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S
Class Employee (1/2) w

public class Employee {

private final String name;
private double salary;

private static int lastld = 0;
private int id;

public Employee( String name , double salary ) {
Employee. lastld++;

this.id = lastld;
this .name = name;
this.salary = salary;

}

public void raiseSalary( double byPercent ) {
double raise = salaryxbyPercent/100;
salary 4= raise;

}
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Class Employee (2/2)

public void setSalary( double salary ) {
this.salary = salary;

}

public double getSalary( ) {
return this.salary;

}

public String getName() {
return this.name;

}

public int getld() {
return id;
}
}
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Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.
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Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.

public class Manager extends Employee {
... //Added fields
... //added or overriding methods

}
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The keywork extends is used to indicate that a new class is defined that
derives from an existing class.
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Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.

public class Manager extends Employee {
... //Added fields
... //added or overriding methods

}

The keywork extends is used to indicate that a new class is defined that
derives from an existing class.

The existing class is called superclass while the new one is called subclass.
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Extending a class

Let us define a new class Manager retaining some functionalities of the
Employee but specifying how managers are different.

public class Manager extends Employee {
... //Added fields
... //added or overriding methods

}

The keywork extends is used to indicate that a new class is defined that
derives from an existing class.

The existing class is called superclass while the new one is called subclass.

A subclass have more functionalities than their superclasses!
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Defining and Inheriting Subclass Methods

Our Manager class have a new instance variable to store the bonus and a
new method to set it:
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Defining and Inheriting Subclass Methods

Our Manager class have a new instance variable to store the bonus and a
new method to set it:

public class Manager extends Employee {
private double bonus;

public void setBonus(double bonus) {
this.bonus = bonus;
}

}
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Defining and Inheriting Subclass Methods

Our Manager class have a new instance variable to store the bonus and a
new method to set it:

public class Manager extends Employee {
private double bonus;

public void setBonus(double bonus) {
this.bonus = bonus;

}
}

On a Manager object we can invoke the setBonus but also all the methods
defined in Employee:
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S
Defining and Inheriting Subclass Methods u

Our Manager class have a new instance variable to store the bonus and a
new method to set it:

public class Manager extends Employee {
private double bonus;

public void setBonus(double bonus) {
this.bonus = bonus;
}

}

On a Manager object we can invoke the setBonus but also all the methods
defined in Employee:

Manager boss = new Manager( ... );

boss.setBonus(10000);
boss.raiseSalary(5);
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. .
Method Overriding ,

Sometimes, a subclass modifies methods defined in the superclass.
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Method Overriding

Sometimes, a subclass modifies methods defined in the superclass.

Example: the salary of a Manager is computed by adding the bonus to the
salary of an Employee
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. .
Method Overriding ,

Sometimes, a subclass modifies methods defined in the superclass.

Example: the salary of a Manager is computed by adding the bonus to the
salary of an Employee

public class Manager extends Employee {

public double getSalary( ) {
return super.getSalary()+this.bonus;

}
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Method Overriding

public class Employee {

public boolean worksFor( Employee supervisor ) {

}
}

public class Manager extends Employee {

public boolean worksFor( Manager supervisor ) {

}
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Method Overriding

public class Employee {

public boolean worksFor( Employee supervisor ) {

}
}

public class Manager extends Employee {

public boolean worksFor( Manager supervisor ) {

}

This is not overriding! A new method is defined!
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Method Overriding

public class Employee {

public Employee getSupervisor( ) {

}
}

public class Manager extends Employee {

public Manager getSupervisor( ) {

}
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Method Overriding

public class Employee {

public Employee getSupervisor( ) {

}
}

public class Manager extends Employee {

public Manager getSupervisor( ) {

}

This is overriding!
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Method Overriding

public class Employee {

public Employee getSupervisor( ) {

}
}

public class Manager extends Employee {

public Manager getSupervisor( ) {

}

This is overriding!

The use of @Override is strongly recommended!
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Subclass Construction

A subclass must invoke the appropriate constructor of its superclass to fill
the private fields:
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Subclass Construction

A subclass must invoke the appropriate constructor of its superclass to fill
the private fields:

public Manager( String name, double salary) {
super(name,salary);
this.bonus = 0;
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Subclass Construction

A subclass must invoke the appropriate constructor of its superclass to fill
the private fields:

public Manager( String name, double salary) {
super(name,salary);
this.bonus = 0;

}

If no super constructor is invoked, the superclass must have a default
constructor that is called implicitly.

Prof. Michele Loreti Inheritance 147 /171



Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:
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Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Manager boss = new Manager(...);
Employee empl = boss;
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Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Manager boss = new Manager(...);
Employee empl = boss;

Question: what happens when the following code is executed?
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Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Manager boss = new Manager(...);
Employee empl = boss;

Question: what happens when the following code is executed?

empl.getSalary();
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Superclass Assignment

It is legal to assign an object from a subclass to a variable whose type is a
superclass:

Manager boss = new Manager(...);
Employee empl = boss;

Question: what happens when the following code is executed?

empl.getSalary();

The dynamic type of a receiver is used to select the method to
invoke (dynamic method lookup)!
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Example. ..

Employee[] staff = new Employee[...];
staff [0] = new Employee (...);

staff [1] = new Manager(...);
staff [2] = new Employee (...);
double sum = 0;

for (Employee e: staff) {
sum += e.getSalary();
}
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Example. ..

Employee[] staff = new Employee[...];
staff [0] = new Employee (...);
staff [1] = new Manager(...);
staff [2] = new Employee (...);

double sum = 0;

for (Employee e: staff) {
sum += e.getSalary();

}

Thanks to dynamic method lookup, the right version of getSalary () is
selected!

Prof. Michele Loreti Inheritance 149 /171



Cast

Let us consider the following code:
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Cast

Let us consider the following code:

Employee empl = new Manager(...);
empl.setBonus(10000);

Prof. Michele Loreti Inheritance 150 / 171



Cast

Let us consider the following code:

Employee empl = new Manager(...);
empl.setBonus(10000);

If really needed, we can use instanceof and explicit cast to access to
methods of a subclass:
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Cast

Let us consider the following code:

Employee empl = new Manager(...);
empl.setBonus(10000);

If really needed, we can use instanceof and explicit cast to access to
methods of a subclass:

if (empl instanceof Manager) {
Manager mgr = (Manager) empl;
mgr.setBonus(10000);

}
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Final methods

When a method is declared final, no subclass can override it:
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Final methods

When a method is declared final, no subclass can override it:
public class Employee {

public final String getName() {
return this.name;

}
}
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Final methods

When a method is declared final, no subclass can override it:
public class Employee {

public final String getName() {
return this.name;
}

}

An example of final method is the getClass method of Object.
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Final methods

When a method is declared final, no subclass can override it:
public class Employee {

public final String getName() {
return this.name;
}

}

An example of final method is the getClass method of Object.

Modifier final can be applied also to classes to prevent others from
subclassing:
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Final methods

When a method is declared final, no subclass can override it:
public class Employee {

public final String getName() {
return this.name;

}
}

An example of final method is the getClass method of Object.

Modifier final can be applied also to classes to prevent others from
subclassing:

public final class Executive extends Manager {

}
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Abstract Methods and Classes

A class can define a method without an implementation, forcing subclasses
to implement it.
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Abstract Methods and Classes

A class can define a method without an implementation, forcing subclasses
to implement it.

This method, and the class that contains it, are called abstract.

Prof. Michele Loreti Inheritance 152 / 171



Abstract Methods and Classes

A class can define a method without an implementation, forcing subclasses
to implement it.
This method, and the class that contains it, are called abstract.

public abstract class Person {
private final String name;

public Person( String name ) {
this.name = name;

}

public final String getName() {
return name;

}

public abstract int getld();
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Abstract Methods and Classes

public class Student extends Person {
private final int id;

public Student( int id, String name ) {
super( name );
this.id = id;

}

public final int getld() {
return id;

}
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Protected Access

public class Employee {

protected double salary;

public class Manager {

public double getSalary() {
return this.salary+this.bonus;

}
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Protected Access

public class Employee {
protected double salary;

public class Manager {

public double getSalary() {
return this.salary+this.bonus;

}

Protected fields must be used with caution! Protected methods and
constructor are more standard!
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Inheritance and Default Methods

public interface Named {
public String getName() { return ""; }
}

public class Person implements Named {
public String getName() { return this.name; }
}

public class Student extends Person implements Named {

}
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Inheritance and Default Methods

public interface Named {
public String getName() { return ""; }
}

public class Person implements Named {
public String getName() { return this.name; }
}

public class Student extends Person implements Named {

}

In this case we have not a conflict! The class-win approach is used
(to guarantee backward compatibility)!
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Method Expressions
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Method Expressions

public class Worker {
public void work() {
for( int i=0 ; i<100; i+ ) {
System.out. println (" Working ...");
}
}
}
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Method Expressions

public class Worker {
public void work() {
for( int i=0 ; i<100; i+ ) {
System.out. println (" Working ...");
}
}
}

public class ConcurrentWorker {
public void work() {
Thread t = new Thread(super ::work);
t.start();
}
}
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Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:

public class Employee { ... }

is equivalent to

public class Employee extends Object { ... }
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public class Employee extends Object { ... }
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Object: The Cosmic Superclass!

Every Java class directly or indirectly extends the class Object:
public class Employee { ... }
is equivalent to
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Object: The Cosmic Superclass!
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S e
Object: The Cosmic Superclass! ,

Every Java class directly or indirectly extends the class Object:
public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }
Class Object contains the following methods:
® String toString ()
B boolean equals(Object other)
B int hashCode()
B Class<?> getClass()
B protected Object clone()

B protected void finalize ()
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S e
Object: The Cosmic Superclass! ,

Every Java class directly or indirectly extends the class Object:

public class Employee { ... }
is equivalent to
public class Employee extends Object { ... }

Class Object contains the following methods:
® String toString ()
B boolean equals(Object other)
B int hashCode()
B Class<?> getClass()
B protected Object clone()
B protected void finalize ()
B wait, notify, notifyAll
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Method toString

Method toString is used to obtain a string representation of an object:
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Method toString

Method toString is used to obtain a string representation of an object:

public class Employee {
public String toString() {

return getClass().getName()+" [name="+this .name+
" ,salary="+this.salary+"]";
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S
Method toString ,

Method toString is used to obtain a string representation of an object:
public class Employee {
public String toString() {

return getClass().getName()+" [name="+this .name+
" ,salary="+this.salary+"]";

}

public class Manager extends Employee {

public String toString() {
return super.toString ()4’ [bonus="+this.bonus+"]";

}
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Method equals

Method equals tests whether one object is considered equal to another.
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Method equals

Method equals tests whether one object is considered equal to another.
The implementation in class Object just checks if two object references are

identical.
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Method equals

Method equals tests whether one object is considered equal to another.
The implementation in class Object just checks if two object references are
identical.

Example:

public class Iltem {
private String description;
private double price;

public boolean equals( Object other ) {

if (this = other) return true;

if (other = null) return false;

if (getClass() != other.getClass()) return false;

Item otherltem = (ltem) other;

return
Objects.equals(this.description ,otherltem.description)
&&(this.price = other.price);
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.
Method equals (2) ,

public class Discountedltem extends Item {
private double discount;

public boolean equals( Object other ) {
if (!super.equals(other)) return false;
Discountedltem otherltem = (Discountedltem) other;
return this.discount — otherltem .discount;
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S
Method hashCode ,

A hash code is an integer that is derived from an object.
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S
Method hashCode ,

A hash code is an integer that is derived from an object.

Hash codes should be scrambled, if x and y are two unequal objects,
x.hashCode() and y.hashCode() should be different with high probability.
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Method hashCode ,

A hash code is an integer that is derived from an object.

Hash codes should be scrambled, if x and y are two unequal objects,
x.hashCode() and y.hashCode() should be different with high probability.

Hash code algorithm for String:

int hash = 0;

for( int i=0; i<length(); i++) {
hash = 31xhash + charAt(i);
}
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Method hashCode

A hash code is an integer that is derived from an object.

Hash codes should be scrambled, if x and y are two unequal objects,
x.hashCode() and y.hashCode() should be different with high probability.

Hash code algorithm for String:

int hash = 0;
for( int i=0; i<length(); i++) {
hash = 31xhash + charAt(i);

}

Util method in class Objects:

public int hashCode() {
return Objects.hash(description , price);

}

Prof. Michele Loreti Inheritance 161 / 171



hashCode contract

The general contract of hashCode is:
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hashCode contract

The general contract of hashCode is:

® Whenever it is invoked on the same object more than once during an
execution of a Java application, the hashCode method must
consistently return the same integer.
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hashCode contract

The general contract of hashCode is:

® Whenever it is invoked on the same object more than once during an
execution of a Java application, the hashCode method must
consistently return the same integer.

® |f two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce
the same integer result.
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Equals contract

The equals method implements an equivalence relation on non-null object
references:
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Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.
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Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

® |t is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.
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Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

® |t is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

® |t is transitive: for any non-null reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then x.equals(z)
should return true.
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Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

® |t is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

B |t is transitive: for any non-null reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then x.equals(z)
should return true.

B |t is consistent: for any non-null reference values x and y, multiple
invocations of x.equals(y) consistently return true or consistently return
false, provided no information used in equals comparisons on the
objects is modified.
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Equals contract

The equals method implements an equivalence relation on non-null object
references:

B |t is reflexive: for any non-null reference value x, x.equals(x) should
return true.

® |t is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

B |t is transitive: for any non-null reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then x.equals(z)
should return true.

B |t is consistent: for any non-null reference values x and y, multiple
invocations of x.equals(y) consistently return true or consistently return
false, provided no information used in equals comparisons on the
objects is modified.

® For any non-null reference value x, x.equals(null) should return false.

Prof. Michele Loreti Inheritance 163 / 171



Cloning Objects

Method clone is used to make a clone.
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Cloning Objects

Method clone is used to make a clone. This method is declared protected so
we can override it if needed.
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Cloning Objects

Method clone is used to make a clone. This method is declared protected so
we can override it if needed.

The default implementation performs a shallow copy.
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Cloning Objects

Method clone is used to make a clone. This method is declared protected so
we can override it if needed.

The default implementation performs a shallow copy.

It only works for basic types:

public final class Message {
private String sender;
private ArraylList<String> recipients;
private Strin text;

public void addRecipient( String recipient ) { ... }

}
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Cloning Objects

Message
specialOffer = E‘/—‘

sender « ]

clone0fSpecialoffer = recipients = [ —_|
text =[] ArraylList<String>

Message

sender = E
recipients =

text = '
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Cloning Objects

Message
specialOffer = E—/—‘

sender « ]

clone0fSpecialoffer = recipients = [ —J—_|
text =[] ArraylList<String>

Message

sender = E
recipients =

text = [ ]

A deep copy is needed!
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Cloning Objects

When we implement a class, we have to decide whether:
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Cloning Objects

When we implement a class, we have to decide whether:

1. We do not want to provide a clone method
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Cloning Objects

When we implement a class, we have to decide whether:

1. We do not want to provide a clone method

2. The inherited clone method is acceptable
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S e
Cloning Objects w

When we implement a class, we have to decide whether:

1. We do not want to provide a clone method
do nothing!
2. The inherited clone method is acceptable

3. The clone method should make a deep copy
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S e
Cloning Objects ,

When we implement a class, we have to decide whether:

1. We do not want to provide a clone method
do nothing!
2. The inherited clone method is acceptable
Implement interface Cloneable!
3. The clone method should make a deep copy
Override method clone!

Prof. Michele Loreti Inheritance 166 / 171



Enumerations

An enum type is a special data type that enables for a variable to be a set
of predefined constants:
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Enumerations

An enum type is a special data type that enables for a variable to be a set
of predefined constants:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE; }
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Enumerations

An enum type is a special data type that enables for a variable to be a set
of predefined constants:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE; }

Elements of an enumeration can be compared with the == operator (there
is only one instance of each case).
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Enumerations

An enum type is a special data type that enables for a variable to be a set
of predefined constants:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE; }

Elements of an enumeration can be compared with the == operator (there
is only one instance of each case).

Method toString by default provides the name of the enumerated object
(e.g. "SMALL").
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Enumerations

The method valueOf can be used to build an element of the enumeration
from string:
Size notMySize = Size.valueOf("SMALL");
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Enumerations

The method valueOf can be used to build an element of the enumeration
from string:

Size notMySize = Size.valueOf("SMALL");
Each enumerated type has a static method values that returns an array of

all instances:

Size[] allValues = Size.values();
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Enumerations

The method valueOf can be used to build an element of the enumeration
from string:

Size notMySize = Size.valueOf("SMALL");

Each enumerated type has a static method values that returns an array of
all instances:

Size[] allValues = Size.values();

Method original can be used to get the position of an instance in the enum
declaration.
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Enumerations

The method valueOf can be used to build an element of the enumeration
from string:

Size notMySize = Size.valueOf("SMALL");

Each enumerated type has a static method values that returns an array of
all instances:

Size[] allValues = Size.values();

Method original can be used to get the position of an instance in the enum
declaration.

Any enumerate type E implements Comparable<E>, the comparison is
performed via original values.
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Constructors, Methods, and Fields

If needed we can add constructors, methods, and fields to an enumeration
type:
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Constructors, Methods, and Fields

If needed we can add constructors, methods, and fields to an enumeration
type:

public enum Size {
SMALL(”S"), MEDIUM("M"), LARGE("L"), EXTRA_LLARGE("XL");

private String abbreviation;

Size(String abbreviation) {
this.abbreviation = abbreviation;

}

public String getAbbreviation() { return abbreviation; }
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Bodies of Instances

Each enum instance can have specific methods.
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Bodies of Instances

Each enum instance can have specific methods.

These have to override methods defined in the enumeration.
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Bodies of Instances

Each enum instance can have specific methods.

These have to override methods defined in the enumeration.

public enum Opertion {
ADD {public int eval(int argl,int arg2) {return argl4arg2;}

SUB {public int eval(int argl,int arg2) {return argl—arg2;}
MUL {public int eval(int argl,int arg2) {return arglxarg2;}
DIV {public int eval(int argl,int arg2) {return argl/arg2;}

public abstract int eval(int argl, int arg2);
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To be continued. ..
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