width : f l o a t ∗ l e n g t h : f l o a t
| C i r c l e o f r a d i u s : f l o a t
| Prism o f width : f l o a t ∗ f l o a t ∗ h e i g h t : f l o a t
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Example: Binary Search Trees!

Binary search trees keep their keys in sorted order:

� elements are inserted/removed from the tree by following the principle
of binary search;

� elements traverse the tree from root to leaf by making decisions on
the base of comparison.

Exercise:

1. develop a data type for BST;

2. implement basic operations on BST. . .
� insertion;
� search;
� deletion.
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Example: Binary Search Trees!

Data type:

t y p e b s t r e e =
EMPTY
| NODE o f v a l u e : i n t ∗ l e f t : b s t r e e ∗ r i g h t : b s t r e e

Add a value in the tree:

l e t r e c add v t =
match t w i t h
| EMPTY −> NODE( v ,EMPTY,EMPTY)
| NODE( v1 , l , r ) when v1<v −> NODE( v1 , l , add v r )
| NODE( v1 , l , r ) −> NODE( v1 , add v l , r )
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Example: Binary Search Trees!

Search for an element:

l e t r e c c o n t a i n s v t =
match t w i t h
| EMPTY −> f a l s e
| NODE( v1 , , ) when v1=v −> t r u e
| NODE( v1 , l , r ) when v1<v −> c o n t a i n s v r
| NODE( v1 , l , r ) −> c o n t a i n s v l

Merging trees:

l e t r e c merge t1 t2 =
match t1 , t2 w i t h
| EMPTY, −> t2
| ,EMPTY −> t1
| NODE( v1 , l1 , r 1 ) ,NODE( v2 , l2 , r2 ) when v1<v2 −>

NODE( v1 , l1 , merge r 1 t2 )
| NODE( v1 , l1 , r 1 ) ,NODE( v2 , l2 , r2 ) −>

NODE( v2 , l2 , merge r 2 t1 )
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Example: Binary Search Trees!

Removing an element:

l e t r e c remove v t =
match t w i t h
| EMPTY −> EMPTY
| NODE( v1 , l , r ) when v1=v −> merge l r
| NODE( v1 , l , r ) when v1<v −> NODE( v1 , l , remove v r )
| NODE( v1 , l , r ) −> NODE( v1 , remove v l , r )
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Remarks. . .

The type bstree can only contain integer values.

It could be convenient, like we already observed for lists, define this type
as parametrised!

The exact type of elements in a bstree could be chosen by the programmer!

We can use Generics!
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Generics. . .

Generic programming is a style of computer programming in which
elements of a program (procedures, functions, data-types,. . . ) are written
in terms of types to-be-specified-later.

These type parameters are then instantiated when needed for specific
types provided as parameters.

A generic indicates values, methods, properties, and aggregate types such
as classes, records, and discriminated unions can be generic.

In F# function values, methods, properties, and aggregate types such as
classes, records, and discriminated unions can be generic.
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Generics. . .

Generic constructs contain at least one type parameter, which is usually
supplied by the user of the generic construct.

Generic functions and types enable you to write code that works with a
variety of types without repeating the code for each type:

/ E x p l i c i t l y g e n e r i c f u n c t i o n .
l e t f u n c t i o n−name<type−parameter s> parameter− l i s t =
f u n c t i o n−body

// E x p l i c i t l y g e n e r i c t y p e .
t y p e type−name<type−parameter s> type−d e f i n i t i o n
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Generics. . .
Automatic Generation: Type Inference

The F# compiler, when it performs type inference on a function,
determines whether a given parameter can be generic.

The compiler examines each parameter and determines whether the
function has a dependency on the specific type of that parameter. If it
does not, the type is inferred to be generic.

Example:

l e t max a b = i f a > b then a e l s e b

This function has type ’a −> ’a −> ’a when ’a comparison.

Above when ’a comparison is a constraint.
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Example. . .

We can change the definition of bstree as follows:

t y p e b s t r e e <’T when ’T : compar ison> =
EMPTY
| NODE o f v a l u e : ’T ∗ l e f t : ’T b s t r e e ∗ r i g h t : ’T b s t r e e

We have not to change the functions add, contains, and remove!
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Namespace. . .

A namespace lets you organize code into areas of related functionality by
enabling you to attach a name to a grouping of program elements.

namespace [ parent−namespaces . ] i d e n t i f i e r

If you want to put code in a namespace, the first declaration in the file
must declare the namespace. The contents of the entire file then become
part of the namespace.

Namespaces cannot directly contain values and functions. Instead, values
and functions must be included in modules, and modules are included in
namespaces. Namespaces can contain types, modules.
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Modules

A module is a grouping of F# code, such as values, types, and function
values.

Grouping code in modules helps keep related code together and helps
avoid name conflicts in your program.

module [ a c c e s s i b i l i t y −m o d i f i e r ] module−name =
d e c l a r a t i o n s

We can build the module of Bstrees!
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Modules: List. . .

average: Returns the average of the elements in the list.

// S i g n a t u r e :
L i s t . a v e r a g e : ˆT l i s t −> ˆT

( r e q u i r e s ˆT w i t h s t a t i c member (+)
and ˆT w i t h s t a t i c member D i v i d e B y I n t
and ˆT w i t h s t a t i c member Zero )

// Usage :
L i s t . a v e r a g e l i s t

// Example
a v e r a g e ( [ 1 . 0 . . 1 0 . 0 ] )
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Modules: List. . .

averageBy: Returns the average of the elements generated by applying the
function to each element of the list.

// S i g n a t u r e :
L i s t . averageBy : ( ’T −> ˆU) −> ’T l i s t −> ˆU

( r e q u i r e s ˆU w i t h s t a t i c member (+)
and ˆU w i t h s t a t i c member D i v i d e B y I n t
and ˆU w i t h s t a t i c member Zero )

// Usage :
L i s t . averageBy p r o j e c t i o n l i s t

// Example
L i s t . averageBy ( fun x −> x ∗∗2 . 0 ) [ 1 . 0 . . 1 0 . 0 ] ; ;
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Modules: List. . .

filter : Returns a new collection containing only the elements of the
collection for which the given predicate returns true.

// S i g n a t u r e :
L i s t . f i l t e r : ( ’T −> b o o l ) −> ’T l i s t −> ’T l i s t

// Usage :
L i s t . f i l t e r p r e d i c a t e l i s t

// Example
L i s t . f i l t e r ( fun x −> x%3=0) [ 1 . . 100 ] ; ;
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Modules: List. . .

map: Creates a new collection whose elements are the results of applying
the given function to each of the elements of the collection.

// S i g n a t u r e :
L i s t . map : ( ’T −> ’U) −> ’T l i s t −> ’U l i s t

// Usage :
L i s t . map mapping l i s t

// Example
L i s t . map ( fun x −> x∗x ) [ 1 . . 10 ] ; ;
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Modules: List. . .

reduce: Applies a function to each element of the collection, threading an
accumulator argument through the computation.

Given a function f and a list containing i0, i1, i2,. . . , ik computes:

f ( . . . ( f i 0 i 1 ) i 2 . . . ) i k

// S i g n a t u r e :
L i s t . r e d u c e : ( ’T −> ’T −> ’T) −> ’T l i s t −> ’T

// Usage :
L i s t . r e d u c e r e d u c t i o n l i s t

// Example :
L i s t . r e d u c e ( fun x y −> x+y ) [ 1 . . 1 0 0 ]
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Map-Reduce. . .

Map-Reduce is a programming pattern for processing and generating
(possibly big) data sets.

Elements in the data set are not processed in isolation but as part of a
gruop.

The Map-Reduce patter relies on three main functions:

� a filter that restricts the dataset to the elements satisfying a predicate;

� a map function that processes elements dataset;

� a reduce function that combines result.
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Excercises. . .

Ex. 0: Download and install F# developing environment. See instructions
available here:

https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/

Ex. 1: Write a function that given input a and b computes their mcd.

Ex. 2: Write a function that given an input n returns true if n is a prime
number and false otherwise.

Ex. 3: Write a function that given in input an integer n computes the list
of its prime factors.

Ex. 4: Can map-filter-reduce be used to simplify the code we have
considered so far?
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BS Trees. . .

Ex. 5 Implement function size that given a tree t computes the number of
elements stored in t.

Ex. 6 Implement function height that given a tree t computes its height
(an empty BST has height equal to 0).

Ex. 7 Implement function balance that given a tree t computes a tree t1

with the same elements its height (an empty BST has height equal to 0).

Ex. 8 Implement AVL data structure.
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To be continued. . .
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