
Exceptions and Assertions

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Exceptions and Assertions 172 / 216



Exception Handling. . .

What should a method do when it encounters a situation in which it
cannot fulfil its contract?

One solution is to return an error code.

This solution is cumbersome for the programmer calling the method!

� The caller must handle the error (and return another error code if
needed);

� It is hard to check if errors have been properly handled.

Instead of having error codes Java support exception handling:

. . . a method can signal serious problems by throwing an exception;

. . . one of the method in the call chain can handle the exception.

Prof. Michele Loreti Exceptions and Assertions 173 / 216



Exception Handling. . .

What should a method do when it encounters a situation in which it
cannot fulfil its contract?

One solution is to return an error code.

This solution is cumbersome for the programmer calling the method!

� The caller must handle the error (and return another error code if
needed);

� It is hard to check if errors have been properly handled.

Instead of having error codes Java support exception handling:

. . . a method can signal serious problems by throwing an exception;

. . . one of the method in the call chain can handle the exception.

Prof. Michele Loreti Exceptions and Assertions 173 / 216



Exception Handling. . .

What should a method do when it encounters a situation in which it
cannot fulfil its contract?

One solution is to return an error code.

This solution is cumbersome for the programmer calling the method!

� The caller must handle the error (and return another error code if
needed);

� It is hard to check if errors have been properly handled.

Instead of having error codes Java support exception handling:

. . . a method can signal serious problems by throwing an exception;

. . . one of the method in the call chain can handle the exception.

Prof. Michele Loreti Exceptions and Assertions 173 / 216



Exception Handling. . .

What should a method do when it encounters a situation in which it
cannot fulfil its contract?

One solution is to return an error code.

This solution is cumbersome for the programmer calling the method!

� The caller must handle the error (and return another error code if
needed);

� It is hard to check if errors have been properly handled.

Instead of having error codes Java support exception handling:

. . . a method can signal serious problems by throwing an exception;

. . . one of the method in the call chain can handle the exception.

Prof. Michele Loreti Exceptions and Assertions 173 / 216



Exception Handling. . .

What should a method do when it encounters a situation in which it
cannot fulfil its contract?

One solution is to return an error code.

This solution is cumbersome for the programmer calling the method!

� The caller must handle the error (and return another error code if
needed);

� It is hard to check if errors have been properly handled.

Instead of having error codes Java support exception handling:

. . . a method can signal serious problems by throwing an exception;

. . . one of the method in the call chain can handle the exception.

Prof. Michele Loreti Exceptions and Assertions 173 / 216



Exception Handling. . .

What should a method do when it encounters a situation in which it
cannot fulfil its contract?

One solution is to return an error code.

This solution is cumbersome for the programmer calling the method!

� The caller must handle the error (and return another error code if
needed);

� It is hard to check if errors have been properly handled.

Instead of having error codes Java support exception handling:

. . . a method can signal serious problems by throwing an exception;

. . . one of the method in the call chain can handle the exception.

Prof. Michele Loreti Exceptions and Assertions 173 / 216



Exception Handling. . .

What should a method do when it encounters a situation in which it
cannot fulfil its contract?

One solution is to return an error code.

This solution is cumbersome for the programmer calling the method!

� The caller must handle the error (and return another error code if
needed);

� It is hard to check if errors have been properly handled.

Instead of having error codes Java support exception handling:

. . . a method can signal serious problems by throwing an exception;

. . . one of the method in the call chain can handle the exception.

Prof. Michele Loreti Exceptions and Assertions 173 / 216



Throwing exceptions

A method may be in a situation where it cannot carry out the task at hand.

Example:

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Question: what should happen if someone calls randInt (10,5)?

Solution: throw appropriate exceptions!

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
i f ( low > h i g h ) {

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( . . . ) ;
}
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Prof. Michele Loreti Exceptions and Assertions 174 / 216



Throwing exceptions

A method may be in a situation where it cannot carry out the task at hand.

Example:

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Question: what should happen if someone calls randInt (10,5)?

Solution: throw appropriate exceptions!

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
i f ( low > h i g h ) {

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( . . . ) ;
}
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Prof. Michele Loreti Exceptions and Assertions 174 / 216



Throwing exceptions

A method may be in a situation where it cannot carry out the task at hand.

Example:

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Question: what should happen if someone calls randInt (10,5)?

Solution: throw appropriate exceptions!

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
i f ( low > h i g h ) {

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( . . . ) ;
}
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Prof. Michele Loreti Exceptions and Assertions 174 / 216



Throwing exceptions

A method may be in a situation where it cannot carry out the task at hand.

Example:

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Question: what should happen if someone calls randInt (10,5)?

Solution: throw appropriate exceptions!

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
i f ( low > h i g h ) {

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( . . . ) ;
}
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Prof. Michele Loreti Exceptions and Assertions 174 / 216



Throwing exceptions

A method may be in a situation where it cannot carry out the task at hand.

Example:

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Question: what should happen if someone calls randInt (10,5)?

Solution: throw appropriate exceptions!

p u b l i c s t a t i c i n t r a n d I n t ( i n t low , i n t h i g h ) {
i f ( low > h i g h ) {

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( . . . ) ;
}
r e t u r n low + ( i n t ) ( Math . random ( ) ∗( h igh−low +1) ) ;

}

Prof. Michele Loreti Exceptions and Assertions 174 / 216



The Exception Hierarchy

Prof. Michele Loreti Exceptions and Assertions 175 / 216



Extending Exceptions. . .

p u b l i c c l a s s MyException e x t e n d s E x c e p t i o n {

p u b l i c MyException ( ) {
s u p e r ( ) ;

}

p u b l i c MyException ( S t r i n g message ) {
s u p e r ( message ) ;

}

p u b l i c MyException ( S t r i n g message , E x c e p t i o n c a u s e ) {
s u p e r ( message , c a u s e ) ;

}

. . .

Prof. Michele Loreti Exceptions and Assertions 176 / 216



Declaring Checked Exceptions

Any method that might give rise to a checked exception must declare it
via the throw clause:

p u b l i c v o i d w r i t e ( Object o , S t r i n g f i l e n a m e )
throws IOExcept ion , R e f l e c t i v e O p e r a t i o n E x c e p t i o n

The throw clause must list all the exceptions that the method might throw
(explicitly or due to a recursive call).

Exceptions can be grouped by a super class

. . . for instance FileNotFoundException, InterruptedIOException could be
replaced by IOException

Replace multiple exceptions with a single superclass only when
these are related!

Prof. Michele Loreti Exceptions and Assertions 177 / 216



Declaring Checked Exceptions

Any method that might give rise to a checked exception must declare it
via the throw clause:

p u b l i c v o i d w r i t e ( Object o , S t r i n g f i l e n a m e )
throws IOExcept ion , R e f l e c t i v e O p e r a t i o n E x c e p t i o n

The throw clause must list all the exceptions that the method might throw
(explicitly or due to a recursive call).

Exceptions can be grouped by a super class

. . . for instance FileNotFoundException, InterruptedIOException could be
replaced by IOException

Replace multiple exceptions with a single superclass only when
these are related!

Prof. Michele Loreti Exceptions and Assertions 177 / 216



Declaring Checked Exceptions

Any method that might give rise to a checked exception must declare it
via the throw clause:

p u b l i c v o i d w r i t e ( Object o , S t r i n g f i l e n a m e )
throws IOExcept ion , R e f l e c t i v e O p e r a t i o n E x c e p t i o n

The throw clause must list all the exceptions that the method might throw
(explicitly or due to a recursive call).

Exceptions can be grouped by a super class

. . . for instance FileNotFoundException, InterruptedIOException could be
replaced by IOException

Replace multiple exceptions with a single superclass only when
these are related!

Prof. Michele Loreti Exceptions and Assertions 177 / 216



Declaring Checked Exceptions

Any method that might give rise to a checked exception must declare it
via the throw clause:

p u b l i c v o i d w r i t e ( Object o , S t r i n g f i l e n a m e )
throws IOExcept ion , R e f l e c t i v e O p e r a t i o n E x c e p t i o n

The throw clause must list all the exceptions that the method might throw
(explicitly or due to a recursive call).

Exceptions can be grouped by a super class

. . . for instance FileNotFoundException, InterruptedIOException could be
replaced by IOException

Replace multiple exceptions with a single superclass only when
these are related!

Prof. Michele Loreti Exceptions and Assertions 177 / 216



Handling vs Throwing exceptions. . .

When do we have to handle an exception?

Someone considers a method that throws an exception harmful!

Question: Is this true?
Answer: NO!

Throw early, catch late!

Prof. Michele Loreti Exceptions and Assertions 178 / 216



Handling vs Throwing exceptions. . .

When do we have to handle an exception?

Someone considers a method that throws an exception harmful!

Question: Is this true?
Answer: NO!

Throw early, catch late!

Prof. Michele Loreti Exceptions and Assertions 178 / 216



Handling vs Throwing exceptions. . .

When do we have to handle an exception?

Someone considers a method that throws an exception harmful!

Question: Is this true?

Answer: NO!

Throw early, catch late!

Prof. Michele Loreti Exceptions and Assertions 178 / 216



Handling vs Throwing exceptions. . .

When do we have to handle an exception?

Someone considers a method that throws an exception harmful!

Question: Is this true?
Answer: NO!

Throw early, catch late!

Prof. Michele Loreti Exceptions and Assertions 178 / 216



Handling vs Throwing exceptions. . .

When do we have to handle an exception?

Someone considers a method that throws an exception harmful!

Question: Is this true?
Answer: NO!

Throw early, catch late!

Prof. Michele Loreti Exceptions and Assertions 178 / 216



Overriding and Exception

When we override a method we cannot add more throwing exceptions!

However, we can reduce the list of generated exceptions.

Question: why?

Prof. Michele Loreti Exceptions and Assertions 179 / 216



Overriding and Exception

When we override a method we cannot add more throwing exceptions!

However, we can reduce the list of generated exceptions.

Question: why?

Prof. Michele Loreti Exceptions and Assertions 179 / 216



Overriding and Exception

When we override a method we cannot add more throwing exceptions!

However, we can reduce the list of generated exceptions.

Question: why?

Prof. Michele Loreti Exceptions and Assertions 179 / 216



Catching Exceptions

To catch an exception we have to put the code in a try catch block:

t r y {

// s o u r c e b l o c k

} c a t c h ( E x c e p t i o n C l a s s 1 ex1 ) {

// h a n d l i n g b l o c k 1

} c a t c h ( E x c e p t i o n C l a s s 2 ex2 ) {

// h a n d l i n g b l o c k 2

} c a t c h ( E x c e p t i o n C l a s s 3 | E x c e p t i o n C l a s s 4 ex2 ) {

// h a n d l i n g b l o c k 3

}

Prof. Michele Loreti Exceptions and Assertions 180 / 216



Try-with-Resources Statement

Let us consider the following portion of code:

S t r i n g [ ] l i n e s = . . . ;
P r i n t W r i t e r out = new P r i n t W r i t e r ( ” output . t x t ” ) ;
f o r ( S t r i n g s t r : l i n e s ) {

out . p r i n t l n ( l i n e . toLowerCase ( ) ) ;
}
out . c l o s e ( ) ;

This code has a hidden danger!

If an exception is thrown, the file is never closed!

Prof. Michele Loreti Exceptions and Assertions 181 / 216



Try-with-Resources Statement

Let us consider the following portion of code:

S t r i n g [ ] l i n e s = . . . ;
P r i n t W r i t e r out = new P r i n t W r i t e r ( ” output . t x t ” ) ;
f o r ( S t r i n g s t r : l i n e s ) {

out . p r i n t l n ( l i n e . toLowerCase ( ) ) ;
}
out . c l o s e ( ) ;

This code has a hidden danger!

If an exception is thrown, the file is never closed!

Prof. Michele Loreti Exceptions and Assertions 181 / 216



Try-with-Resources Statement

Let us consider the following portion of code:

S t r i n g [ ] l i n e s = . . . ;
P r i n t W r i t e r out = new P r i n t W r i t e r ( ” output . t x t ” ) ;
f o r ( S t r i n g s t r : l i n e s ) {

out . p r i n t l n ( l i n e . toLowerCase ( ) ) ;
}
out . c l o s e ( ) ;

This code has a hidden danger!

If an exception is thrown, the file is never closed!

Prof. Michele Loreti Exceptions and Assertions 181 / 216



Try-with-Resources Statement

Variables can be declared (or referenced) in the try:

t r y ( P r i n t W r i t e r out = new P r i n t W r i t e r ( f i l e N a m e ) ) {
f o r ( S t r i n g s t r : l i n e s ) {

out . p r i n t l n ( s t r . toLowerCase ( ) ) ;
}

}

Declared/referenced variable must be an instance of AutoCloseable. This is
an interface with the single method:

p u b l i c v o i d c l o s e ( ) throws E x c e p t i o n

When the block terminates (normally or due to an exception), the close ()

method is invoked!

Prof. Michele Loreti Exceptions and Assertions 182 / 216



Try-with-Resources Statement

Variables can be declared (or referenced) in the try:

t r y ( P r i n t W r i t e r out = new P r i n t W r i t e r ( f i l e N a m e ) ) {
f o r ( S t r i n g s t r : l i n e s ) {

out . p r i n t l n ( s t r . toLowerCase ( ) ) ;
}

}

Declared/referenced variable must be an instance of AutoCloseable. This is
an interface with the single method:

p u b l i c v o i d c l o s e ( ) throws E x c e p t i o n

When the block terminates (normally or due to an exception), the close ()

method is invoked!

Prof. Michele Loreti Exceptions and Assertions 182 / 216



Try-with-Resources Statement

Variables can be declared (or referenced) in the try:

t r y ( P r i n t W r i t e r out = new P r i n t W r i t e r ( f i l e N a m e ) ) {
f o r ( S t r i n g s t r : l i n e s ) {

out . p r i n t l n ( s t r . toLowerCase ( ) ) ;
}

}

Declared/referenced variable must be an instance of AutoCloseable. This is
an interface with the single method:

p u b l i c v o i d c l o s e ( ) throws E x c e p t i o n

When the block terminates (normally or due to an exception), the close ()

method is invoked!

Prof. Michele Loreti Exceptions and Assertions 182 / 216



The finally clause

The finally clause can be used to execute something at the end of a try

block:

t r y {
// t r y b l o c k

} c a t c h ( E x c e p t i o n 1 e1 ) {
// h a n d l e r 1 b l o c k

} c a t c h ( E x c e p t i o n 2 e2 ) {
// h a n d l e r 2 b l o c k

} f i n a l l y {
// f i n a l l y b l o c k

}

Finally block must have not a return statement!

Prof. Michele Loreti Exceptions and Assertions 183 / 216



The finally clause

The finally clause can be used to execute something at the end of a try

block:

t r y {
// t r y b l o c k

} c a t c h ( E x c e p t i o n 1 e1 ) {
// h a n d l e r 1 b l o c k

} c a t c h ( E x c e p t i o n 2 e2 ) {
// h a n d l e r 2 b l o c k

} f i n a l l y {
// f i n a l l y b l o c k

}

Finally block must have not a return statement!

Prof. Michele Loreti Exceptions and Assertions 183 / 216



Rethrowing an exception

Sometime is useful to handle only partially a given exception:

t r y {

} c a t c h ( E x c e p t i o n C l a s s e ) {
//Do someth ing . . .
throw e

} c a t c h ( A n o t h e r E x c e p t i o n C l a s s e ) {
//Do someth ing . . .
throw new A p p l i c a t i o n S p e c i f i c E x c e p t i o n ( e ) ;

}

This is useful to transform a checked exception into an unchecked ones.

Prof. Michele Loreti Exceptions and Assertions 184 / 216



Rethrowing an exception

Sometime is useful to handle only partially a given exception:

t r y {

} c a t c h ( E x c e p t i o n C l a s s e ) {
//Do someth ing . . .
throw e

} c a t c h ( A n o t h e r E x c e p t i o n C l a s s e ) {
//Do someth ing . . .
throw new A p p l i c a t i o n S p e c i f i c E x c e p t i o n ( e ) ;

}

This is useful to transform a checked exception into an unchecked ones.

Prof. Michele Loreti Exceptions and Assertions 184 / 216



Uncaught Exceptions

If an exception is not caught everywhere, a stack trace is displayed.

If we want to record the exception and save it somewhere else, we can
change the default exception handler:

Thread . s e t D e f a u l t U n c a u g h t E x c e p t i o n H a n d l e r ( ( thread , ex ) −> {
// Record e x c e p t i o n .

}
) ;

When we are not able to handle an exception, the only solution is to
report the stack trace:

t r y {
C l a s s <?> c l = C l a s s . forName ( className ) ;
. . .

} c a t c h ( C l a s s N o t F o u n d E x c e p t i o n e ) {
ex . p r i n t S t a c k T r a c e ( ) ;

}

Prof. Michele Loreti Exceptions and Assertions 185 / 216



Uncaught Exceptions

If an exception is not caught everywhere, a stack trace is displayed.

If we want to record the exception and save it somewhere else, we can
change the default exception handler:

Thread . s e t D e f a u l t U n c a u g h t E x c e p t i o n H a n d l e r ( ( thread , ex ) −> {
// Record e x c e p t i o n .

}
) ;

When we are not able to handle an exception, the only solution is to
report the stack trace:

t r y {
C l a s s <?> c l = C l a s s . forName ( className ) ;
. . .

} c a t c h ( C l a s s N o t F o u n d E x c e p t i o n e ) {
ex . p r i n t S t a c k T r a c e ( ) ;

}

Prof. Michele Loreti Exceptions and Assertions 185 / 216



Uncaught Exceptions

If an exception is not caught everywhere, a stack trace is displayed.

If we want to record the exception and save it somewhere else, we can
change the default exception handler:

Thread . s e t D e f a u l t U n c a u g h t E x c e p t i o n H a n d l e r ( ( thread , ex ) −> {
// Record e x c e p t i o n .

}
) ;

When we are not able to handle an exception, the only solution is to
report the stack trace:

t r y {
C l a s s <?> c l = C l a s s . forName ( className ) ;
. . .

} c a t c h ( C l a s s N o t F o u n d E x c e p t i o n e ) {
ex . p r i n t S t a c k T r a c e ( ) ;

}

Prof. Michele Loreti Exceptions and Assertions 185 / 216



Uncaught Exceptions

If an exception is not caught everywhere, a stack trace is displayed.

If we want to record the exception and save it somewhere else, we can
change the default exception handler:

Thread . s e t D e f a u l t U n c a u g h t E x c e p t i o n H a n d l e r ( ( thread , ex ) −> {
// Record e x c e p t i o n .

}
) ;

When we are not able to handle an exception, the only solution is to
report the stack trace:

t r y {
C l a s s <?> c l = C l a s s . forName ( className ) ;
. . .

} c a t c h ( C l a s s N o t F o u n d E x c e p t i o n e ) {
ex . p r i n t S t a c k T r a c e ( ) ;

}

Prof. Michele Loreti Exceptions and Assertions 185 / 216



Utility methods and classes

Class StackWalker can be used to inspect the stack trace.

Class Objects provides utility methods that perform convenient null check:

� Objects.requireNonNull(var)

� Objects. requireNonNullElse(var ,e)

� Objects. requireNonNullElseGet(var , f)

Prof. Michele Loreti Exceptions and Assertions 186 / 216



Utility methods and classes

Class StackWalker can be used to inspect the stack trace.

Class Objects provides utility methods that perform convenient null check:

� Objects.requireNonNull(var)

� Objects. requireNonNullElse(var ,e)

� Objects. requireNonNullElseGet(var , f)

Prof. Michele Loreti Exceptions and Assertions 186 / 216



Assertions

Assertions are used to perform defensive programming

Example:

i f ( x<0) {
throw new I l l e g a l S t a t e E x c e p t i o n ( x+” < 0” ) ;

}
Math . s q r t ( x ) ;

Assertions can be used to check if a given condition is satisfied::

a s s e r t x>=0;
Math . s q r t ( x ) ;

Prof. Michele Loreti Exceptions and Assertions 187 / 216



Assertions

Assertions are used to perform defensive programming

Example:

i f ( x<0) {
throw new I l l e g a l S t a t e E x c e p t i o n ( x+” < 0” ) ;

}
Math . s q r t ( x ) ;

Assertions can be used to check if a given condition is satisfied::

a s s e r t x>=0;
Math . s q r t ( x ) ;

Prof. Michele Loreti Exceptions and Assertions 187 / 216



Assertions

Assertions are used to perform defensive programming

Example:

i f ( x<0) {
throw new I l l e g a l S t a t e E x c e p t i o n ( x+” < 0” ) ;

}
Math . s q r t ( x ) ;

Assertions can be used to check if a given condition is satisfied::

a s s e r t x>=0;
Math . s q r t ( x ) ;

Prof. Michele Loreti Exceptions and Assertions 187 / 216



Assertions

There are two forms of assertions:

a s s e r t c o n d i t i o n ;

a s s e r t c o n d i t i o n : e x p r e s s i o n ;

In the second case the expression is used to build the error message!

N.B.: Assertions can be enabled/disabled at execution time via −ea and
−da parameters.

Prof. Michele Loreti Exceptions and Assertions 188 / 216



Assertions

There are two forms of assertions:

a s s e r t c o n d i t i o n ;

a s s e r t c o n d i t i o n : e x p r e s s i o n ;

In the second case the expression is used to build the error message!

N.B.: Assertions can be enabled/disabled at execution time via −ea and
−da parameters.

Prof. Michele Loreti Exceptions and Assertions 188 / 216



Assertions

There are two forms of assertions:

a s s e r t c o n d i t i o n ;

a s s e r t c o n d i t i o n : e x p r e s s i o n ;

In the second case the expression is used to build the error message!

N.B.: Assertions can be enabled/disabled at execution time via −ea and
−da parameters.

Prof. Michele Loreti Exceptions and Assertions 188 / 216



To be continued. . .

Prof. Michele Loreti Exceptions and Assertions 189 / 216


