
Streams

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Streams 230 / 371

Iterating collections. . .

Operations on data stored in a collection are typically based on an
iteration.

Example Suppose that we want to count all the long words in a book.

Solution This operation can be performed in three steps:

1. read all the data from a file;

2. store words in a list;

3. iterate over elements in the list and count the elements that are
longer than 12 chars.

Prof. Michele Loreti Streams 231 / 371

Iterating collections. . .

Operations on data stored in a collection are typically based on an
iteration.

Example Suppose that we want to count all the long words in a book.

Solution This operation can be performed in three steps:

1. read all the data from a file;

2. store words in a list;

3. iterate over elements in the list and count the elements that are
longer than 12 chars.

Prof. Michele Loreti Streams 231 / 371

Iterating collections. . .

Operations on data stored in a collection are typically based on an
iteration.

Example Suppose that we want to count all the long words in a book.

Solution This operation can be performed in three steps:

1. read all the data from a file;

2. store words in a list;

3. iterate over elements in the list and count the elements that are
longer than 12 chars.

Prof. Michele Loreti Streams 231 / 371

Iterating collections. . .

//Read f i l e i n t o s t r i n g
S t r i n g con t en t s = new S t r i n g (

F i l e s . r e a dA l l B y t e s (
Paths . ge t (” a l i c e . t x t ”) ,
S t anda rdCha r s e t s . UTF 8

)
) ;

// S p l i t i n t o words , n o n l e t t e r s a r e d e l i m i t e r s .
L i s t<St r i ng> words = L i s t . o f (c on t en t s . s p l i t (”\\PL+”)) ;

// I t e r a t e and count
l ong count = 0 ;
f o r (S t r i n g w: words) {

i f (w . l e n g t h () > 12) {
count++;

}
}

Prof. Michele Loreti Streams 232 / 371

Streams. . .

Streams provide a view of data that lets you specify computations at a
higher conceptual level than with collections.

With the stream we specify what we want to do leaving the scheduling to
the underling implementation.

Example To count the long words we can just write:

l ong count = words
. p a r a l l e l S t r e am ()
. f i l t e r (w −> w. l e n g t h () > 12)
. count () ;

Streams follow the “what, not how” principle!

Prof. Michele Loreti Streams 233 / 371

Streams. . .

Streams provide a view of data that lets you specify computations at a
higher conceptual level than with collections.

With the stream we specify what we want to do leaving the scheduling to
the underling implementation.

Example To count the long words we can just write:

l ong count = words
. p a r a l l e l S t r e am ()
. f i l t e r (w −> w. l e n g t h () > 12)
. count () ;

Streams follow the “what, not how” principle!

Prof. Michele Loreti Streams 233 / 371

Streams. . .

Streams provide a view of data that lets you specify computations at a
higher conceptual level than with collections.

With the stream we specify what we want to do leaving the scheduling to
the underling implementation.

Example To count the long words we can just write:

l ong count = words
. p a r a l l e l S t r e am ()
. f i l t e r (w −> w. l e n g t h () > 12)
. count () ;

Streams follow the “what, not how” principle!

Prof. Michele Loreti Streams 233 / 371

Streams. . .

Streams provide a view of data that lets you specify computations at a
higher conceptual level than with collections.

With the stream we specify what we want to do leaving the scheduling to
the underling implementation.

Example To count the long words we can just write:

l ong count = words
. p a r a l l e l S t r e am ()
. f i l t e r (w −> w. l e n g t h () > 12)
. count () ;

Streams follow the “what, not how” principle!

Prof. Michele Loreti Streams 233 / 371

Streams vs Collections. . .

1. A stream does not store its elements. They may be stored in an
underlying collection of generated on demand.

2. Stream operations do not change their source. For instance, the filter
method does not remove elements from a stream, but it yields a new
stream in which they are not present.

3. Stream operations are lazy when possible. This means that they are
not executed until their result is needed. We can have infinite streams!

Prof. Michele Loreti Streams 234 / 371

Streams vs Collections. . .

1. A stream does not store its elements. They may be stored in an
underlying collection of generated on demand.

2. Stream operations do not change their source. For instance, the filter
method does not remove elements from a stream, but it yields a new
stream in which they are not present.

3. Stream operations are lazy when possible. This means that they are
not executed until their result is needed. We can have infinite streams!

Prof. Michele Loreti Streams 234 / 371

Streams vs Collections. . .

1. A stream does not store its elements. They may be stored in an
underlying collection of generated on demand.

2. Stream operations do not change their source. For instance, the filter
method does not remove elements from a stream, but it yields a new
stream in which they are not present.

3. Stream operations are lazy when possible. This means that they are
not executed until their result is needed. We can have infinite streams!

Prof. Michele Loreti Streams 234 / 371

Streams vs Collections. . .

1. A stream does not store its elements. They may be stored in an
underlying collection of generated on demand.

2. Stream operations do not change their source. For instance, the filter
method does not remove elements from a stream, but it yields a new
stream in which they are not present.

3. Stream operations are lazy when possible. This means that they are
not executed until their result is needed. We can have infinite streams!

Prof. Michele Loreti Streams 234 / 371

Workflow. . .

Typical workflow when we work with streams is:

1. Create a stream.

2. Specify immediate operations for transforming the initial stream into
others (possibly in multiple steps).

3. Apply a terminal operation to produce a result. This operation forces
the execution of the lazy operations that precede it.

4. The stream cannot be longer used.

Prof. Michele Loreti Streams 235 / 371

Workflow. . .

Typical workflow when we work with streams is:

1. Create a stream.

2. Specify immediate operations for transforming the initial stream into
others (possibly in multiple steps).

3. Apply a terminal operation to produce a result. This operation forces
the execution of the lazy operations that precede it.

4. The stream cannot be longer used.

Prof. Michele Loreti Streams 235 / 371

Workflow. . .

Typical workflow when we work with streams is:

1. Create a stream.

2. Specify immediate operations for transforming the initial stream into
others (possibly in multiple steps).

3. Apply a terminal operation to produce a result. This operation forces
the execution of the lazy operations that precede it.

4. The stream cannot be longer used.

Prof. Michele Loreti Streams 235 / 371

Workflow. . .

Typical workflow when we work with streams is:

1. Create a stream.

2. Specify immediate operations for transforming the initial stream into
others (possibly in multiple steps).

3. Apply a terminal operation to produce a result. This operation forces
the execution of the lazy operations that precede it.

4. The stream cannot be longer used.

Prof. Michele Loreti Streams 235 / 371

Workflow. . .

Typical workflow when we work with streams is:

1. Create a stream.

2. Specify immediate operations for transforming the initial stream into
others (possibly in multiple steps).

3. Apply a terminal operation to produce a result. This operation forces
the execution of the lazy operations that precede it.

4. The stream cannot be longer used.

Prof. Michele Loreti Streams 235 / 371

Stream creation. . .

Interface Collection<T> provides method:

Stream<E> s t ream ()

that returns a sequential Stream with this collection as its source.

A stream can be built form an array by using the utility method:

Stream<T> Stream . o f (T . . . v a l u e s)

Prof. Michele Loreti Streams 236 / 371

Stream creation. . .

Interface Collection<T> provides method:

Stream<E> s t ream ()

that returns a sequential Stream with this collection as its source.

A stream can be built form an array by using the utility method:

Stream<T> Stream . o f (T . . . v a l u e s)

Prof. Michele Loreti Streams 236 / 371

Stream creation. . .

Infinite streams can be built by using the (static) utility methods provided
class Stream:

Stream<T> gen e r a t e (Supp l i e r <? ex t end s T> s)

Stream<T> Stream . i t e r a t e (T seed ,
UnaryOperator<T> f)

Stream<T> Stream . i t e r a t e (T seed ,
P r ed i c a t e <? supe r T> hasNext ,
UnaryOperator<T> next)

Prof. Michele Loreti Streams 237 / 371

Stream transformations. . .
Methods of class Stream<T>

A stream transformation produces a stream whose elements are derived
from those of another stream.

Method filter can be used to select only some of the elements in a stream:

Stream<T> f i l t e r (P r ed i c a t e <? supe r T> p r e d i c a t e)

Method map transforms a stream by applying a function to each element
in the stream:

Stream<S> map(Funct ion<? supe r T, ? ex t end s R> mapper)

Prof. Michele Loreti Streams 238 / 371

Stream transformations. . .
Methods of class Stream<T>

A stream transformation produces a stream whose elements are derived
from those of another stream.

Method filter can be used to select only some of the elements in a stream:

Stream<T> f i l t e r (P r ed i c a t e <? supe r T> p r e d i c a t e)

Method map transforms a stream by applying a function to each element
in the stream:

Stream<S> map(Funct ion<? supe r T, ? ex t end s R> mapper)

Prof. Michele Loreti Streams 238 / 371

Stream transformations. . .
Methods of class Stream<T>

A stream transformation produces a stream whose elements are derived
from those of another stream.

Method filter can be used to select only some of the elements in a stream:

Stream<T> f i l t e r (P r ed i c a t e <? supe r T> p r e d i c a t e)

Method map transforms a stream by applying a function to each element
in the stream:

Stream<S> map(Funct ion<? supe r T, ? ex t end s R> mapper)

Prof. Michele Loreti Streams 238 / 371

Extracting substreams. . .
Methods of class Stream<T>

Given a stream we can extract a substream.

Method limit can be used to select only the first n elements of a stream:

Stream<T> l i m i t (l ong n)

Method skip can be used to ignore the first n elements of a stream:

Stream<T> s k i p (l ong n)

Methods takeWhile and dropWhile selects (resp. discharge) all the elements
of a stream while a given predicate is satisfied:

Stream<T> takeWhi l e (P r ed i c a t e <? supe r T> p r e d i c a t e)

Stream<T> dropWhi le (P r ed i c a t e <? supe r T> p r e d i c a t e)

Prof. Michele Loreti Streams 239 / 371

Extracting substreams. . .
Methods of class Stream<T>

Given a stream we can extract a substream.

Method limit can be used to select only the first n elements of a stream:

Stream<T> l i m i t (l ong n)

Method skip can be used to ignore the first n elements of a stream:

Stream<T> s k i p (l ong n)

Methods takeWhile and dropWhile selects (resp. discharge) all the elements
of a stream while a given predicate is satisfied:

Stream<T> takeWhi l e (P r ed i c a t e <? supe r T> p r e d i c a t e)

Stream<T> dropWhi le (P r ed i c a t e <? supe r T> p r e d i c a t e)

Prof. Michele Loreti Streams 239 / 371

Extracting substreams. . .
Methods of class Stream<T>

Given a stream we can extract a substream.

Method limit can be used to select only the first n elements of a stream:

Stream<T> l i m i t (l ong n)

Method skip can be used to ignore the first n elements of a stream:

Stream<T> s k i p (l ong n)

Methods takeWhile and dropWhile selects (resp. discharge) all the elements
of a stream while a given predicate is satisfied:

Stream<T> takeWhi l e (P r ed i c a t e <? supe r T> p r e d i c a t e)

Stream<T> dropWhi le (P r ed i c a t e <? supe r T> p r e d i c a t e)

Prof. Michele Loreti Streams 239 / 371

Extracting substreams. . .
Methods of class Stream<T>

Given a stream we can extract a substream.

Method limit can be used to select only the first n elements of a stream:

Stream<T> l i m i t (l ong n)

Method skip can be used to ignore the first n elements of a stream:

Stream<T> s k i p (l ong n)

Methods takeWhile and dropWhile selects (resp. discharge) all the elements
of a stream while a given predicate is satisfied:

Stream<T> takeWhi l e (P r ed i c a t e <? supe r T> p r e d i c a t e)

Stream<T> dropWhi le (P r ed i c a t e <? supe r T> p r e d i c a t e)

Prof. Michele Loreti Streams 239 / 371

Combining streams. . .
Methods of class Stream<T>

Static method concat can be used to build a new string resulting from the
concatenation of two streams:

s t a t i c <T> Stream<T> concat (Stream<? ex t end s T> a ,
Stream<? ex t end s T> b)

Prof. Michele Loreti Streams 240 / 371

Other Stream transformations. . .
Methods of class Stream<T>

Remove duplicates from a stream:

Stream<T> d i s t i n c t ()

Sort elements in a stream:

Stream<T> s o r t e d () //T implements Comarable<T>

Stream<T> s o r t e d (Comparator<? supe r T> comparator)

Build a stream consisting of the elements of a stream, additionally
performing the provided action on each element as elements are consumed
from the resulting stream:

Stream<T> peek (Consumer<? supe r T> a c t i o n)

Prof. Michele Loreti Streams 241 / 371

Other Stream transformations. . .
Methods of class Stream<T>

Remove duplicates from a stream:

Stream<T> d i s t i n c t ()

Sort elements in a stream:

Stream<T> s o r t e d () //T implements Comarable<T>

Stream<T> s o r t e d (Comparator<? supe r T> comparator)

Build a stream consisting of the elements of a stream, additionally
performing the provided action on each element as elements are consumed
from the resulting stream:

Stream<T> peek (Consumer<? supe r T> a c t i o n)

Prof. Michele Loreti Streams 241 / 371

Other Stream transformations. . .
Methods of class Stream<T>

Remove duplicates from a stream:

Stream<T> d i s t i n c t ()

Sort elements in a stream:

Stream<T> s o r t e d () //T implements Comarable<T>

Stream<T> s o r t e d (Comparator<? supe r T> comparator)

Build a stream consisting of the elements of a stream, additionally
performing the provided action on each element as elements are consumed
from the resulting stream:

Stream<T> peek (Consumer<? supe r T> a c t i o n)

Prof. Michele Loreti Streams 241 / 371

Optional values. . .

An Optional<T> object is a wrapper for either an object of type T or no
object.

The key to using optinal is to use a method that either produces an
alternative if the value is not present, or consumes the value only if it is
present.

Optional<T> methods:

T o rE l s e (T o th e r)
T o rE l s eGe t (Supp l i e r <? ex t end s T> s u p p l i e r)
T orE lseThrow (Supp l i e r <? ex t end s X> e x c e p t i o n S u p p l i e r)
vo i d i f P r e s e n t (Consumer<? supe r T> a c t i o n)
vo i d i f P r e s e n tO r E l s e (Consumer<? supe r T> ac t i on ,

Runnable emptyAct ion)

Prof. Michele Loreti Streams 242 / 371

Optional values. . .

An Optional<T> object is a wrapper for either an object of type T or no
object.

The key to using optinal is to use a method that either produces an
alternative if the value is not present, or consumes the value only if it is
present.

Optional<T> methods:

T o rE l s e (T o th e r)
T o rE l s eGe t (Supp l i e r <? ex t end s T> s u p p l i e r)
T orE lseThrow (Supp l i e r <? ex t end s X> e x c e p t i o n S u p p l i e r)
vo i d i f P r e s e n t (Consumer<? supe r T> a c t i o n)
vo i d i f P r e s e n tO r E l s e (Consumer<? supe r T> ac t i on ,

Runnable emptyAct ion)

Prof. Michele Loreti Streams 242 / 371

Optional values. . .

An Optional<T> object is a wrapper for either an object of type T or no
object.

The key to using optinal is to use a method that either produces an
alternative if the value is not present, or consumes the value only if it is
present.

Optional<T> methods:

T o rE l s e (T o th e r)
T o rE l s eGe t (Supp l i e r <? ex t end s T> s u p p l i e r)
T orE lseThrow (Supp l i e r <? ex t end s X> e x c e p t i o n S u p p l i e r)
vo i d i f P r e s e n t (Consumer<? supe r T> a c t i o n)
vo i d i f P r e s e n tO r E l s e (Consumer<? supe r T> ac t i on ,

Runnable emptyAct ion)

Prof. Michele Loreti Streams 242 / 371

Reductions. . .
Methods of class Stream<T>

Reductions are terminal operations that reduce a stream to a nonstream
value that can be used in our program.

� Get the maximum element of this stream according to the provided
Comparator:

Opt iona l<T> max(Comparator<? supe r T> comparator)

� Get the minimum element of this stream according to the provided
Comparator

Opt iona l<T> min (Comparator<? supe r T> comparator)

� Get the first element of this stream:

Opt iona l<T> f i n d F i r s t ()

� Get some element of the stream:

Opt iona l<T> f i ndAny ()

Prof. Michele Loreti Streams 243 / 371

Reductions. . .
Methods of class Stream<T>

Reductions are terminal operations that reduce a stream to a nonstream
value that can be used in our program.

� Get the maximum element of this stream according to the provided
Comparator:

Opt iona l<T> max(Comparator<? supe r T> comparator)

� Get the minimum element of this stream according to the provided
Comparator

Opt iona l<T> min (Comparator<? supe r T> comparator)

� Get the first element of this stream:

Opt iona l<T> f i n d F i r s t ()

� Get some element of the stream:

Opt iona l<T> f i ndAny ()

Prof. Michele Loreti Streams 243 / 371

Collecting results. . .
Methods of class Stream<T>

Class Stream<T> provides many methods that can be used to use data in a
stream:

vo i d fo rEach (Consumer<? supe r T> a c t i o n)

<A> A [] t oAr ray (I n tFunc t i on<A[]> g en e r a t o r)

<R,A> R c o l l e c t (C o l l e c t o r <? supe r T, A, R> c o l l e c t o r)

Interface Collector<T,A,R> represents a mutable reduction operation that
accumulates input elements into a mutable result container.

Standard collector are provided via utility methods in class Collectors :

� Collectors . toList ()

� Collectors .toSet()

� Collectors . joining ()

� . . .

Prof. Michele Loreti Streams 244 / 371

Collecting results. . .
Methods of class Stream<T>

Class Stream<T> provides many methods that can be used to use data in a
stream:

vo i d fo rEach (Consumer<? supe r T> a c t i o n)

<A> A [] t oAr ray (I n tFunc t i on<A[]> g en e r a t o r)

<R,A> R c o l l e c t (C o l l e c t o r <? supe r T, A, R> c o l l e c t o r)

Interface Collector<T,A,R> represents a mutable reduction operation that
accumulates input elements into a mutable result container.

Standard collector are provided via utility methods in class Collectors :

� Collectors . toList ()

� Collectors .toSet()

� Collectors . joining ()

� . . .

Prof. Michele Loreti Streams 244 / 371

Collecting results. . .
Methods of class Stream<T>

Class Stream<T> provides many methods that can be used to use data in a
stream:

vo i d fo rEach (Consumer<? supe r T> a c t i o n)

<A> A [] t oAr ray (I n tFunc t i on<A[]> g en e r a t o r)

<R,A> R c o l l e c t (C o l l e c t o r <? supe r T, A, R> c o l l e c t o r)

Interface Collector<T,A,R> represents a mutable reduction operation that
accumulates input elements into a mutable result container.

Standard collector are provided via utility methods in class Collectors :

� Collectors . toList ()

� Collectors .toSet()

� Collectors . joining ()

� . . .

Prof. Michele Loreti Streams 244 / 371

Reduction Operations

Method reduce provides a general mechanism for computing a value from a
stream.

Opt iona l<T> r educe (B ina ryOpera to r<T> accumu la to r)

T reduce (T i d e n t i t y , B ina ryOpera to r<T> accumu la to r)

<U> U reduce (U i d e n t i t y ,
B iFunct ion<U, ? supe r T,U> accumulator ,
B ina ryOpera to r<U> combiner)

Example:

L i s t<I n t e g e r> v a l u e s =
Opt iona l<I n t e g e r> sum = va l u e s . s t ream () . r educe ((x , y)−>x+y) ;

Prof. Michele Loreti Streams 245 / 371

Reduction Operations

Method reduce provides a general mechanism for computing a value from a
stream.

Opt iona l<T> r educe (B ina ryOpera to r<T> accumu la to r)

T reduce (T i d e n t i t y , B ina ryOpera to r<T> accumu la to r)

<U> U reduce (U i d e n t i t y ,
B iFunct ion<U, ? supe r T,U> accumulator ,
B ina ryOpera to r<U> combiner)

Example:

L i s t<I n t e g e r> v a l u e s =
Opt iona l<I n t e g e r> sum = va l u e s . s t ream () . r educe ((x , y)−>x+y) ;

Prof. Michele Loreti Streams 245 / 371

Reduction Operations

Method reduce provides a general mechanism for computing a value from a
stream.

Opt iona l<T> r educe (B ina ryOpera to r<T> accumu la to r)

T reduce (T i d e n t i t y , B ina ryOpera to r<T> accumu la to r)

<U> U reduce (U i d e n t i t y ,
B iFunct ion<U, ? supe r T,U> accumulator ,
B ina ryOpera to r<U> combiner)

Example:

L i s t<I n t e g e r> v a l u e s =
Opt iona l<I n t e g e r> sum = va l u e s . s t ream () . r educe ((x , y)−>x+y) ;

Prof. Michele Loreti Streams 245 / 371

Parallel Streams

Streams make it easy to parallelise bulk operations. To take advantage of
these mechanisms we have to pay attention to few rules.

We can build a parallel stream by using method paralleStream() in interface
Collection .

Any sequential stream can be made parallel via the method parallel ().

In a parallel stream, when the terminal method executes, all intermediate
stream operations are parallelised.

To guarantee that the obtained result is the same as in sequential
settings, all the operations must be stateless!

Prof. Michele Loreti Streams 246 / 371

Parallel Streams

Streams make it easy to parallelise bulk operations. To take advantage of
these mechanisms we have to pay attention to few rules.

We can build a parallel stream by using method paralleStream() in interface
Collection .

Any sequential stream can be made parallel via the method parallel ().

In a parallel stream, when the terminal method executes, all intermediate
stream operations are parallelised.

To guarantee that the obtained result is the same as in sequential
settings, all the operations must be stateless!

Prof. Michele Loreti Streams 246 / 371

Parallel Streams

Streams make it easy to parallelise bulk operations. To take advantage of
these mechanisms we have to pay attention to few rules.

We can build a parallel stream by using method paralleStream() in interface
Collection .

Any sequential stream can be made parallel via the method parallel ().

In a parallel stream, when the terminal method executes, all intermediate
stream operations are parallelised.

To guarantee that the obtained result is the same as in sequential
settings, all the operations must be stateless!

Prof. Michele Loreti Streams 246 / 371

Parallel Streams

Streams make it easy to parallelise bulk operations. To take advantage of
these mechanisms we have to pay attention to few rules.

We can build a parallel stream by using method paralleStream() in interface
Collection .

Any sequential stream can be made parallel via the method parallel ().

In a parallel stream, when the terminal method executes, all intermediate
stream operations are parallelised.

To guarantee that the obtained result is the same as in sequential
settings, all the operations must be stateless!

Prof. Michele Loreti Streams 246 / 371

Parallel Streams

Streams make it easy to parallelise bulk operations. To take advantage of
these mechanisms we have to pay attention to few rules.

We can build a parallel stream by using method paralleStream() in interface
Collection .

Any sequential stream can be made parallel via the method parallel ().

In a parallel stream, when the terminal method executes, all intermediate
stream operations are parallelised.

To guarantee that the obtained result is the same as in sequential
settings, all the operations must be stateless!

Prof. Michele Loreti Streams 246 / 371

Parallel Streams

Bad example:

i n t [] shortWords = new i n t [1 2] ;
words . p a r a l l e l S t r e am () . f o rEach (

s −> { i f (s . l e n g t h ()<12) shortWords [s . l e n g t h ()]++ }
) ;

There is a race condition on shortWords!

Correct code:

Map<I n t e g e r , Long> shortWordCounts
= words . p a r a l l e l S t r e am ()

. f i l t e r (s −> s . l e n g t h ()<12)

. c o l l e c t (group ingBy (
S t r i n g : : l eng th ,
coun t i ng ())

) ;

Prof. Michele Loreti Streams 247 / 371

Parallel Streams

Bad example:

i n t [] shortWords = new i n t [1 2] ;
words . p a r a l l e l S t r e am () . f o rEach (

s −> { i f (s . l e n g t h ()<12) shortWords [s . l e n g t h ()]++ }
) ;

There is a race condition on shortWords!

Correct code:

Map<I n t e g e r , Long> shortWordCounts
= words . p a r a l l e l S t r e am ()

. f i l t e r (s −> s . l e n g t h ()<12)

. c o l l e c t (group ingBy (
S t r i n g : : l eng th ,
coun t i ng ())

) ;

Prof. Michele Loreti Streams 247 / 371

Parallel Streams

Bad example:

i n t [] shortWords = new i n t [1 2] ;
words . p a r a l l e l S t r e am () . f o rEach (

s −> { i f (s . l e n g t h ()<12) shortWords [s . l e n g t h ()]++ }
) ;

There is a race condition on shortWords!

Correct code:

Map<I n t e g e r , Long> shortWordCounts
= words . p a r a l l e l S t r e am ()

. f i l t e r (s −> s . l e n g t h ()<12)

. c o l l e c t (group ingBy (
S t r i n g : : l eng th ,
coun t i ng ())

) ;

Prof. Michele Loreti Streams 247 / 371

To be continued. . .

Prof. Michele Loreti Streams 248 / 371

