
Concurrent Programming

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Concurrent Programming 355 / 391

Threading. . .

Threading is the creation and management of multiple units of execution
within a single process.

Threading is a significant source of programming error, through the
introduction of data races and deadlocks.

The topic of threading can—and indeed does—fill whole books. Those
works tend to focus on the myriad interfaces in a particular threading
library.

While we will focus on basics of the Linux threading API.

Prof. Michele Loreti Concurrent Programming 356 / 391

Threading. . .

Threading is the creation and management of multiple units of execution
within a single process.

Threading is a significant source of programming error, through the
introduction of data races and deadlocks.

The topic of threading can—and indeed does—fill whole books. Those
works tend to focus on the myriad interfaces in a particular threading
library.

While we will focus on basics of the Linux threading API.

Prof. Michele Loreti Concurrent Programming 356 / 391

Threading. . .

Threading is the creation and management of multiple units of execution
within a single process.

Threading is a significant source of programming error, through the
introduction of data races and deadlocks.

The topic of threading can—and indeed does—fill whole books. Those
works tend to focus on the myriad interfaces in a particular threading
library.

While we will focus on basics of the Linux threading API.

Prof. Michele Loreti Concurrent Programming 356 / 391

Threading. . .

Threading is the creation and management of multiple units of execution
within a single process.

Threading is a significant source of programming error, through the
introduction of data races and deadlocks.

The topic of threading can—and indeed does—fill whole books. Those
works tend to focus on the myriad interfaces in a particular threading
library.

While we will focus on basics of the Linux threading API.

Prof. Michele Loreti Concurrent Programming 356 / 391

Binaries, Processes and Threads. . .

Binaries are dormant programs residing on a storage medium, compiled to
a format accessible by a given operating system and machine architecture,
ready to execute but not yet in motion.

Processes are the operating system abstraction representing those binaries
in action: the loaded binary, virtualised memory, kernel resources such as
open files, an associated user, and so on.

Threads are the unit of execution within a process: a virtualised processor,
a stack, and program state.

Processes are running binaries and threads are the smallest unit of
execution schedulable by an operating system’s process scheduler.

Prof. Michele Loreti Concurrent Programming 357 / 391

Binaries, Processes and Threads. . .

Binaries are dormant programs residing on a storage medium, compiled to
a format accessible by a given operating system and machine architecture,
ready to execute but not yet in motion.

Processes are the operating system abstraction representing those binaries
in action: the loaded binary, virtualised memory, kernel resources such as
open files, an associated user, and so on.

Threads are the unit of execution within a process: a virtualised processor,
a stack, and program state.

Processes are running binaries and threads are the smallest unit of
execution schedulable by an operating system’s process scheduler.

Prof. Michele Loreti Concurrent Programming 357 / 391

Binaries, Processes and Threads. . .

Binaries are dormant programs residing on a storage medium, compiled to
a format accessible by a given operating system and machine architecture,
ready to execute but not yet in motion.

Processes are the operating system abstraction representing those binaries
in action: the loaded binary, virtualised memory, kernel resources such as
open files, an associated user, and so on.

Threads are the unit of execution within a process: a virtualised processor,
a stack, and program state.

Processes are running binaries and threads are the smallest unit of
execution schedulable by an operating system’s process scheduler.

Prof. Michele Loreti Concurrent Programming 357 / 391

Binaries, Processes and Threads. . .

Binaries are dormant programs residing on a storage medium, compiled to
a format accessible by a given operating system and machine architecture,
ready to execute but not yet in motion.

Processes are the operating system abstraction representing those binaries
in action: the loaded binary, virtualised memory, kernel resources such as
open files, an associated user, and so on.

Threads are the unit of execution within a process: a virtualised processor,
a stack, and program state.

Processes are running binaries and threads are the smallest unit of
execution schedulable by an operating system’s process scheduler.

Prof. Michele Loreti Concurrent Programming 357 / 391

Threading. . .

A process contains one or more threads.

If a process contains but one thread, there is only a single unit of
execution in the process and only one thing going on at a time. We call
such processes single threaded.

If a process contains more than one thread, then there is more than one
thing going on at once. We call such processes multithreaded.

Prof. Michele Loreti Concurrent Programming 358 / 391

Threading. . .

A process contains one or more threads.

If a process contains but one thread, there is only a single unit of
execution in the process and only one thing going on at a time. We call
such processes single threaded.

If a process contains more than one thread, then there is more than one
thing going on at once. We call such processes multithreaded.

Prof. Michele Loreti Concurrent Programming 358 / 391

Threading. . .

A process contains one or more threads.

If a process contains but one thread, there is only a single unit of
execution in the process and only one thing going on at a time. We call
such processes single threaded.

If a process contains more than one thread, then there is more than one
thing going on at once. We call such processes multithreaded.

Prof. Michele Loreti Concurrent Programming 358 / 391

Concurrent programming. . .

The first step to develop concurrent programs is to split activities in task.

In Java the interface Runnable it is used to describe a task that we want to
run perhaps concurrently with other tasks.

p u b l i c i n t e r c a c e Runnable {
v o i d run () ;

}

The run method is executed in thread.

A task can be executed:

� in a specifically created thread;

� via an executor.

Prof. Michele Loreti Concurrent Programming 359 / 391

Concurrent programming. . .

The first step to develop concurrent programs is to split activities in task.

In Java the interface Runnable it is used to describe a task that we want to
run perhaps concurrently with other tasks.

p u b l i c i n t e r c a c e Runnable {
v o i d run () ;

}

The run method is executed in thread.

A task can be executed:

� in a specifically created thread;

� via an executor.

Prof. Michele Loreti Concurrent Programming 359 / 391

Concurrent programming. . .

The first step to develop concurrent programs is to split activities in task.

In Java the interface Runnable it is used to describe a task that we want to
run perhaps concurrently with other tasks.

p u b l i c i n t e r c a c e Runnable {
v o i d run () ;

}

The run method is executed in thread.

A task can be executed:

� in a specifically created thread;

� via an executor.

Prof. Michele Loreti Concurrent Programming 359 / 391

Concurrent programming. . .

The first step to develop concurrent programs is to split activities in task.

In Java the interface Runnable it is used to describe a task that we want to
run perhaps concurrently with other tasks.

p u b l i c i n t e r c a c e Runnable {
v o i d run () ;

}

The run method is executed in thread.

A task can be executed:

� in a specifically created thread;

� via an executor.

Prof. Michele Loreti Concurrent Programming 359 / 391

Executor service scheduler. . .

Java API provides executor services that schedule and execute task,
choosing the thread on which to run them:

Runnable t a s k = () −> { . . . } // Task to be e x e c u t e d
E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
e x e c u t o r . e x e c u t e (t a s k) ;

The Executors class has factory methods for executor services with different
scheduling processes:

s t a t i c E x e c u t o r S e r v i c e newCachedThreadPool ()
s t a t i c E x e c u t o r S e r v i c e newFixedThreadPool (i n t nThreads)
s t a t i c E x e c u t o r S e r v i c e newWorkStea l ingPoo l ()

A ThreadFactory can be passed to control the creation of new threads.

Prof. Michele Loreti Concurrent Programming 360 / 391

Executor service scheduler. . .

Java API provides executor services that schedule and execute task,
choosing the thread on which to run them:

Runnable t a s k = () −> { . . . } // Task to be e x e c u t e d
E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
e x e c u t o r . e x e c u t e (t a s k) ;

The Executors class has factory methods for executor services with different
scheduling processes:

s t a t i c E x e c u t o r S e r v i c e newCachedThreadPool ()
s t a t i c E x e c u t o r S e r v i c e newFixedThreadPool (i n t nThreads)
s t a t i c E x e c u t o r S e r v i c e newWorkStea l ingPoo l ()

A ThreadFactory can be passed to control the creation of new threads.

Prof. Michele Loreti Concurrent Programming 360 / 391

Executor service scheduler. . .

Java API provides executor services that schedule and execute task,
choosing the thread on which to run them:

Runnable t a s k = () −> { . . . } // Task to be e x e c u t e d
E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
e x e c u t o r . e x e c u t e (t a s k) ;

The Executors class has factory methods for executor services with different
scheduling processes:

s t a t i c E x e c u t o r S e r v i c e newCachedThreadPool ()
s t a t i c E x e c u t o r S e r v i c e newFixedThreadPool (i n t nThreads)
s t a t i c E x e c u t o r S e r v i c e newWorkStea l ingPoo l ()

A ThreadFactory can be passed to control the creation of new threads.

Prof. Michele Loreti Concurrent Programming 360 / 391

Executor service scheduler. . .

Java API provides executor services that schedule and execute task,
choosing the thread on which to run them:

Runnable t a s k = () −> { . . . } // Task to be e x e c u t e d
E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
e x e c u t o r . e x e c u t e (t a s k) ;

The Executors class has factory methods for executor services with different
scheduling processes:

s t a t i c E x e c u t o r S e r v i c e newCachedThreadPool ()
s t a t i c E x e c u t o r S e r v i c e newFixedThreadPool (i n t nThreads)
s t a t i c E x e c u t o r S e r v i c e newWorkStea l ingPoo l ()

A ThreadFactory can be passed to control the creation of new threads.

Prof. Michele Loreti Concurrent Programming 360 / 391

Executor service scheduler. . .

Java API provides executor services that schedule and execute task,
choosing the thread on which to run them:

Runnable t a s k = () −> { . . . } // Task to be e x e c u t e d
E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
e x e c u t o r . e x e c u t e (t a s k) ;

The Executors class has factory methods for executor services with different
scheduling processes:

s t a t i c E x e c u t o r S e r v i c e newCachedThreadPool ()
s t a t i c E x e c u t o r S e r v i c e newFixedThreadPool (i n t nThreads)
s t a t i c E x e c u t o r S e r v i c e newWorkStea l ingPoo l ()

A ThreadFactory can be passed to control the creation of new threads.

Prof. Michele Loreti Concurrent Programming 360 / 391

Example

Runnable h e l l o s = () −> {
f o r (i n t i =0 ; i <1000 ; i++) {

System . out . p r i n t l n (” H e l l o ”+i) ;
}

} ;
Runnable goodbyes = () −> {

f o r (i n t i =0 ; i <1000 ; i++) {
System . out . p r i n t l n (” Goodbye ”+i) ;

}
} ;
E x e c u t o r S e r v i c e e x e c u t o r = E x e c u t o r s . newCachedThreadPool () ;
e x e c u t o r . e x e c u t e (h e l l o s) ;
e x e c u t o r . e x e c u t e (goodbyes) ;

Prof. Michele Loreti Concurrent Programming 361 / 391

Futures. . .

An instance of Runnable executes a task, but it does not return a value.

When we have to obtain a value from the task computation, interface
Callable<V> can be used:

p u b l i c i n t e r f a c e C a l l a b l e <V> {
V c a l l () throws E x c e p t i o n ;

}

The call method can throw arbitrary exceptions which can be relayed to
the code that obtains the result.

Prof. Michele Loreti Concurrent Programming 362 / 391

Futures. . .

An instance of Runnable executes a task, but it does not return a value.

When we have to obtain a value from the task computation, interface
Callable<V> can be used:

p u b l i c i n t e r f a c e C a l l a b l e <V> {
V c a l l () throws E x c e p t i o n ;

}

The call method can throw arbitrary exceptions which can be relayed to
the code that obtains the result.

Prof. Michele Loreti Concurrent Programming 362 / 391

Futures. . .

An instance of Runnable executes a task, but it does not return a value.

When we have to obtain a value from the task computation, interface
Callable<V> can be used:

p u b l i c i n t e r f a c e C a l l a b l e <V> {
V c a l l () throws E x c e p t i o n ;

}

The call method can throw arbitrary exceptions which can be relayed to
the code that obtains the result.

Prof. Michele Loreti Concurrent Programming 362 / 391

Futures. . .

An instance of Runnable executes a task, but it does not return a value.

When we have to obtain a value from the task computation, interface
Callable<V> can be used:

p u b l i c i n t e r f a c e C a l l a b l e <V> {
V c a l l () throws E x c e p t i o n ;

}

The call method can throw arbitrary exceptions which can be relayed to
the code that obtains the result.

Prof. Michele Loreti Concurrent Programming 362 / 391

Future. . .

A Callable can be submitted to an executor service:

E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
C a l l a b l e <V> t a s k = . . . ;
Future<V> r e s u l t = e x e c u t o r . submit (t a s k) ;

The result of this submission is a future, this is an object that represents a
computation whose result will be available at some future time:

V g e t () throws I n t e r r u p t e d E x c e p t i o n , E x e c u t i o n E x c e p t i o n

V g e t (l o n g t imeout , TimeUnit u n i t)
throws I n t e r r u p t e d E x c e p t i o n , E x e c u t i o n E x c e p t i o n ,
T imeoutExcept ion

b o o l e a n c a n c e l (b o o l e a n m a y I n t e r r u p t I f R u n n i n g)
b o o l e a n i s C a n c e l l e d ()
b o o l e a n i sDone ()

Prof. Michele Loreti Concurrent Programming 363 / 391

Future. . .

A Callable can be submitted to an executor service:

E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
C a l l a b l e <V> t a s k = . . . ;
Future<V> r e s u l t = e x e c u t o r . submit (t a s k) ;

The result of this submission is a future, this is an object that represents a
computation whose result will be available at some future time:

V g e t () throws I n t e r r u p t e d E x c e p t i o n , E x e c u t i o n E x c e p t i o n

V g e t (l o n g t imeout , TimeUnit u n i t)
throws I n t e r r u p t e d E x c e p t i o n , E x e c u t i o n E x c e p t i o n ,
T imeoutExcept ion

b o o l e a n c a n c e l (b o o l e a n m a y I n t e r r u p t I f R u n n i n g)
b o o l e a n i s C a n c e l l e d ()
b o o l e a n i sDone ()

Prof. Michele Loreti Concurrent Programming 363 / 391

Future. . .

A Callable can be submitted to an executor service:

E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
C a l l a b l e <V> t a s k = . . . ;
Future<V> r e s u l t = e x e c u t o r . submit (t a s k) ;

The result of this submission is a future, this is an object that represents a
computation whose result will be available at some future time:

V g e t () throws I n t e r r u p t e d E x c e p t i o n , E x e c u t i o n E x c e p t i o n

V g e t (l o n g t imeout , TimeUnit u n i t)
throws I n t e r r u p t e d E x c e p t i o n , E x e c u t i o n E x c e p t i o n ,
T imeoutExcept ion

b o o l e a n c a n c e l (b o o l e a n m a y I n t e r r u p t I f R u n n i n g)
b o o l e a n i s C a n c e l l e d ()
b o o l e a n i sDone ()

Prof. Michele Loreti Concurrent Programming 363 / 391

Future. . .

A Callable can be submitted to an executor service:

E x e c u t o r S e r v i c e e x e c u t o r = . . . ;
C a l l a b l e <V> t a s k = . . . ;
Future<V> r e s u l t = e x e c u t o r . submit (t a s k) ;

The result of this submission is a future, this is an object that represents a
computation whose result will be available at some future time:

V g e t () throws I n t e r r u p t e d E x c e p t i o n , E x e c u t i o n E x c e p t i o n

V g e t (l o n g t imeout , TimeUnit u n i t)
throws I n t e r r u p t e d E x c e p t i o n , E x e c u t i o n E x c e p t i o n ,
T imeoutExcept ion

b o o l e a n c a n c e l (b o o l e a n m a y I n t e r r u p t I f R u n n i n g)
b o o l e a n i s C a n c e l l e d ()
b o o l e a n i sDone ()

Prof. Michele Loreti Concurrent Programming 363 / 391

Multiple tasks. . .

If we have to wait for the results of multiple tasks, method invokeAll , that
takes a Collection of Callable , can be used:

L i s t <C a l l a b l e <V>> t a s k s = . . .
L i s t <Future<V>> r e s u l t s = e x e c u t o r . i n v o k e A l l (t a s k s) ;

The execution of current thread is blocked until all the tasks have
terminated (either successfully or unsuccessfully).

Another option we can use when we have to work on multiple tasks is
invokeAny. In this case the result of the first (successfully) terminating task
is returned. Other tasks are cancelled.

A lot of work is done by the ExecutorService that is responsible for
execution and coordination of tasks!

Prof. Michele Loreti Concurrent Programming 364 / 391

Multiple tasks. . .

If we have to wait for the results of multiple tasks, method invokeAll , that
takes a Collection of Callable , can be used:

L i s t <C a l l a b l e <V>> t a s k s = . . .
L i s t <Future<V>> r e s u l t s = e x e c u t o r . i n v o k e A l l (t a s k s) ;

The execution of current thread is blocked until all the tasks have
terminated (either successfully or unsuccessfully).

Another option we can use when we have to work on multiple tasks is
invokeAny. In this case the result of the first (successfully) terminating task
is returned. Other tasks are cancelled.

A lot of work is done by the ExecutorService that is responsible for
execution and coordination of tasks!

Prof. Michele Loreti Concurrent Programming 364 / 391

Multiple tasks. . .

If we have to wait for the results of multiple tasks, method invokeAll , that
takes a Collection of Callable , can be used:

L i s t <C a l l a b l e <V>> t a s k s = . . .
L i s t <Future<V>> r e s u l t s = e x e c u t o r . i n v o k e A l l (t a s k s) ;

The execution of current thread is blocked until all the tasks have
terminated (either successfully or unsuccessfully).

Another option we can use when we have to work on multiple tasks is
invokeAny. In this case the result of the first (successfully) terminating task
is returned. Other tasks are cancelled.

A lot of work is done by the ExecutorService that is responsible for
execution and coordination of tasks!

Prof. Michele Loreti Concurrent Programming 364 / 391

Multiple tasks. . .

If we have to wait for the results of multiple tasks, method invokeAll , that
takes a Collection of Callable , can be used:

L i s t <C a l l a b l e <V>> t a s k s = . . .
L i s t <Future<V>> r e s u l t s = e x e c u t o r . i n v o k e A l l (t a s k s) ;

The execution of current thread is blocked until all the tasks have
terminated (either successfully or unsuccessfully).

Another option we can use when we have to work on multiple tasks is
invokeAny. In this case the result of the first (successfully) terminating task
is returned. Other tasks are cancelled.

A lot of work is done by the ExecutorService that is responsible for
execution and coordination of tasks!

Prof. Michele Loreti Concurrent Programming 364 / 391

Asynchronous computations

When we have a Future, we need to call get to obtain the result and block
the computation until it is available.

The use of CompletableFuture allow us to register a callback that is invoked
(in some thread) with the result once it is available:

C o m p l e t a b le F u t u r e<V> f = . . . ;
f . thenAccept ((V v) −> p r o c e s s r e s u l t s) ;

In this way the result is processed, without blocking, as soon as it is
available!

Prof. Michele Loreti Concurrent Programming 365 / 391

Asynchronous computations

When we have a Future, we need to call get to obtain the result and block
the computation until it is available.

The use of CompletableFuture allow us to register a callback that is invoked
(in some thread) with the result once it is available:

C o m p l e t a b le F u t u r e<V> f = . . . ;
f . thenAccept ((V v) −> p r o c e s s r e s u l t s) ;

In this way the result is processed, without blocking, as soon as it is
available!

Prof. Michele Loreti Concurrent Programming 365 / 391

Asynchronous computations

When we have a Future, we need to call get to obtain the result and block
the computation until it is available.

The use of CompletableFuture allow us to register a callback that is invoked
(in some thread) with the result once it is available:

C o m p l e t a b le F u t u r e<V> f = . . . ;
f . thenAccept ((V v) −> p r o c e s s r e s u l t s) ;

In this way the result is processed, without blocking, as soon as it is
available!

Prof. Michele Loreti Concurrent Programming 365 / 391

Asynchronous computations

When we have a Future, we need to call get to obtain the result and block
the computation until it is available.

The use of CompletableFuture allow us to register a callback that is invoked
(in some thread) with the result once it is available:

C o m p l e t a b le F u t u r e<V> f = . . . ;
f . thenAccept ((V v) −> p r o c e s s r e s u l t s) ;

In this way the result is processed, without blocking, as soon as it is
available!

Prof. Michele Loreti Concurrent Programming 365 / 391

Asynchronous computations

When we have a Future, we need to call get to obtain the result and block
the computation until it is available.

The use of CompletableFuture allow us to register a callback that is invoked
(in some thread) with the result once it is available:

C o m p l e t a b le F u t u r e<V> f = . . . ;
f . thenAccept ((V v) −> p r o c e s s r e s u l t s) ;

In this way the result is processed, without blocking, as soon as it is
available!

Prof. Michele Loreti Concurrent Programming 365 / 391

Asynchronous computations

To run a task asynchronously, (static) method supplyAsync can be used:

s t a t i c <U> C o m p l e t a b le F u t u r e<U> s u p p l y A s y n c (
S u p p l i e r <U> s u p p l i e r , E x e c u t o r e x e c u t o r)

s t a t i c <U> C o m p l e t a b le F u t u r e<U> s u p p l y A s y n c (
S u p p l i e r <U> s u p p l i e r)

A CompletableFuture can complete in two ways:

� a result is computed;

� an exception is thrown.

To handle termination, method whenComplete can be used:

p u b l i c C o m pl e t a b l e F u t u r e<T> whenComplete (
BiConsumer<? s u p e r T, ? s u p e r Throwable> a c t i o n

)

Prof. Michele Loreti Concurrent Programming 366 / 391

Asynchronous computations

To run a task asynchronously, (static) method supplyAsync can be used:

s t a t i c <U> C o m p l e t a b le F u t u r e<U> s u p p l y A s y n c (
S u p p l i e r <U> s u p p l i e r , E x e c u t o r e x e c u t o r)

s t a t i c <U> C o m p l e t a b le F u t u r e<U> s u p p l y A s y n c (
S u p p l i e r <U> s u p p l i e r)

A CompletableFuture can complete in two ways:

� a result is computed;

� an exception is thrown.

To handle termination, method whenComplete can be used:

p u b l i c C o m pl e t a b l e F u t u r e<T> whenComplete (
BiConsumer<? s u p e r T, ? s u p e r Throwable> a c t i o n

)

Prof. Michele Loreti Concurrent Programming 366 / 391

Asynchronous computations

To run a task asynchronously, (static) method supplyAsync can be used:

s t a t i c <U> C o m p l e t a b le F u t u r e<U> s u p p l y A s y n c (
S u p p l i e r <U> s u p p l i e r , E x e c u t o r e x e c u t o r)

s t a t i c <U> C o m p l e t a b le F u t u r e<U> s u p p l y A s y n c (
S u p p l i e r <U> s u p p l i e r)

A CompletableFuture can complete in two ways:

� a result is computed;

� an exception is thrown.

To handle termination, method whenComplete can be used:

p u b l i c C o m pl e t a b l e F u t u r e<T> whenComplete (
BiConsumer<? s u p e r T, ? s u p e r Throwable> a c t i o n

)

Prof. Michele Loreti Concurrent Programming 366 / 391

Asynchronous computations

To run a task asynchronously, (static) method supplyAsync can be used:

s t a t i c <U> C o m p l e t a b le F u t u r e<U> s u p p l y A s y n c (
S u p p l i e r <U> s u p p l i e r , E x e c u t o r e x e c u t o r)

s t a t i c <U> C o m p l e t a b le F u t u r e<U> s u p p l y A s y n c (
S u p p l i e r <U> s u p p l i e r)

A CompletableFuture can complete in two ways:

� a result is computed;

� an exception is thrown.

To handle termination, method whenComplete can be used:

p u b l i c C o m pl e t a b l e F u t u r e<T> whenComplete (
BiConsumer<? s u p e r T, ? s u p e r Throwable> a c t i o n

)

Prof. Michele Loreti Concurrent Programming 366 / 391

Asynchronous computations

The CompletableFuture is called completable because it can be manually
completed.

Method complete and completeExceptionally can be used to complete a future:

b o o l e a n complete (T v a l u e)

b o o l e a n c o m p l e t e E x c e p t i o n a l l y (Throwable ex)

A future can be completed by multiple threads (only the first one is
stored).

Prof. Michele Loreti Concurrent Programming 367 / 391

Asynchronous computations

The CompletableFuture is called completable because it can be manually
completed.

Method complete and completeExceptionally can be used to complete a future:

b o o l e a n complete (T v a l u e)

b o o l e a n c o m p l e t e E x c e p t i o n a l l y (Throwable ex)

A future can be completed by multiple threads (only the first one is
stored).

Prof. Michele Loreti Concurrent Programming 367 / 391

Asynchronous computations

The CompletableFuture is called completable because it can be manually
completed.

Method complete and completeExceptionally can be used to complete a future:

b o o l e a n complete (T v a l u e)

b o o l e a n c o m p l e t e E x c e p t i o n a l l y (Throwable ex)

A future can be completed by multiple threads (only the first one is
stored).

Prof. Michele Loreti Concurrent Programming 367 / 391

Asynchronous computations

The CompletableFuture is called completable because it can be manually
completed.

Method complete and completeExceptionally can be used to complete a future:

b o o l e a n complete (T v a l u e)

b o o l e a n c o m p l e t e E x c e p t i o n a l l y (Throwable ex)

A future can be completed by multiple threads (only the first one is
stored).

Prof. Michele Loreti Concurrent Programming 367 / 391

Composing futures. . .

Class CompletableFuture<T> provides a set of methods that can be used to
process values in a chain:

<U> C o m p l e t a b le F u t u r e<U> thenApp ly (
Funct ion <? s u p e r T, ? e x t e n d s U> f n)

C o m p l e t a b le F u t u r e<Void> thenAccept (Consumer<? s u p e r T> f n)

<U> C o m p l e t a b le F u t u r e<U> thenCompose (
Funct ion <? s u p e r T, ? e x t e n d s Complet ionStage<U>> f n)

<U> C o m p l e t a b le F u t u r e<U> h a n d l e (
B iF unct ion <? s u p e r T, Throwable , ? e x t e n d s U> f n)

C o m p l e t a b le F u t u r e<Void> thenRun (Runnable a c t i o n)

Prof. Michele Loreti Concurrent Programming 368 / 391

Another example. . .

p r i v a t e s t a t i c b o o l e a n done = f a l s e ;

p u b l i c s t a t i c v o i d main (S t r i n g [] a r g v) {
Runnable h e l l o s = () −> {

f o r (i n t i =0 ; i <1000 ; i++) {
System . out . p r i n t l n (” H e l l o ”+i) ;

}
done = t r u e ;

} ;
Runnable goodbyes = () −> {

i n t i =0;
w h i l e (! done) { i ++; }
System . out . p r i n t l n (” Goodbye ”+i) ;

} ;
E x e c u t o r S e r v i c e e x e c u t o r = E x e c u t o r s . newCachedThreadPool () ;
e x e c u t o r . e x e c u t e (h e l l o s) ;
e x e c u t o r . e x e c u t e (goodbyes) ;

}

Prof. Michele Loreti Concurrent Programming 369 / 391

Visibility. . .
Rules. . .

By default, Java compiler performs optimisations while assuming that
there are no concurrent memory access.

If there are, virtual machine has to know to avoid possible error.

There are ways to ensure that an update to a variable is visible:

� The value of a final value is visible after initialisation;

� The initial value of a static variable is visible after static initialisation;

� Changes to volatile variables are visible;

� Changes happening before realising a lock are visible to anyone
acquiring the lock.

To solve the problem in previous example, we have to declare done

volatile .

Prof. Michele Loreti Concurrent Programming 370 / 391

Visibility. . .
Rules. . .

By default, Java compiler performs optimisations while assuming that
there are no concurrent memory access.

If there are, virtual machine has to know to avoid possible error.

There are ways to ensure that an update to a variable is visible:

� The value of a final value is visible after initialisation;

� The initial value of a static variable is visible after static initialisation;

� Changes to volatile variables are visible;

� Changes happening before realising a lock are visible to anyone
acquiring the lock.

To solve the problem in previous example, we have to declare done

volatile .

Prof. Michele Loreti Concurrent Programming 370 / 391

Visibility. . .
Rules. . .

By default, Java compiler performs optimisations while assuming that
there are no concurrent memory access.

If there are, virtual machine has to know to avoid possible error.

There are ways to ensure that an update to a variable is visible:

� The value of a final value is visible after initialisation;

� The initial value of a static variable is visible after static initialisation;

� Changes to volatile variables are visible;

� Changes happening before realising a lock are visible to anyone
acquiring the lock.

To solve the problem in previous example, we have to declare done

volatile .

Prof. Michele Loreti Concurrent Programming 370 / 391

Visibility. . .
Rules. . .

By default, Java compiler performs optimisations while assuming that
there are no concurrent memory access.

If there are, virtual machine has to know to avoid possible error.

There are ways to ensure that an update to a variable is visible:

� The value of a final value is visible after initialisation;

� The initial value of a static variable is visible after static initialisation;

� Changes to volatile variables are visible;

� Changes happening before realising a lock are visible to anyone
acquiring the lock.

To solve the problem in previous example, we have to declare done

volatile .

Prof. Michele Loreti Concurrent Programming 370 / 391

Race condition. . .

p r i v a t e s t a t i c v o l a t i l e i n t count = 0 ;

p u b l i c s t a t i c v o i d main (S t r i n g [] a r g v) {
E x e c u t o r S e r v i c e e x e c u t o r = E x e c u t o r s . newCachedThreadPool () ;
f o r (i n t i =0 ; i <100 ; i++) {

i n t t a s k I d = i ;
Runnable t a s k = () −> {

f o r (i n t k=0 ; k<1000; k++) {
count++;

}
System . out . p r i n t l n (t a s k I d+” : ”+count) ;

} ;
e x e c u t o r . e x e c u t e (t a s k) ;

}
}

Prof. Michele Loreti Concurrent Programming 371 / 391

Race condition

There are few strategies to try to tame race condition:

Confinement: reduce the amount of shared data.

Immutability: share immutable objects.

Critical Section/Locking: granting exclusive access to shared resource.

Prof. Michele Loreti Concurrent Programming 372 / 391

Race condition

There are few strategies to try to tame race condition:

Confinement: reduce the amount of shared data.

Immutability: share immutable objects.

Critical Section/Locking: granting exclusive access to shared resource.

Prof. Michele Loreti Concurrent Programming 372 / 391

Race condition

There are few strategies to try to tame race condition:

Confinement: reduce the amount of shared data.

Immutability: share immutable objects.

Critical Section/Locking: granting exclusive access to shared resource.

Prof. Michele Loreti Concurrent Programming 372 / 391

Race condition

There are few strategies to try to tame race condition:

Confinement: reduce the amount of shared data.

Immutability: share immutable objects.

Critical Section/Locking: granting exclusive access to shared resource.

Prof. Michele Loreti Concurrent Programming 372 / 391

Synchronized blocks. . .

To guarantee that only a single thread executes some portions of code,
block synchronized can be used:

s y n c h r o n i z e (v a l u e) {
. . . // C r i t i c a l s e c t i o n

}

In a synchronized block, object value act as a label.

It is guaranteed that at most one thread is executing a synchronized block
labelled with a given object o.

Prof. Michele Loreti Concurrent Programming 373 / 391

Synchronized blocks. . .

To guarantee that only a single thread executes some portions of code,
block synchronized can be used:

s y n c h r o n i z e (v a l u e) {
. . . // C r i t i c a l s e c t i o n

}

In a synchronized block, object value act as a label.

It is guaranteed that at most one thread is executing a synchronized block
labelled with a given object o.

Prof. Michele Loreti Concurrent Programming 373 / 391

Synchronized blocks. . .

To guarantee that only a single thread executes some portions of code,
block synchronized can be used:

s y n c h r o n i z e (v a l u e) {
. . . // C r i t i c a l s e c t i o n

}

In a synchronized block, object value act as a label.

It is guaranteed that at most one thread is executing a synchronized block
labelled with a given object o.

Prof. Michele Loreti Concurrent Programming 373 / 391

Synchronized blocks. . .

To guarantee that only a single thread executes some portions of code,
block synchronized can be used:

s y n c h r o n i z e (v a l u e) {
. . . // C r i t i c a l s e c t i o n

}

In a synchronized block, object value act as a label.

It is guaranteed that at most one thread is executing a synchronized block
labelled with a given object o.

Prof. Michele Loreti Concurrent Programming 373 / 391

Synchronized blocks. . .

In a synchronized block, value o acts as a lock:

� lock is acquired when a thread enters in the block;

� lock is release when a thread exits from the block.

Example:

Runnable t a s k = () −> {
f o r (i n t k=0 ; k<1000; k++) {

s y n c h r o n i z e d (e x e c u t o r) {
count++;

}
}
System . out . p r i n t l n (t a s k I d+” : ”+count) ;

} ;

Prof. Michele Loreti Concurrent Programming 374 / 391

Synchronized blocks. . .

In a synchronized block, value o acts as a lock:

� lock is acquired when a thread enters in the block;

� lock is release when a thread exits from the block.

Example:

Runnable t a s k = () −> {
f o r (i n t k=0 ; k<1000; k++) {

s y n c h r o n i z e d (e x e c u t o r) {
count++;

}
}
System . out . p r i n t l n (t a s k I d+” : ”+count) ;

} ;

Prof. Michele Loreti Concurrent Programming 374 / 391

Method synchronized. . .

A method can be declared synchronized:

p u b l i c s y n c h r o n i z e d v o i d i n c r e m e n t () {
count++;

}

This code is equivalent to:

p u b l i c v o i d i n c r e m e n t () {
s y n c h r o n i z e d (t h i s) {

count++;
}

}

Prof. Michele Loreti Concurrent Programming 375 / 391

Method synchronized. . .

A method can be declared synchronized:

p u b l i c s y n c h r o n i z e d v o i d i n c r e m e n t () {
count++;

}

This code is equivalent to:

p u b l i c v o i d i n c r e m e n t () {
s y n c h r o n i z e d (t h i s) {

count++;
}

}

Prof. Michele Loreti Concurrent Programming 375 / 391

Method synchronized. . .

A method can be declared synchronized:

p u b l i c s y n c h r o n i z e d v o i d i n c r e m e n t () {
count++;

}

This code is equivalent to:

p u b l i c v o i d i n c r e m e n t () {
s y n c h r o n i z e d (t h i s) {

count++;
}

}

Prof. Michele Loreti Concurrent Programming 375 / 391

Example: Producer/Consumer

Prof. Michele Loreti Concurrent Programming 376 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected? Action get
is blocking!

What happen it the buffer is full? Action add is blocking!

What happen when a new item is inserted? Threads waiting for a new
item are notified!

What happen when a new item is removed? Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected?

Action get
is blocking!

What happen it the buffer is full? Action add is blocking!

What happen when a new item is inserted? Threads waiting for a new
item are notified!

What happen when a new item is removed? Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected? Action get
is blocking!

What happen it the buffer is full? Action add is blocking!

What happen when a new item is inserted? Threads waiting for a new
item are notified!

What happen when a new item is removed? Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected? Action get
is blocking!

What happen it the buffer is full?

Action add is blocking!

What happen when a new item is inserted? Threads waiting for a new
item are notified!

What happen when a new item is removed? Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected? Action get
is blocking!

What happen it the buffer is full? Action add is blocking!

What happen when a new item is inserted? Threads waiting for a new
item are notified!

What happen when a new item is removed? Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected? Action get
is blocking!

What happen it the buffer is full? Action add is blocking!

What happen when a new item is inserted?

Threads waiting for a new
item are notified!

What happen when a new item is removed? Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected? Action get
is blocking!

What happen it the buffer is full? Action add is blocking!

What happen when a new item is inserted? Threads waiting for a new
item are notified!

What happen when a new item is removed? Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected? Action get
is blocking!

What happen it the buffer is full? Action add is blocking!

What happen when a new item is inserted? Threads waiting for a new
item are notified!

What happen when a new item is removed?

Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Producer/Consumer

To implement the Producer/Consumer pattern we need a shared data
structure with the following features:

� A method add that is used by the producer to store new items;

� A method get that is used by the receiver to store new items.

What happen when there are not items to be collected? Action get
is blocking!

What happen it the buffer is full? Action add is blocking!

What happen when a new item is inserted? Threads waiting for a new
item are notified!

What happen when a new item is removed? Threads waiting for
adding an item are notified!

Prof. Michele Loreti Concurrent Programming 377 / 391

Monitors

In concurrent programming, a monitor is a synchronisation construct that
allows threads to have both mutual exclusion and the ability to wait
(block) for a certain condition to become true.

Monitors also have a mechanism for signalling other threads that their
condition has been met.

A monitor consists of a mutex (lock) object and condition variables.

A condition variable is basically a container of threads that are waiting for
a certain condition (thread’s computation is suspended until the condition
is satisfied).

Prof. Michele Loreti Concurrent Programming 378 / 391

Monitors

In concurrent programming, a monitor is a synchronisation construct that
allows threads to have both mutual exclusion and the ability to wait
(block) for a certain condition to become true.

Monitors also have a mechanism for signalling other threads that their
condition has been met.

A monitor consists of a mutex (lock) object and condition variables.

A condition variable is basically a container of threads that are waiting for
a certain condition (thread’s computation is suspended until the condition
is satisfied).

Prof. Michele Loreti Concurrent Programming 378 / 391

Monitors

In concurrent programming, a monitor is a synchronisation construct that
allows threads to have both mutual exclusion and the ability to wait
(block) for a certain condition to become true.

Monitors also have a mechanism for signalling other threads that their
condition has been met.

A monitor consists of a mutex (lock) object and condition variables.

A condition variable is basically a container of threads that are waiting for
a certain condition (thread’s computation is suspended until the condition
is satisfied).

Prof. Michele Loreti Concurrent Programming 378 / 391

Monitors

In concurrent programming, a monitor is a synchronisation construct that
allows threads to have both mutual exclusion and the ability to wait
(block) for a certain condition to become true.

Monitors also have a mechanism for signalling other threads that their
condition has been met.

A monitor consists of a mutex (lock) object and condition variables.

A condition variable is basically a container of threads that are waiting for
a certain condition (thread’s computation is suspended until the condition
is satisfied).

Prof. Michele Loreti Concurrent Programming 378 / 391

Monitor in Java

Any object in Java can play the role of a monitor.

To guarantee atomic executions of methods (that are the monitor’s
actions), these are declared synchronize.

Each Java object provides methods that allow a thread to suspend its
execution and then waiting for a notification!

These methods are:

� void wait() throws InterruptedException

� void wait(long) throws InterruptedException

� notify ()

� notifyAll ()

Prof. Michele Loreti Concurrent Programming 379 / 391

Monitor in Java

Any object in Java can play the role of a monitor.

To guarantee atomic executions of methods (that are the monitor’s
actions), these are declared synchronize.

Each Java object provides methods that allow a thread to suspend its
execution and then waiting for a notification!

These methods are:

� void wait() throws InterruptedException

� void wait(long) throws InterruptedException

� notify ()

� notifyAll ()

Prof. Michele Loreti Concurrent Programming 379 / 391

Monitor in Java

Any object in Java can play the role of a monitor.

To guarantee atomic executions of methods (that are the monitor’s
actions), these are declared synchronize.

Each Java object provides methods that allow a thread to suspend its
execution and then waiting for a notification!

These methods are:

� void wait() throws InterruptedException

� void wait(long) throws InterruptedException

� notify ()

� notifyAll ()

Prof. Michele Loreti Concurrent Programming 379 / 391

Monitor in Java

Any object in Java can play the role of a monitor.

To guarantee atomic executions of methods (that are the monitor’s
actions), these are declared synchronize.

Each Java object provides methods that allow a thread to suspend its
execution and then waiting for a notification!

These methods are:

� void wait() throws InterruptedException

� void wait(long) throws InterruptedException

� notify ()

� notifyAll ()

Prof. Michele Loreti Concurrent Programming 379 / 391

Producer/Consumer in Java

p u b l i c c l a s s ProducerConsumer<T> {

p r i v a t e f i n a l L i n k e d L i s t <T> b u f f e r ;
p r i v a t e f i n a l i n t s i z e ;

p u b l i c ProducerConsumer (i n t s i z e) {
t h i s . b u f f e r = new L i n k e d L i s t <>() ;
t h i s . s i z e = s i z e ;

}

p u b l i c s y n c h r o n i z e d b o o l e a n isEmpty () {
r e t u r n b u f f e r . s i z e () ==0;

}

p u b l i c s y n c h r o n i z e d b o o l e a n i s F u l l () {
r e t u r n b u f f e r . s i z e ()==s i z e ;

}

Prof. Michele Loreti Concurrent Programming 380 / 391

Producer/Consumer in Java

p u b l i c s y n c h r o n i z e d v o i d add (T item) throws
I n t e r r u p t e d E x c e p t i o n {
w h i l e (! t h i s . i s F u l l ()) {

w a i t () ;
}
t h i s . n o t i f y A l l () ;
b u f f e r . add (i tem) ;

}

p u b l i c T g e t () throws I n t e r r u p t e d E x c e p t i o n {
w h i l e (! t h i s . i sEmpty ()) {

w a i t () ;
}
t h i s . n o t i f y A l l () ;
r e t u r n b u f f e r . p o l l () ;

}
}

Prof. Michele Loreti Concurrent Programming 381 / 391

High Level Concurrency Objects

The Java Collections Framework provides high level data structures that
simplifies concurrent programming.

Lock objects support locking idioms that simplify many concurrent
applications.

Executors define a high-level API for launching and managing threads.

Concurrent collections make it easier to manage large collections of data,
and can greatly reduce the need for synchronization.

Atomic variables have features that minimize synchronization and help
avoid memory consistency errors.

Prof. Michele Loreti Concurrent Programming 382 / 391

High Level Concurrency Objects

The Java Collections Framework provides high level data structures that
simplifies concurrent programming.

Lock objects support locking idioms that simplify many concurrent
applications.

Executors define a high-level API for launching and managing threads.

Concurrent collections make it easier to manage large collections of data,
and can greatly reduce the need for synchronization.

Atomic variables have features that minimize synchronization and help
avoid memory consistency errors.

Prof. Michele Loreti Concurrent Programming 382 / 391

High Level Concurrency Objects

The Java Collections Framework provides high level data structures that
simplifies concurrent programming.

Lock objects support locking idioms that simplify many concurrent
applications.

Executors define a high-level API for launching and managing threads.

Concurrent collections make it easier to manage large collections of data,
and can greatly reduce the need for synchronization.

Atomic variables have features that minimize synchronization and help
avoid memory consistency errors.

Prof. Michele Loreti Concurrent Programming 382 / 391

High Level Concurrency Objects

The Java Collections Framework provides high level data structures that
simplifies concurrent programming.

Lock objects support locking idioms that simplify many concurrent
applications.

Executors define a high-level API for launching and managing threads.

Concurrent collections make it easier to manage large collections of data,
and can greatly reduce the need for synchronization.

Atomic variables have features that minimize synchronization and help
avoid memory consistency errors.

Prof. Michele Loreti Concurrent Programming 382 / 391

High Level Concurrency Objects

The Java Collections Framework provides high level data structures that
simplifies concurrent programming.

Lock objects support locking idioms that simplify many concurrent
applications.

Executors define a high-level API for launching and managing threads.

Concurrent collections make it easier to manage large collections of data,
and can greatly reduce the need for synchronization.

Atomic variables have features that minimize synchronization and help
avoid memory consistency errors.

Prof. Michele Loreti Concurrent Programming 382 / 391

Lock Objects

Synchronized code relies on a simple kind of reentrant lock. This kind of
lock is easy to use, but has many limitations.

Lock objects work very much like the implicit locks used by synchronized
code:

� only one thread can own a Lock object at a time;

� support a wait/notify mechanism, through their associated Condition

objects.

The biggest advantage of Lock objects over implicit locks is their ability to
back out of an attempt to acquire a lock:

� tryLock method backs out if the lock is not available immediately or
before a timeout expires (if specified);

� lockInterruptibly method backs out if another thread sends an
interrupt before the lock is acquired.

Prof. Michele Loreti Concurrent Programming 383 / 391

Lock Objects

Synchronized code relies on a simple kind of reentrant lock. This kind of
lock is easy to use, but has many limitations.

Lock objects work very much like the implicit locks used by synchronized
code:

� only one thread can own a Lock object at a time;

� support a wait/notify mechanism, through their associated Condition

objects.

The biggest advantage of Lock objects over implicit locks is their ability to
back out of an attempt to acquire a lock:

� tryLock method backs out if the lock is not available immediately or
before a timeout expires (if specified);

� lockInterruptibly method backs out if another thread sends an
interrupt before the lock is acquired.

Prof. Michele Loreti Concurrent Programming 383 / 391

Lock Objects

Synchronized code relies on a simple kind of reentrant lock. This kind of
lock is easy to use, but has many limitations.

Lock objects work very much like the implicit locks used by synchronized
code:

� only one thread can own a Lock object at a time;

� support a wait/notify mechanism, through their associated Condition

objects.

The biggest advantage of Lock objects over implicit locks is their ability to
back out of an attempt to acquire a lock:

� tryLock method backs out if the lock is not available immediately or
before a timeout expires (if specified);

� lockInterruptibly method backs out if another thread sends an
interrupt before the lock is acquired.

Prof. Michele Loreti Concurrent Programming 383 / 391

Lock Objects

void lock(), Acquires the lock.

void lockInterruptibly (), Acquires the lock unless the current thread is
interrupted.

Condition newCondition(), Returns a new Condition instance that is bound to
this Lock instance.

boolean tryLock(), Acquires the lock only if it is free at the time of
invocation.

boolean tryLock(long time, TimeUnit unit), Acquires the lock if it is free within
the given waiting time and the current thread has not been interrupted.

void unlock(), Releases the lock.

Prof. Michele Loreti Concurrent Programming 384 / 391

Conditions

Condition factors out the Object monitor methods (wait, notify and notifyAll)
into distinct objects to give the effect of having multiple wait-sets per
object, by combining them with the use of arbitrary Lock implementations.

Conditions (also known as condition queues or condition variables) provide
a means for one thread to suspend execution until notified by another
thread that some state condition may now be true.

The key property that waiting for a condition provides is that it atomically
releases the associated lock and suspends the current thread, just like
Object.wait.

A Condition instance is intrinsically bound to a lock. To obtain a Condition
instance for a particular Lock instance use its newCondition() method.

Prof. Michele Loreti Concurrent Programming 385 / 391

Conditions

Condition factors out the Object monitor methods (wait, notify and notifyAll)
into distinct objects to give the effect of having multiple wait-sets per
object, by combining them with the use of arbitrary Lock implementations.

Conditions (also known as condition queues or condition variables) provide
a means for one thread to suspend execution until notified by another
thread that some state condition may now be true.

The key property that waiting for a condition provides is that it atomically
releases the associated lock and suspends the current thread, just like
Object.wait.

A Condition instance is intrinsically bound to a lock. To obtain a Condition
instance for a particular Lock instance use its newCondition() method.

Prof. Michele Loreti Concurrent Programming 385 / 391

Conditions

Condition factors out the Object monitor methods (wait, notify and notifyAll)
into distinct objects to give the effect of having multiple wait-sets per
object, by combining them with the use of arbitrary Lock implementations.

Conditions (also known as condition queues or condition variables) provide
a means for one thread to suspend execution until notified by another
thread that some state condition may now be true.

The key property that waiting for a condition provides is that it atomically
releases the associated lock and suspends the current thread, just like
Object.wait.

A Condition instance is intrinsically bound to a lock. To obtain a Condition
instance for a particular Lock instance use its newCondition() method.

Prof. Michele Loreti Concurrent Programming 385 / 391

Conditions

Condition factors out the Object monitor methods (wait, notify and notifyAll)
into distinct objects to give the effect of having multiple wait-sets per
object, by combining them with the use of arbitrary Lock implementations.

Conditions (also known as condition queues or condition variables) provide
a means for one thread to suspend execution until notified by another
thread that some state condition may now be true.

The key property that waiting for a condition provides is that it atomically
releases the associated lock and suspends the current thread, just like
Object.wait.

A Condition instance is intrinsically bound to a lock. To obtain a Condition
instance for a particular Lock instance use its newCondition() method.

Prof. Michele Loreti Concurrent Programming 385 / 391

Producer/Consumer in Java
Lock based implementation

p u b l i c c l a s s ProducerConsumerLock<T> {
p r i v a t e f i n a l Lock l o c k = new R e e n t r a n t L o c k () ;
p r i v a t e f i n a l C o n d i t i o n n o t F u l l = l o c k . newCond i t ion () ;
p r i v a t e f i n a l C o n d i t i o n notEmpty = l o c k . newCond i t ion () ;
p r i v a t e f i n a l L i n k e d L i s t <T> b u f f e r ;
p r i v a t e f i n a l i n t s i z e ;

p u b l i c ProducerConsumerLock (i n t s i z e) {
t h i s . b u f f e r = new L i n k e d L i s t <>() ;
t h i s . s i z e = s i z e ;

}

p u b l i c b o o l e a n isEmpty () {
r e t u r n b u f f e r . s i z e () ==0;

}

p u b l i c b o o l e a n i s F u l l () {
r e t u r n b u f f e r . s i z e ()==s i z e ;

}
Prof. Michele Loreti Concurrent Programming 386 / 391

Condition

void await(), Causes the current thread to wait until it is signalled or
interrupted.

boolean await(long time, TimeUnit unit), Causes the current thread to wait
until it is signalled or interrupted, or the specified waiting time elapses.

long awaitNanos(long nanosTimeout), Causes the current thread to wait until it
is signalled or interrupted, or the specified waiting time elapses.

void awaitUninterruptibly (), Causes the current thread to wait until it is
signalled.

boolean awaitUntil (Date deadline), Causes the current thread to wait until it is
signalled or interrupted, or the specified deadline elapses.

void signal (), Wakes up one waiting thread.

void signalAll (), Wakes up all waiting threads.

Prof. Michele Loreti Concurrent Programming 387 / 391

Producer/Consumer in Java
Lock based implementation

p u b l i c v o i d add (T item) throws I n t e r r u p t e d E x c e p t i o n {
l o c k . l o c k () ;
t r y {

w h i l e (t h i s . i s F u l l ()) {
System . out . p r i n t l n (” B u f f e r i s f u l l ! Wai t ing f o r s p a c e

. . . ”) ;
n o t F u l l . a w a i t () ; ;

}
notEmpty . s i g n a l () ;
b u f f e r . add (i tem) ;
System . out . p r i n t l n (” Item added (s i z e=”+b u f f e r . s i z e ()+”)

”) ;
} f i n a l l y {

l o c k . u n l o c k () ;
}

}

Prof. Michele Loreti Concurrent Programming 388 / 391

Producer/Consumer in Java
Lock based implementation

p u b l i c T g e t () throws I n t e r r u p t e d E x c e p t i o n {
l o c k . l o c k () ;
t r y {

w h i l e (t h i s . i sEmpty ()) {
System . out . p r i n t l n (” B u f f e r i s empty ! Wait ing f o r an

i tem . . . ”) ;
notEmpty . a w a i t () ; ;

}
n o t F u l l . s i g n a l () ;
System . out . p r i n t l n (” Item removed (s i z e=”+(b u f f e r . s i z e ()

−1)+”) ”) ;
r e t u r n b u f f e r . p o l l () ;

} f i n a l l y {
l o c k . u n l o c k () ;

}
}

Prof. Michele Loreti Concurrent Programming 389 / 391

Atomic Variables

The java . util . concurrent .atomic package defines classes that support atomic
operations on single variables.

All classes have get and set methods that work like reads and writes on
volatile variables.

The atomic compareAndSet method also has these memory consistency
features, as do the simple atomic arithmetic methods that apply to integer
atomic variables.

Prof. Michele Loreti Concurrent Programming 390 / 391

Atomic Variables

The java . util . concurrent .atomic package defines classes that support atomic
operations on single variables.

All classes have get and set methods that work like reads and writes on
volatile variables.

The atomic compareAndSet method also has these memory consistency
features, as do the simple atomic arithmetic methods that apply to integer
atomic variables.

Prof. Michele Loreti Concurrent Programming 390 / 391

Atomic Variables

The java . util . concurrent .atomic package defines classes that support atomic
operations on single variables.

All classes have get and set methods that work like reads and writes on
volatile variables.

The atomic compareAndSet method also has these memory consistency
features, as do the simple atomic arithmetic methods that apply to integer
atomic variables.

Prof. Michele Loreti Concurrent Programming 390 / 391

To be continued. . .

Prof. Michele Loreti Concurrent Programming 391 / 391

