
Principles of Object-Oriented Design

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Principles of Object-Oriented Design 183 / 453

SOLID principles of object-oriented programming.

Single responsibility principle

Open-closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

One should depend upon abstractions, not concretions!

Prof. Michele Loreti Principles of Object-Oriented Design 184 / 453

SOLID principles of object-oriented programming.

Single responsibility principle

Open-closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

One should depend upon abstractions, not concretions!

Prof. Michele Loreti Principles of Object-Oriented Design 184 / 453

SOLID principles of object-oriented programming.

Single responsibility principle

Open-closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

One should depend upon abstractions, not concretions!

Prof. Michele Loreti Principles of Object-Oriented Design 184 / 453

SOLID principles of object-oriented programming.

Single responsibility principle

Open-closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

One should depend upon abstractions, not concretions!

Prof. Michele Loreti Principles of Object-Oriented Design 184 / 453

SOLID principles of object-oriented programming.

Single responsibility principle

Open-closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

One should depend upon abstractions, not concretions!

Prof. Michele Loreti Principles of Object-Oriented Design 184 / 453

SOLID principles of object-oriented programming.

Single responsibility principle

Open-closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

One should depend upon abstractions, not concretions!

Prof. Michele Loreti Principles of Object-Oriented Design 184 / 453

Single responsibility principle

A class should have only a single responsibility!

A responsibility is a family of functions that serves one particular actor.

An actor for a responsibility is the single source of change for that
responsibility.

Prof. Michele Loreti Principles of Object-Oriented Design 185 / 453

Single responsibility principle

A class should have only a single responsibility!

A responsibility is a family of functions that serves one particular actor.

An actor for a responsibility is the single source of change for that
responsibility.

Prof. Michele Loreti Principles of Object-Oriented Design 185 / 453

Single responsibility principle

A class should have only a single responsibility!

A responsibility is a family of functions that serves one particular actor.

An actor for a responsibility is the single source of change for that
responsibility.

Prof. Michele Loreti Principles of Object-Oriented Design 185 / 453

Single responsibility principle

Bad example:

p u b l i c c l a s s Order {
. . .
p u b l i c i n t g e t I d () { . . . }

p u b l i c S t r i n g g e tD e s c r i p t i o n { . . . }

p u b l i c dub l e g e tP r i c e () { . . . }

p u b l i c vo i d p r i n tPage () {
. . .

}
. . .

}

Prof. Michele Loreti Principles of Object-Oriented Design 186 / 453

Single responsibility principle

Correct refactoring:

p u b l i c c l a s s Order {
. . .
p u b l i c i n t g e t I d () { . . . }

p u b l i c S t r i n g g e tD e s c r i p t i o n { . . . }

p u b l i c dub l e g e tP r i c e () { . . . }
. . .

}

p u b l i c i n t e r f a c e O r d e rP r i n t e r {
p u b l i c vo i d p r i n t (Order o) ;

}

Prof. Michele Loreti Principles of Object-Oriented Design 187 / 453

Single responsibility principle

p u b l i c c l a s s P l a i nT e x tP r i n t e r implements O r d e rP r i n t e r {
p u b l i c vo i d p r i n t (Order b) { . . . }

}

p u b l i c c l a s s Htm lP r i n t e r implements O r d e rP r i n t e r {
p u b l i c vo i d p r i n t (Order b) { . . . }

}

Prof. Michele Loreti Principles of Object-Oriented Design 188 / 453

Single responsibility principle

c l a s s Book {
p u b l i c S t r i n g g e t T i t l e () { . . . }
p u b l i c S t r i n g getAuthor () { . . . }
p u b l i c vo i d turnPage () { . . . }
p u b l i c Page ge tCur ren tPage () { . . . }
p u b l i c Loca t i on g e tLo c a t i o n () {

// r e t u r n s the p o s i t i o n i n the l i b r a r y
// i e . s h e l f number & room number

}
}

Question: does the above class violate the SRP?

Prof. Michele Loreti Principles of Object-Oriented Design 189 / 453

Single responsibility principle

c l a s s Book {
p u b l i c S t r i n g g e t T i t l e () { . . . }
p u b l i c S t r i n g getAuthor () { . . . }
p u b l i c vo i d turnPage () { . . . }
p u b l i c Page ge tCur ren tPage () { . . . }
p u b l i c Loca t i on g e tLo c a t i o n () {

// r e t u r n s the p o s i t i o n i n the l i b r a r y
// i e . s h e l f number & room number

}
}

Question: does the above class violate the SRP?

Prof. Michele Loreti Principles of Object-Oriented Design 189 / 453

Single responsibility principle

When we design a software solution we should. . .

1. Find and define the actors.

2. Identify the responsibilities that serve those actors.

3. Group our functions and classes so that each has only one allocated
responsibility.

Prof. Michele Loreti Principles of Object-Oriented Design 190 / 453

Open-closed principles

Software entities should be open for extension,
but closed for modification!

The origin of the term is due to Bertrand Meyer who used it in his 1988
book Object Oriented Software Construction.

� A module will be said to be open if it is still available for extension.

� A module will be said to be closed if it is available for use by other
modules (well-defined, stable description).

A class is closed, since it may be compiled, stored in a library, baselined,
and used by client classes. But it is also open, since any new class may
use it as parent, adding new features.

Prof. Michele Loreti Principles of Object-Oriented Design 191 / 453

Open-closed principles

Software entities should be open for extension,
but closed for modification!

The origin of the term is due to Bertrand Meyer who used it in his 1988
book Object Oriented Software Construction.

� A module will be said to be open if it is still available for extension.

� A module will be said to be closed if it is available for use by other
modules (well-defined, stable description).

A class is closed, since it may be compiled, stored in a library, baselined,
and used by client classes. But it is also open, since any new class may
use it as parent, adding new features.

Prof. Michele Loreti Principles of Object-Oriented Design 191 / 453

Open-closed principles

Software entities should be open for extension,
but closed for modification!

The origin of the term is due to Bertrand Meyer who used it in his 1988
book Object Oriented Software Construction.

� A module will be said to be open if it is still available for extension.

� A module will be said to be closed if it is available for use by other
modules (well-defined, stable description).

A class is closed, since it may be compiled, stored in a library, baselined,
and used by client classes. But it is also open, since any new class may
use it as parent, adding new features.

Prof. Michele Loreti Principles of Object-Oriented Design 191 / 453

Open-closed principles

Software entities should be open for extension,
but closed for modification!

The origin of the term is due to Bertrand Meyer who used it in his 1988
book Object Oriented Software Construction.

� A module will be said to be open if it is still available for extension.

� A module will be said to be closed if it is available for use by other
modules (well-defined, stable description).

A class is closed, since it may be compiled, stored in a library, baselined,
and used by client classes.

But it is also open, since any new class may
use it as parent, adding new features.

Prof. Michele Loreti Principles of Object-Oriented Design 191 / 453

Open-closed principles

Software entities should be open for extension,
but closed for modification!

The origin of the term is due to Bertrand Meyer who used it in his 1988
book Object Oriented Software Construction.

� A module will be said to be open if it is still available for extension.

� A module will be said to be closed if it is available for use by other
modules (well-defined, stable description).

A class is closed, since it may be compiled, stored in a library, baselined,
and used by client classes. But it is also open, since any new class may
use it as parent, adding new features.

Prof. Michele Loreti Principles of Object-Oriented Design 191 / 453

Open-closed principles

Bad example:

p u b l i c c l a s s Rec tang l e {
p r i v a t e f i n a l doub l e width ;
p r i v a t e f i n a l doub l e h e i g h t ;

p u b l i c Rec tang l e (doub l e width , doub l e h e i g h t) {
t h i s . w idth = width ;
t h i s . h e i g h t = he i g h t ;

}

p u b l i c doub l e getWidth () {
r e t u r n width ;

}

p u b l i c doub l e ge tHe i gh t () {
r e t u r n h e i g h t ;

}
}

Prof. Michele Loreti Principles of Object-Oriented Design 192 / 453

Open-closed principles

Bad example:

p u b l i c c l a s s A r e aCa l c u l a t o r {

p u b l i c doub l e computeArea (Rec tang l e [] shapes) {
doub l e a r ea = 0 ;
f o r (i n t i=0 ; i<shapes ; i++) {

a r ea += shapes [i] . getWidth () ∗ shapes [i] . g e tHe i gh t () ;
}

}

}

Prof. Michele Loreti Principles of Object-Oriented Design 193 / 453

Open-closed principles

Correct refactoring:

p u b l i c i n t e r f a c e Shape {

p u b l i c doub l e getArea () ;

}

p u b l i c c l a s s A r e aCa l c u l a t o r {

p u b l i c doub l e computeArea (Shape [] shapes) {
doub l e a r ea = 0 ;
f o r (i n t i=0 ; i<shapes ; i++) {

a r ea += shapes [i] . ge tArea () ;
}

}

}

Prof. Michele Loreti Principles of Object-Oriented Design 194 / 453

Open-closed principles

Correct refactoring:

p u b l i c c l a s s Rec tang l e implements Shape {
p r i v a t e f i n a l doub l e width ;
p r i v a t e f i n a l doub l e h e i g h t ;

p u b l i c Rec tang l e (doub l e width , doub l e h e i g h t) {
t h i s . w idth = width ;
t h i s . h e i g h t = he i g h t ;

}

p u b l i c doub l e getWidth () { r e t u r n width ; }

p u b l i c doub l e ge tHe i gh t () { r e t u r n h e i g h t ; }

p u b l i c doub l e getArea () { r e t u r n width ∗ h e i g h t ; }
}

Prof. Michele Loreti Principles of Object-Oriented Design 195 / 453

Open-closed principles

Correct refactoring:

p u b l i c c l a s s C i r c l e implements Shape {
p r i v a t e f i n a l doub l e r a d i u s ;

p u b l i c C i r c l (doub l e r a d i u s) {
t h i s . r a d i u s = r a d i u s ;

}

p u b l i c doub l e ge tRad iu s () {
r e t u r n r a d i u s ;

}

p u b l i c doub l e getArea () {
r e t u r n Math . PI∗Math . pow(r ad i u s , 2) ;

}
}

Prof. Michele Loreti Principles of Object-Oriented Design 196 / 453

Liskov substitution principle

Objects in a program should be replaceable with instances of their
subtypes without altering the correctness of that program!

The concept of this principle was introduced by Barbara Liskov in a 1987
conference keynote and later published in a paper together with Jannette
Wing in 1994.

Their original definition is as follows:

Let q(x) be a property provable about objects x of type T . Then q(y)
should be provable for objects y of type S where S is a subtype of T .

Prof. Michele Loreti Principles of Object-Oriented Design 197 / 453

Liskov substitution principle

Objects in a program should be replaceable with instances of their
subtypes without altering the correctness of that program!

The concept of this principle was introduced by Barbara Liskov in a 1987
conference keynote and later published in a paper together with Jannette
Wing in 1994.

Their original definition is as follows:

Let q(x) be a property provable about objects x of type T . Then q(y)
should be provable for objects y of type S where S is a subtype of T .

Prof. Michele Loreti Principles of Object-Oriented Design 197 / 453

Liskov substitution principle

Objects in a program should be replaceable with instances of their
subtypes without altering the correctness of that program!

The concept of this principle was introduced by Barbara Liskov in a 1987
conference keynote and later published in a paper together with Jannette
Wing in 1994.

Their original definition is as follows:

Let q(x) be a property provable about objects x of type T . Then q(y)
should be provable for objects y of type S where S is a subtype of T .

Prof. Michele Loreti Principles of Object-Oriented Design 197 / 453

Liskov substitution principle

Bad example:

p u b l i c c l a s s Rec tang l e implements Shape {
p r i v a t e doub l e width = 0 ;
p r i v a t e doub l e h e i g h t = 0 ;

p u b l i c doub l e getWidth () { r e t u r n width ; }

p u b l i c doub l e ge tHe i gh t () { r e t u r n h e i g h t ; }

p u b l i c doub l e getArea () { r e t u r n width ∗ h e i g h t ; }

p u b l i c vo i d setWidth (doub l e width) { t h i s . w idth = width ;
}

p u b l i c vo i d s e tHe i g h t (doub l e h e i g h t) { t h i s . h e i g h t =
he i g h t ; }

}

Prof. Michele Loreti Principles of Object-Oriented Design 198 / 453

Liskov substitution principle

Bad example:

p u b l i c c l a s s Square ex t end s Rec tang l e {
p u b l i c vo i d setWidth (doub l e width) {

supe r . se tWidth (width) ;
s upe r . s e tHe i g h t (width) ;

}

p u b l i c vo i d s e tHe i g h t (doub l e h e i g h t) {
supe r . s e tHe i g h t (width) ;
s upe r . se tWidth (width) ;

}
}

Question: do Rectangle and Square classes satisfy the Liskov substitution
principle?

Prof. Michele Loreti Principles of Object-Oriented Design 199 / 453

Liskov substitution principle

Answer: NO!

p u b l i c c l a s s C l a s s {

p u b l i c vo i d checkArea (Rec tang l e r) {
r . se tWidth (10) ;
r . s e tHe i g h t (20) ;
i f (r . ge tArea () != 200) {

throw new I l l e g a l S t a t e E x c e p t i o n (’Bad a r ea ! ’)
}

}

}

Solution? Square is not a subclass of Rectangle!

Prof. Michele Loreti Principles of Object-Oriented Design 200 / 453

Liskov substitution principle

Answer: NO!

p u b l i c c l a s s C l a s s {

p u b l i c vo i d checkArea (Rec tang l e r) {
r . se tWidth (10) ;
r . s e tHe i g h t (20) ;
i f (r . ge tArea () != 200) {

throw new I l l e g a l S t a t e E x c e p t i o n (’Bad a r ea ! ’)
}

}

}

Solution? Square is not a subclass of Rectangle!

Prof. Michele Loreti Principles of Object-Oriented Design 200 / 453

Liskov substitution principle

Answer: NO!

p u b l i c c l a s s C l a s s {

p u b l i c vo i d checkArea (Rec tang l e r) {
r . se tWidth (10) ;
r . s e tHe i g h t (20) ;
i f (r . ge tArea () != 200) {

throw new I l l e g a l S t a t e E x c e p t i o n (’Bad a r ea ! ’)
}

}

}

Solution?

Square is not a subclass of Rectangle!

Prof. Michele Loreti Principles of Object-Oriented Design 200 / 453

Liskov substitution principle

Answer: NO!

p u b l i c c l a s s C l a s s {

p u b l i c vo i d checkArea (Rec tang l e r) {
r . se tWidth (10) ;
r . s e tHe i g h t (20) ;
i f (r . ge tArea () != 200) {

throw new I l l e g a l S t a t e E x c e p t i o n (’Bad a r ea ! ’)
}

}

}

Solution? Square is not a subclass of Rectangle!

Prof. Michele Loreti Principles of Object-Oriented Design 200 / 453

Interface segregation principle

Many client-specific interfaces are better
than one general-purpose interface!

The interface-segregation principle (ISP) states that no client should be
forced to depend on methods it does not use.

Prof. Michele Loreti Principles of Object-Oriented Design 201 / 453

Interface segregation principle

Many client-specific interfaces are better
than one general-purpose interface!

The interface-segregation principle (ISP) states that no client should be
forced to depend on methods it does not use.

Prof. Michele Loreti Principles of Object-Oriented Design 201 / 453

Interface segregation principle

Bad example:

Prof. Michele Loreti Principles of Object-Oriented Design 202 / 453

Interface segregation principle

Correct refactoring:

Prof. Michele Loreti Principles of Object-Oriented Design 203 / 453

Dependency inversion principle

One should depend upon abstractions, not concretions!

The principle states that:

1. High-level modules should not depend on low-level modules. Both
should depend on abstractions.

2. Abstractions should not depend on details. Details should depend on
abstractions.

Prof. Michele Loreti Principles of Object-Oriented Design 204 / 453

Dependency inversion principle

One should depend upon abstractions, not concretions!

The principle states that:

1. High-level modules should not depend on low-level modules. Both
should depend on abstractions.

2. Abstractions should not depend on details. Details should depend on
abstractions.

Prof. Michele Loreti Principles of Object-Oriented Design 204 / 453

To be continued. . .

Prof. Michele Loreti Principles of Object-Oriented Design 205 / 453

