Inheritance

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Inheritance 139 /171

S
Class Employee (1/2) w

public class Employee {

private final String name;
private double salary;

private static int lastld = 0;
private int id;

public Employee(String name , double salary) {
Employee. lastld++;

this.id = lastld;
this .name = name;
this.salary = salary;

}

public void raiseSalary(double byPercent) {
double raise = salaryxbyPercent/100;
salary 4= raise;

}

Prof. Michele Loreti Inheritance 140 / 171

Class Employee (2/2)

public void setSalary(double salary) {
this.salary = salary;

}

public double getSalary() {
return this.salary;

}

public String getName() {
return this.name;

}

public int getld() {
return id;
}
}

Prof. Michele Loreti Inheritance 141 /171

Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.

Prof. Michele Loreti Inheritance 142 /171

Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.

public class Manager extends Employee {
... //Added fields
... //added or overriding methods

}

Prof. Michele Loreti Inheritance 142 /171

Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.

public class Manager extends Employee {
... //Added fields
... //added or overriding methods

}

The keywork extends is used to indicate that a new class is defined that
derives from an existing class.

Prof. Michele Loreti Inheritance 142 /171

Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.

public class Manager extends Employee {
... //Added fields
... //added or overriding methods

}

The keywork extends is used to indicate that a new class is defined that
derives from an existing class.

The existing class is called superclass while the new one is called subclass.

Prof. Michele Loreti Inheritance 142 /171

Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.

public class Manager extends Employee {
... //Added fields
... //added or overriding methods

}

The keywork extends is used to indicate that a new class is defined that
derives from an existing class.

The existing class is called superclass while the new one is called subclass.

A subclass have more functionalities than their superclasses!

Prof. Michele Loreti Inheritance 142 /171

Defining and Inheriting Subclass Methods

Our Manager class have a new instance variable to store the bonus and a
new method to set it:

Prof. Michele Loreti Inheritance 143 /171

Defining and Inheriting Subclass Methods

Our Manager class have a new instance variable to store the bonus and a
new method to set it:

public class Manager extends Employee {
private double bonus;

public void setBonus(double bonus) {
this.bonus = bonus;
}

}

Prof. Michele Loreti Inheritance 143 /171

Defining and Inheriting Subclass Methods

Our Manager class have a new instance variable to store the bonus and a
new method to set it:

public class Manager extends Employee {
private double bonus;

public void setBonus(double bonus) {
this.bonus = bonus;

}
}

On a Manager object we can invoke the setBonus but also all the methods
defined in Employee:

Prof. Michele Loreti Inheritance 143 /171

S
Defining and Inheriting Subclass Methods u

Our Manager class have a new instance variable to store the bonus and a
new method to set it:

public class Manager extends Employee {
private double bonus;

public void setBonus(double bonus) {
this.bonus = bonus;
}

}

On a Manager object we can invoke the setBonus but also all the methods
defined in Employee:

Manager boss = new Manager(...);

boss.setBonus(10000);
boss.raiseSalary(5);

Prof. Michele Loreti Inheritance 143 /171

. .
Method Overriding ,

Sometimes, a subclass modifies methods defined in the superclass.

Prof. Michele Loreti Inheritance 144 /171

Method Overriding

Sometimes, a subclass modifies methods defined in the superclass.

Example: the salary of a Manager is computed by adding the bonus to the
salary of an Employee

Prof. Michele Loreti Inheritance 144 /171

. .
Method Overriding ,

Sometimes, a subclass modifies methods defined in the superclass.

Example: the salary of a Manager is computed by adding the bonus to the
salary of an Employee

public class Manager extends Employee {

public double getSalary() {
return super.getSalary()+this.bonus;

}

Prof. Michele Loreti Inheritance 144 /171

Method Overriding

public class Employee {

public boolean worksFor(Employee supervisor) {

}
}

public class Manager extends Employee {

public boolean worksFor(Manager supervisor) {

}

Prof. Michele Loreti Inheritance 145 / 171

Method Overriding

public class Employee {

public boolean worksFor(Employee supervisor) {

}
}

public class Manager extends Employee {

public boolean worksFor(Manager supervisor) {

}

This is not overriding! A new method is defined!

Prof. Michele Loreti Inheritance 145 / 171

Method Overriding

public class Employee {

public Employee getSupervisor() {

}
}

public class Manager extends Employee {

public Manager getSupervisor() {

}

Prof. Michele Loreti Inheritance 146 / 171

Method Overriding

public class Employee {

public Employee getSupervisor() {

}
}

public class Manager extends Employee {

public Manager getSupervisor() {

}

This is overriding!

Prof. Michele Loreti Inheritance 146 / 171

Method Overriding

public class Employee {

public Employee getSupervisor() {

}
}

public class Manager extends Employee {

public Manager getSupervisor() {

}

This is overriding!

The use of @Override is strongly recommended!

Prof. Michele Loreti Inheritance 146 / 171

Subclass Construction

A subclass must invoke the appropriate constructor of its superclass to fill
the private fields:

Prof. Michele Loreti Inheritance 147 /171

Subclass Construction

A subclass must invoke the appropriate constructor of its superclass to fill
the private fields:

public Manager(String name, double salary) {
super(name,salary);
this.bonus = 0;

Prof. Michele Loreti Inheritance 147 /171

Subclass Construction

A subclass must invoke the appropriate constructor of its superclass to fill
the private fields:

public Manager(String name, double salary) {
super(name,salary);
this.bonus = 0;

}

If no super constructor is invoked, the superclass must have a default
constructor that is called implicitly.

Prof. Michele Loreti Inheritance 147 /171

Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Prof. Michele Loreti Inheritance 148 / 171

Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Manager boss = new Manager(...);
Employee empl = boss;

Prof. Michele Loreti Inheritance 148 / 171

Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Manager boss = new Manager(...);
Employee empl = boss;

Question: what happens when the following code is executed?

Prof. Michele Loreti Inheritance 148 / 171

Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Manager boss = new Manager(...);
Employee empl = boss;

Question: what happens when the following code is executed?

empl.getSalary();

Prof. Michele Loreti Inheritance 148 / 171

Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Manager boss = new Manager(...);
Employee empl = boss;

Question: what happens when the following code is executed?

empl.getSalary();

The dynamic type of a receiver is used to select the method to
invoke (dynamic method lookup)!

Prof. Michele Loreti Inheritance 148 / 171

Example. ..

Employee[] staff = new Employee[...];
staff [0] = new Employee (...);

staff [1] = new Manager(...);
staff [2] = new Employee (...);
double sum = 0;

for (Employee e: staff) {
sum += e.getSalary();
}

Prof. Michele Loreti Inheritance 149 /171

Example. ..

Employee[] staff = new Employee[...];
staff [0] = new Employee (...);
staff [1] = new Manager(...);
staff [2] = new Employee (...);

double sum = 0;

for (Employee e: staff) {
sum += e.getSalary();

}

Thanks to dynamic method lookup, the right version of getSalary () is
selected!

Prof. Michele Loreti Inheritance 149 /171

Cast

Let us consider the following code:

Prof. Michele Loreti Inheritance 150 / 171

Cast

Let us consider the following code:

Employee empl = new Manager(...);
empl.setBonus(10000);

Prof. Michele Loreti Inheritance 150 / 171

Cast

Let us consider the following code:

Employee empl = new Manager(...);
empl.setBonus(10000);

If really needed, we can use instanceof and explicit cast to access to
methods of a subclass:

Prof. Michele Loreti Inheritance 150 / 171

Cast

Let us consider the following code:

Employee empl = new Manager(...);
empl.setBonus(10000);

If really needed, we can use instanceof and explicit cast to access to
methods of a subclass:

if (empl instanceof Manager) {
Manager mgr = (Manager) empl;
mgr.setBonus(10000);

}

Prof. Michele Loreti Inheritance 150 / 171

Final methods

When a method is declared final, no subclass can override it:

Prof. Michele Loreti Inheritance 151 /171

Final methods

When a method is declared final, no subclass can override it:
public class Employee {

public final String getName() {
return this.name;

}
}

Prof. Michele Loreti Inheritance 151 / 171

Final methods

When a method is declared final, no subclass can override it:
public class Employee {

public final String getName() {
return this.name;
}

}

An example of final method is the getClass method of Object.

Prof. Michele Loreti Inheritance 151 / 171

Final methods

When a method is declared final, no subclass can override it:
public class Employee {

public final String getName() {
return this.name;
}

}

An example of final method is the getClass method of Object.

Modifier final can be applied also to classes to prevent others from
subclassing:

Prof. Michele Loreti Inheritance 151 / 171

Final methods

When a method is declared final, no subclass can override it:
public class Employee {

public final String getName() {
return this.name;

}
}

An example of final method is the getClass method of Object.

Modifier final can be applied also to classes to prevent others from
subclassing:

public final class Executive extends Manager {

}

Prof. Michele Loreti Inheritance 151 / 171

Abstract Methods and Classes

A class can define a method without an implementation, forcing subclasses
to implement it.

Prof. Michele Loreti Inheritance 152 / 171

Abstract Methods and Classes

A class can define a method without an implementation, forcing subclasses
to implement it.

This method, and the class that contains it, are called abstract.

Prof. Michele Loreti Inheritance 152 / 171

Abstract Methods and Classes

A class can define a method without an implementation, forcing subclasses
to implement it.
This method, and the class that contains it, are called abstract.

public abstract class Person {
private final String name;

public Person(String name) {
this.name = name;

}

public final String getName() {
return name;

}

public abstract int getld();

Prof. Michele Loreti Inheritance 152 / 171

Abstract Methods and Classes

public class Student extends Person {
private final int id;

public Student(int id, String name) {
super(name);
this.id = id;

}

public final int getld() {
return id;

}

Prof. Michele Loreti Inheritance 153 / 171

Protected Access

public class Employee {

protected double salary;

public class Manager {

public double getSalary() {
return this.salary+this.bonus;

}

Prof. Michele Loreti Inheritance 154 /171

Protected Access

public class Employee {
protected double salary;

public class Manager {

public double getSalary() {
return this.salary+this.bonus;

}

Protected fields must be used with caution! Protected methods and
constructor are more standard!

Prof. Michele Loreti Inheritance 154 /171

Inheritance and Default Methods

public interface Named {
public String getName() { return ""; }
}

public class Person implements Named {
public String getName() { return this.name; }
}

public class Student extends Person implements Named {

}

Prof. Michele Loreti Inheritance 155 / 171

Inheritance and Default Methods

public interface Named {
public String getName() { return ""; }
}

public class Person implements Named {
public String getName() { return this.name; }
}

public class Student extends Person implements Named {

}

In this case we have not a conflict! The class-win approach is used
(to guarantee backward compatibility)!

Prof. Michele Loreti Inheritance 155 / 171

Method Expressions

Prof. Michele Loreti Inheritance 156 / 171

Method Expressions

public class Worker {
public void work() {
for(int i=0 ; i<100; i+) {
System.out. println (" Working ...");
}
}
}

Prof. Michele Loreti Inheritance 156 / 171

Method Expressions

public class Worker {
public void work() {
for(int i=0 ; i<100; i+) {
System.out. println (" Working ...");
}
}
}

public class ConcurrentWorker {
public void work() {
Thread t = new Thread(super ::work);
t.start();
}
}

Prof. Michele Loreti Inheritance 156 / 171

Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:

public class Employee { ... }

is equivalent to

public class Employee extends Object { ... }

Prof. Michele Loreti Inheritance 157 / 171

Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:

public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }

Class Object contains the following methods:

Prof. Michele Loreti Inheritance 157 / 171

Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:

public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }

Class Object contains the following methods:

B String toString ()

Prof. Michele Loreti Inheritance 157 / 171

Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:

public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }

Class Object contains the following methods:
® String toString ()

B boolean equals(Object other)

Prof. Michele Loreti Inheritance 157 / 171

Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:

public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }

Class Object contains the following methods:
® String toString ()
B boolean equals(Object other)
B int hashCode()

Prof. Michele Loreti Inheritance 157 / 171

Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:
public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }
Class Object contains the following methods:
® String toString ()
B boolean equals(Object other)
B int hashCode()

B Class<?> getClass()

Prof. Michele Loreti Inheritance 157 / 171

Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:
public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }
Class Object contains the following methods:
® String toString ()
B boolean equals(Object other)
B int hashCode()
B Class<?> getClass()

B protected Object clone()

Prof. Michele Loreti Inheritance 157 / 171

S e
Object: The Cosmic Superclass! ,

Every Java class directly or indirectly extends the class Object:
public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }
Class Object contains the following methods:
® String toString ()
B boolean equals(Object other)
B int hashCode()
B Class<?> getClass()
B protected Object clone()

B protected void finalize ()

Prof. Michele Loreti Inheritance 157 / 171

S e
Object: The Cosmic Superclass! ,

Every Java class directly or indirectly extends the class Object:

public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }

Class Object contains the following methods:
® String toString ()
B boolean equals(Object other)
B int hashCode()
B Class<?> getClass()
B protected Object clone()
B protected void finalize ()
B wait, notify, notifyAll

Prof. Michele Loreti Inheritance 157 / 171

Method toString

Method toString is used to obtain a string representation of an object:

Prof. Michele Loreti Inheritance 158 / 171

Method toString

Method toString is used to obtain a string representation of an object:

public class Employee {
public String toString() {

return getClass().getName()+" [name="+this .name+
" ,salary="+this.salary+"]";

Prof. Michele Loreti Inheritance 158 / 171

S
Method toString ,

Method toString is used to obtain a string representation of an object:
public class Employee {
public String toString() {

return getClass().getName()+" [name="+this .name+
" ,salary="+this.salary+"]";

}

public class Manager extends Employee {

public String toString() {
return super.toString ()4’ [bonus="+this.bonus+"]";

}

Prof. Michele Loreti Inheritance 158 / 171

Method equals

Method equals tests whether one object is considered equal to another.

Prof. Michele Loreti Inheritance 159 / 171

Method equals

Method equals tests whether one object is considered equal to another.
The implementation in class Object just checks if two object references are

identical.

Prof. Michele Loreti Inheritance 159 / 171

Method equals

Method equals tests whether one object is considered equal to another.
The implementation in class Object just checks if two object references are
identical.

Example:

public class Iltem {
private String description;
private double price;

public boolean equals(Object other) {

if (this = other) return true;

if (other = null) return false;

if (getClass() != other.getClass()) return false;

Item otherltem = (ltem) other;

return
Objects.equals(this.description ,otherltem.description)
&&(this.price = other.price);

Prof. Michele Loreti Inheritance 159 / 171

.
Method equals (2) ,

public class Discountedltem extends Item {
private double discount;

public boolean equals(Object other) {
if (!super.equals(other)) return false;
Discountedltem otherltem = (Discountedltem) other;
return this.discount — otherltem .discount;

Prof. Michele Loreti Inheritance 160 / 171

S
Method hashCode ,

A hash code is an integer that is derived from an object.

Prof. Michele Loreti Inheritance 161 / 171

S
Method hashCode ,

A hash code is an integer that is derived from an object.

Hash codes should be scrambled, if x and y are two unequal objects,
x.hashCode() and y.hashCode() should be different with high probability.

Prof. Michele Loreti Inheritance 161 / 171

Method hashCode ,

A hash code is an integer that is derived from an object.

Hash codes should be scrambled, if x and y are two unequal objects,
x.hashCode() and y.hashCode() should be different with high probability.

Hash code algorithm for String:

int hash = 0;

for(int i=0; i<length(); i++) {
hash = 31xhash + charAt(i);
}

Prof. Michele Loreti Inheritance 161 / 171

Method hashCode

A hash code is an integer that is derived from an object.

Hash codes should be scrambled, if x and y are two unequal objects,
x.hashCode() and y.hashCode() should be different with high probability.

Hash code algorithm for String:

int hash = 0;
for(int i=0; i<length(); i++) {
hash = 31xhash + charAt(i);

}

Util method in class Objects:

public int hashCode() {
return Objects.hash(description , price);

}

Prof. Michele Loreti Inheritance 161 / 171

hashCode contract

The general contract of hashCode is:

Prof. Michele Loreti Inheritance 162 / 171

hashCode contract

The general contract of hashCode is:

® Whenever it is invoked on the same object more than once during an
execution of a Java application, the hashCode method must
consistently return the same integer.

Prof. Michele Loreti Inheritance 162 / 171

hashCode contract

The general contract of hashCode is:

® Whenever it is invoked on the same object more than once during an
execution of a Java application, the hashCode method must
consistently return the same integer.

® |f two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce
the same integer result.

Prof. Michele Loreti Inheritance 162 / 171

Equals contract

The equals method implements an equivalence relation on non-null object
references:

Prof. Michele Loreti Inheritance 163 / 171

Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

Prof. Michele Loreti Inheritance 163 / 171

Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

® |t is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

Prof. Michele Loreti Inheritance 163 / 171

Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

® |t is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

® |t is transitive: for any non-null reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then x.equals(z)
should return true.

Prof. Michele Loreti Inheritance 163 / 171

Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

® |t is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

B |t is transitive: for any non-null reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then x.equals(z)
should return true.

B |t is consistent: for any non-null reference values x and y, multiple
invocations of x.equals(y) consistently return true or consistently return
false, provided no information used in equals comparisons on the
objects is modified.

Prof. Michele Loreti Inheritance 163 / 171

Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

® |t is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

B |t is transitive: for any non-null reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then x.equals(z)
should return true.

B |t is consistent: for any non-null reference values x and y, multiple
invocations of x.equals(y) consistently return true or consistently return
false, provided no information used in equals comparisons on the
objects is modified.

® For any non-null reference value x, x.equals(null) should return false.

Prof. Michele Loreti Inheritance 163 / 171

Cloning Objects

Method clone is used to make a clone.

Prof. Michele Loreti Inheritance 164 / 171

Cloning Objects

Method clone is used to make a clone. This method is declared protected so
we can override it if needed.

Prof. Michele Loreti Inheritance 164 / 171

Cloning Objects

Method clone is used to make a clone. This method is declared protected so
we can override it if needed.

The default implementation performs a shallow copy.

Prof. Michele Loreti Inheritance 164 / 171

Cloning Objects

Method clone is used to make a clone. This method is declared protected so
we can override it if needed.

The default implementation performs a shallow copy.

It only works for basic types:

public final class Message {
private String sender;
private ArraylList<String> recipients;
private Strin text;

public void addRecipient(String recipient) { ... }

}

Prof. Michele Loreti Inheritance 164 / 171

Cloning Objects

Message
specialOffer = E‘/—‘

sender «]

clone0fSpecialoffer = recipients = [—_|
text =[] ArraylList<String>

Message

sender = E
recipients =

text = '

Prof. Michele Loreti Inheritance 165 / 171

Cloning Objects

Message
specialOffer = E—/—‘

sender «]

clone0fSpecialoffer = recipients = [—J—_|
text =[] ArraylList<String>

Message

sender = E
recipients =

text = []

A deep copy is needed!

Prof. Michele Loreti Inheritance 165 / 171

Cloning Objects

When we implement a class, we have to decide whether:

Prof. Michele Loreti Inheritance 166 / 171

Cloning Objects

When we implement a class, we have to decide whether:

1. We do not want to provide a clone method

Prof. Michele Loreti Inheritance 166 / 171

Cloning Objects

When we implement a class, we have to decide whether:

1. We do not want to provide a clone method

2. The inherited clone method is acceptable

Prof. Michele Loreti Inheritance 166 / 171

S e
Cloning Objects w

When we implement a class, we have to decide whether:

1. We do not want to provide a clone method
do nothing!
2. The inherited clone method is acceptable

3. The clone method should make a deep copy

Prof. Michele Loreti Inheritance 166 / 171

S e
Cloning Objects ,

When we implement a class, we have to decide whether:

1. We do not want to provide a clone method
do nothing!
2. The inherited clone method is acceptable
Implement interface Cloneable!
3. The clone method should make a deep copy
Override method clone!

Prof. Michele Loreti Inheritance 166 / 171

Enumerations

An enum type is a special data type that enables for a variable to be a set
of predefined constants:

Prof. Michele Loreti Inheritance 167 / 171

Enumerations

An enum type is a special data type that enables for a variable to be a set
of predefined constants:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE; }

Prof. Michele Loreti Inheritance 167 / 171

Enumerations

An enum type is a special data type that enables for a variable to be a set
of predefined constants:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE; }

Elements of an enumeration can be compared with the == operator (there
is only one instance of each case).

Prof. Michele Loreti Inheritance 167 / 171

Enumerations

An enum type is a special data type that enables for a variable to be a set
of predefined constants:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE; }

Elements of an enumeration can be compared with the == operator (there
is only one instance of each case).

Method toString by default provides the name of the enumerated object
(e.g. "SMALL").

Prof. Michele Loreti Inheritance 167 / 171

Enumerations

The method valueOf can be used to build an element of the enumeration
from string:
Size notMySize = Size.valueOf("SMALL");

Prof. Michele Loreti Inheritance 168 / 171

Enumerations

The method valueOf can be used to build an element of the enumeration
from string:

Size notMySize = Size.valueOf("SMALL");
Each enumerated type has a static method values that returns an array of

all instances:

Size[] allValues = Size.values();

Prof. Michele Loreti Inheritance 168 / 171

Enumerations

The method valueOf can be used to build an element of the enumeration
from string:

Size notMySize = Size.valueOf("SMALL");

Each enumerated type has a static method values that returns an array of
all instances:

Size[] allValues = Size.values();

Method original can be used to get the position of an instance in the enum
declaration.

Prof. Michele Loreti Inheritance 168 / 171

Enumerations

The method valueOf can be used to build an element of the enumeration
from string:

Size notMySize = Size.valueOf("SMALL");

Each enumerated type has a static method values that returns an array of
all instances:

Size[] allValues = Size.values();

Method original can be used to get the position of an instance in the enum
declaration.

Any enumerate type E implements Comparable<E>, the comparison is
performed via original values.

Prof. Michele Loreti Inheritance 168 / 171

Constructors, Methods, and Fields

If needed we can add constructors, methods, and fields to an enumeration
type:

Prof. Michele Loreti Inheritance 169 / 171

Constructors, Methods, and Fields

If needed we can add constructors, methods, and fields to an enumeration
type:

public enum Size {
SMALL(”S"), MEDIUM("M"), LARGE("L"), EXTRA_LLARGE("XL");

private String abbreviation;

Size(String abbreviation) {
this.abbreviation = abbreviation;

}

public String getAbbreviation() { return abbreviation; }

Prof. Michele Loreti Inheritance 169 / 171

Bodies of Instances

Each enum instance can have specific methods.

Prof. Michele Loreti Inheritance 170 / 171

Bodies of Instances

Each enum instance can have specific methods.

These have to override methods defined in the enumeration.

Prof. Michele Loreti Inheritance 170 / 171

Bodies of Instances

Each enum instance can have specific methods.

These have to override methods defined in the enumeration.

public enum Opertion {
ADD {public int eval(int argl,int arg2) {return argl4arg2;}

SUB {public int eval(int argl,int arg2) {return argl—arg2;}
MUL {public int eval(int argl,int arg2) {return arglxarg2;}
DIV {public int eval(int argl,int arg2) {return argl/arg2;}

public abstract int eval(int argl, int arg2);

Prof. Michele Loreti Inheritance 170 / 171

To be continued. ..

Prof. Michele Loreti Inheritance 171 /171

