
Design Patterns

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Design Patterns 404 / 443

Big questions

What is a design pattern?

What is the advantage of knowing/using design patterns?

Which patterns are named in the reading?

What are the key ideas of those patterns?

Prof. Michele Loreti Design Patterns 405 / 443

Big questions

What is a design pattern?

What is the advantage of knowing/using design patterns?

Which patterns are named in the reading?

What are the key ideas of those patterns?

Prof. Michele Loreti Design Patterns 405 / 443

Big questions

What is a design pattern?

What is the advantage of knowing/using design patterns?

Which patterns are named in the reading?

What are the key ideas of those patterns?

Prof. Michele Loreti Design Patterns 405 / 443

Big questions

What is a design pattern?

What is the advantage of knowing/using design patterns?

Which patterns are named in the reading?

What are the key ideas of those patterns?

Prof. Michele Loreti Design Patterns 405 / 443

Design challenges

Designing software for reuse is hard.

One must find:

� a good problem decomposition, and the right software;

� a design with flexibility, modularity and elegance.

Designs often emerge from trial and error.

Successful designs do exist

� two designs they are almost never identical;

� they exhibit some recurring characteristics.

Can designs be described, codified or standardised?

� this would short circuit the trial and error phase;

� produce ”better” software faster.

Prof. Michele Loreti Design Patterns 406 / 443

Design challenges

Designing software for reuse is hard. One must find:

� a good problem decomposition, and the right software;

� a design with flexibility, modularity and elegance.

Designs often emerge from trial and error.

Successful designs do exist

� two designs they are almost never identical;

� they exhibit some recurring characteristics.

Can designs be described, codified or standardised?

� this would short circuit the trial and error phase;

� produce ”better” software faster.

Prof. Michele Loreti Design Patterns 406 / 443

Design challenges

Designing software for reuse is hard. One must find:

� a good problem decomposition, and the right software;

� a design with flexibility, modularity and elegance.

Designs often emerge from trial and error.

Successful designs do exist

� two designs they are almost never identical;

� they exhibit some recurring characteristics.

Can designs be described, codified or standardised?

� this would short circuit the trial and error phase;

� produce ”better” software faster.

Prof. Michele Loreti Design Patterns 406 / 443

Design challenges

Designing software for reuse is hard. One must find:

� a good problem decomposition, and the right software;

� a design with flexibility, modularity and elegance.

Designs often emerge from trial and error.

Successful designs do exist

� two designs they are almost never identical;

� they exhibit some recurring characteristics.

Can designs be described, codified or standardised?

� this would short circuit the trial and error phase;

� produce ”better” software faster.

Prof. Michele Loreti Design Patterns 406 / 443

Design challenges

Designing software for reuse is hard. One must find:

� a good problem decomposition, and the right software;

� a design with flexibility, modularity and elegance.

Designs often emerge from trial and error.

Successful designs do exist

� two designs they are almost never identical;

� they exhibit some recurring characteristics.

Can designs be described, codified or standardised?

� this would short circuit the trial and error phase;

� produce ”better” software faster.

Prof. Michele Loreti Design Patterns 406 / 443

Design challenges

Designing software for reuse is hard. One must find:

� a good problem decomposition, and the right software;

� a design with flexibility, modularity and elegance.

Designs often emerge from trial and error.

Successful designs do exist

� two designs they are almost never identical;

� they exhibit some recurring characteristics.

Can designs be described, codified or standardised?

� this would short circuit the trial and error phase;

� produce ”better” software faster.

Prof. Michele Loreti Design Patterns 406 / 443

Design challenges

Designing software for reuse is hard. One must find:

� a good problem decomposition, and the right software;

� a design with flexibility, modularity and elegance.

Designs often emerge from trial and error.

Successful designs do exist

� two designs they are almost never identical;

� they exhibit some recurring characteristics.

Can designs be described, codified or standardised?

� this would short circuit the trial and error phase;

� produce ”better” software faster.

Prof. Michele Loreti Design Patterns 406 / 443

Design Patterns

Design Pattern: a solution to a common software problem in a context

� describes a recurring software structure;

� is abstract from programming language;

� identifies classes and their roles in the solution to a problem;

� patterns are not code or designs; must be instantiated/applied.

Example: Iterator pattern! The Iterator pattern defines an interface
that declares methods for sequentially accessing the objects in a collection.

Prof. Michele Loreti Design Patterns 407 / 443

Design Patterns

Design Pattern: a solution to a common software problem in a context

� describes a recurring software structure;

� is abstract from programming language;

� identifies classes and their roles in the solution to a problem;

� patterns are not code or designs; must be instantiated/applied.

Example: Iterator pattern! The Iterator pattern defines an interface
that declares methods for sequentially accessing the objects in a collection.

Prof. Michele Loreti Design Patterns 407 / 443

Design Patterns

Design Pattern: a solution to a common software problem in a context

� describes a recurring software structure;

� is abstract from programming language;

� identifies classes and their roles in the solution to a problem;

� patterns are not code or designs; must be instantiated/applied.

Example: Iterator pattern! The Iterator pattern defines an interface
that declares methods for sequentially accessing the objects in a collection.

Prof. Michele Loreti Design Patterns 407 / 443

Design Patterns

Design Pattern: a solution to a common software problem in a context

� describes a recurring software structure;

� is abstract from programming language;

� identifies classes and their roles in the solution to a problem;

� patterns are not code or designs; must be instantiated/applied.

Example: Iterator pattern! The Iterator pattern defines an interface
that declares methods for sequentially accessing the objects in a collection.

Prof. Michele Loreti Design Patterns 407 / 443

Design Patterns

Design Pattern: a solution to a common software problem in a context

� describes a recurring software structure;

� is abstract from programming language;

� identifies classes and their roles in the solution to a problem;

� patterns are not code or designs; must be instantiated/applied.

Example: Iterator pattern! The Iterator pattern defines an interface
that declares methods for sequentially accessing the objects in a collection.

Prof. Michele Loreti Design Patterns 407 / 443

Design Patterns

Design Pattern: a solution to a common software problem in a context

� describes a recurring software structure;

� is abstract from programming language;

� identifies classes and their roles in the solution to a problem;

� patterns are not code or designs; must be instantiated/applied.

Example: Iterator pattern! The Iterator pattern defines an interface
that declares methods for sequentially accessing the objects in a collection.

Prof. Michele Loreti Design Patterns 407 / 443

Design Patterns

Design Pattern: a solution to a common software problem in a context

� describes a recurring software structure;

� is abstract from programming language;

� identifies classes and their roles in the solution to a problem;

� patterns are not code or designs; must be instantiated/applied.

Example: Iterator pattern!

The Iterator pattern defines an interface
that declares methods for sequentially accessing the objects in a collection.

Prof. Michele Loreti Design Patterns 407 / 443

Design Patterns

Design Pattern: a solution to a common software problem in a context

� describes a recurring software structure;

� is abstract from programming language;

� identifies classes and their roles in the solution to a problem;

� patterns are not code or designs; must be instantiated/applied.

Example: Iterator pattern! The Iterator pattern defines an interface
that declares methods for sequentially accessing the objects in a collection.

Prof. Michele Loreti Design Patterns 407 / 443

History of patterns

The concept of a pattern was first expressed in Christopher Alexander’s
work A Pattern Language in 1977 (2543 patterns).

In 1990 a group called the Gang of Four or GoF (Gamma, Helm, Johnson,
Vlissides) compile a catalog of design patterns.

In 1995 book Design Patterns: Elements of Reusable Object-Oriented
Software, which is a classic of the field, is published.

Prof. Michele Loreti Design Patterns 408 / 443

History of patterns

The concept of a pattern was first expressed in Christopher Alexander’s
work A Pattern Language in 1977 (2543 patterns).

In 1990 a group called the Gang of Four or GoF (Gamma, Helm, Johnson,
Vlissides) compile a catalog of design patterns.

In 1995 book Design Patterns: Elements of Reusable Object-Oriented
Software, which is a classic of the field, is published.

Prof. Michele Loreti Design Patterns 408 / 443

History of patterns

The concept of a pattern was first expressed in Christopher Alexander’s
work A Pattern Language in 1977 (2543 patterns).

In 1990 a group called the Gang of Four or GoF (Gamma, Helm, Johnson,
Vlissides) compile a catalog of design patterns.

In 1995 book Design Patterns: Elements of Reusable Object-Oriented
Software, which is a classic of the field, is published.

Prof. Michele Loreti Design Patterns 408 / 443

Benefits of using patterns

Patterns are a common design vocabulary.

� allows to abstract a problem and talk about that abstraction in
isolation from its implementation;

� embodies a culture; domain-specific patterns increase design speed.

Patterns capture design expertise and allow that expertise to be
communicated. Promotes design reuse and avoid mistakes.

Improve documentation (less is needed) and understandability
(patterns are described well once).

Prof. Michele Loreti Design Patterns 409 / 443

Benefits of using patterns

Patterns are a common design vocabulary.

� allows to abstract a problem and talk about that abstraction in
isolation from its implementation;

� embodies a culture; domain-specific patterns increase design speed.

Patterns capture design expertise and allow that expertise to be
communicated. Promotes design reuse and avoid mistakes.

Improve documentation (less is needed) and understandability
(patterns are described well once).

Prof. Michele Loreti Design Patterns 409 / 443

Benefits of using patterns

Patterns are a common design vocabulary.

� allows to abstract a problem and talk about that abstraction in
isolation from its implementation;

� embodies a culture; domain-specific patterns increase design speed.

Patterns capture design expertise and allow that expertise to be
communicated. Promotes design reuse and avoid mistakes.

Improve documentation (less is needed) and understandability
(patterns are described well once).

Prof. Michele Loreti Design Patterns 409 / 443

Gang of Four (GoF) patterns

Creational Patterns: abstracting the object-instantiation process.

� Factory Method, Abstract Factory, Singleton, Builder, Prototype.

Structural Patterns: how objects/classes can be combined to form larger
structures.

� Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy.

Behavioral Patterns: communication between objects.

� Command, Interpreter, Iterator, Mediator, Observer, State, Strategy,
Chain of Responsibility, Visitor, Template Method.

Prof. Michele Loreti Design Patterns 410 / 443

Gang of Four (GoF) patterns

Creational Patterns: abstracting the object-instantiation process.

� Factory Method, Abstract Factory, Singleton, Builder, Prototype.

Structural Patterns: how objects/classes can be combined to form larger
structures.

� Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy.

Behavioral Patterns: communication between objects.

� Command, Interpreter, Iterator, Mediator, Observer, State, Strategy,
Chain of Responsibility, Visitor, Template Method.

Prof. Michele Loreti Design Patterns 410 / 443

Gang of Four (GoF) patterns

Creational Patterns: abstracting the object-instantiation process.

� Factory Method, Abstract Factory, Singleton, Builder, Prototype.

Structural Patterns: how objects/classes can be combined to form larger
structures.

� Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy.

Behavioral Patterns: communication between objects.

� Command, Interpreter, Iterator, Mediator, Observer, State, Strategy,
Chain of Responsibility, Visitor, Template Method.

Prof. Michele Loreti Design Patterns 410 / 443

Factory Method

The Factory Method design pattern solves problems like:

� How can an object be created so that subclasses can redefine which
class to instantiate?

� How can a class defer instantiation to subclasses?

Creating an object directly within the class that requires (uses) the object
is inflexible:

� it commits the class to a particular object;

� it impossible to change the instantiation independently from (without
having to change) the class.

The Factory Method design pattern describes how to solve such problems:

� Define a separate operation (factory method) for creating an object.

� Create an object by calling a factory method.

Prof. Michele Loreti Design Patterns 411 / 443

Factory Method

The Factory Method design pattern solves problems like:

� How can an object be created so that subclasses can redefine which
class to instantiate?

� How can a class defer instantiation to subclasses?

Creating an object directly within the class that requires (uses) the object
is inflexible:

� it commits the class to a particular object;

� it impossible to change the instantiation independently from (without
having to change) the class.

The Factory Method design pattern describes how to solve such problems:

� Define a separate operation (factory method) for creating an object.

� Create an object by calling a factory method.

Prof. Michele Loreti Design Patterns 411 / 443

Factory Method

The Factory Method design pattern solves problems like:

� How can an object be created so that subclasses can redefine which
class to instantiate?

� How can a class defer instantiation to subclasses?

Creating an object directly within the class that requires (uses) the object
is inflexible:

� it commits the class to a particular object;

� it impossible to change the instantiation independently from (without
having to change) the class.

The Factory Method design pattern describes how to solve such problems:

� Define a separate operation (factory method) for creating an object.

� Create an object by calling a factory method.

Prof. Michele Loreti Design Patterns 411 / 443

Factory Method

The Factory Method design pattern solves problems like:

� How can an object be created so that subclasses can redefine which
class to instantiate?

� How can a class defer instantiation to subclasses?

Creating an object directly within the class that requires (uses) the object
is inflexible:

� it commits the class to a particular object;

� it impossible to change the instantiation independently from (without
having to change) the class.

The Factory Method design pattern describes how to solve such problems:

� Define a separate operation (factory method) for creating an object.

� Create an object by calling a factory method.

Prof. Michele Loreti Design Patterns 411 / 443

Factory Method

The Factory Method design pattern solves problems like:

� How can an object be created so that subclasses can redefine which
class to instantiate?

� How can a class defer instantiation to subclasses?

Creating an object directly within the class that requires (uses) the object
is inflexible:

� it commits the class to a particular object;

� it impossible to change the instantiation independently from (without
having to change) the class.

The Factory Method design pattern describes how to solve such problems:

� Define a separate operation (factory method) for creating an object.

� Create an object by calling a factory method.

Prof. Michele Loreti Design Patterns 411 / 443

Factory Method

Definition: Define an interface for creating an object, but let subclasses
decide which class to instantiate. The Factory method lets a class defer
instantiation it uses to subclasses.

Problem to solve: handle the process creation process

� reduce code duplication;

� provide information not accessible to the composing object;

� abstract the creation process.

The factory method pattern relies on inheritance, as object creation is
delegated to subclasses that implement the factory method to create
objects.

Prof. Michele Loreti Design Patterns 412 / 443

Factory Method

Definition: Define an interface for creating an object, but let subclasses
decide which class to instantiate. The Factory method lets a class defer
instantiation it uses to subclasses.

Problem to solve: handle the process creation process

� reduce code duplication;

� provide information not accessible to the composing object;

� abstract the creation process.

The factory method pattern relies on inheritance, as object creation is
delegated to subclasses that implement the factory method to create
objects.

Prof. Michele Loreti Design Patterns 412 / 443

Factory Method

Definition: Define an interface for creating an object, but let subclasses
decide which class to instantiate. The Factory method lets a class defer
instantiation it uses to subclasses.

Problem to solve: handle the process creation process

� reduce code duplication;

� provide information not accessible to the composing object;

� abstract the creation process.

The factory method pattern relies on inheritance, as object creation is
delegated to subclasses that implement the factory method to create
objects.

Prof. Michele Loreti Design Patterns 412 / 443

Factory Method

Prof. Michele Loreti Design Patterns 413 / 443

Abstract Factory

The Abstract Factory design pattern solves problems like:

� How can an application be independent of how its objects are created?

� How can a class be independent of how the objects it requires are
created?

� How can families of related or dependent objects be created?

This pattern:

� Encapsulate object creation in a separate (factory) object defined via
an interface (AbstractFactory);

� A class delegates object creation to a factory object instead of
creating objects directly.

Prof. Michele Loreti Design Patterns 414 / 443

Abstract Factory

The Abstract Factory design pattern solves problems like:

� How can an application be independent of how its objects are created?

� How can a class be independent of how the objects it requires are
created?

� How can families of related or dependent objects be created?

This pattern:

� Encapsulate object creation in a separate (factory) object defined via
an interface (AbstractFactory);

� A class delegates object creation to a factory object instead of
creating objects directly.

Prof. Michele Loreti Design Patterns 414 / 443

Abstract Factory

The Abstract Factory design pattern solves problems like:

� How can an application be independent of how its objects are created?

� How can a class be independent of how the objects it requires are
created?

� How can families of related or dependent objects be created?

This pattern:

� Encapsulate object creation in a separate (factory) object defined via
an interface (AbstractFactory);

� A class delegates object creation to a factory object instead of
creating objects directly.

Prof. Michele Loreti Design Patterns 414 / 443

Abstract Factory

Definition: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Usage: The factory determines the actual concrete type of object to be
created, and it is here that the object is actually created.

However, the factory only returns an abstract pointer to the created
concrete object.

This insulates client code from object creation by having clients ask a
factory object to create an object of the desired abstract type and to
return an abstract pointer to the object.

Prof. Michele Loreti Design Patterns 415 / 443

Abstract Factory

Definition: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Usage: The factory determines the actual concrete type of object to be
created, and it is here that the object is actually created.

However, the factory only returns an abstract pointer to the created
concrete object.

This insulates client code from object creation by having clients ask a
factory object to create an object of the desired abstract type and to
return an abstract pointer to the object.

Prof. Michele Loreti Design Patterns 415 / 443

Abstract Factory

Definition: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Usage: The factory determines the actual concrete type of object to be
created, and it is here that the object is actually created.

However, the factory only returns an abstract pointer to the created
concrete object.

This insulates client code from object creation by having clients ask a
factory object to create an object of the desired abstract type and to
return an abstract pointer to the object.

Prof. Michele Loreti Design Patterns 415 / 443

Abstract Factory

Definition: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Usage: The factory determines the actual concrete type of object to be
created, and it is here that the object is actually created.

However, the factory only returns an abstract pointer to the created
concrete object.

This insulates client code from object creation by having clients ask a
factory object to create an object of the desired abstract type and to
return an abstract pointer to the object.

Prof. Michele Loreti Design Patterns 415 / 443

Abstract Factory

Prof. Michele Loreti Design Patterns 416 / 443

Singleton Pattern

The singleton design pattern solves problems like:

� How can it be ensured that a class has only one instance?

� How can the sole instance of a class be accessed easily?

� How can a class control its instantiation?

� How can the number of instances of a class be restricted?

The singleton design pattern describes how to solve such problems:

� Hide the constructor of the class.

� Define a public static operation (getInstance ()) that returns the sole
instance of the class.

Prof. Michele Loreti Design Patterns 417 / 443

Singleton Pattern

The singleton design pattern solves problems like:

� How can it be ensured that a class has only one instance?

� How can the sole instance of a class be accessed easily?

� How can a class control its instantiation?

� How can the number of instances of a class be restricted?

The singleton design pattern describes how to solve such problems:

� Hide the constructor of the class.

� Define a public static operation (getInstance ()) that returns the sole
instance of the class.

Prof. Michele Loreti Design Patterns 417 / 443

Singleton Pattern

The key idea in this pattern is to make the class itself responsible for
controlling its instantiation (that it is instantiated only once).

The hidden constructor (declared private) ensures that the class can never
be instantiated from outside the class.

The public static operation can be accessed easily by using the class name
and operation name (Singleton . getInstance ()).

Prof. Michele Loreti Design Patterns 418 / 443

Singleton Pattern

The key idea in this pattern is to make the class itself responsible for
controlling its instantiation (that it is instantiated only once).

The hidden constructor (declared private) ensures that the class can never
be instantiated from outside the class.

The public static operation can be accessed easily by using the class name
and operation name (Singleton . getInstance ()).

Prof. Michele Loreti Design Patterns 418 / 443

Singleton Pattern

The key idea in this pattern is to make the class itself responsible for
controlling its instantiation (that it is instantiated only once).

The hidden constructor (declared private) ensures that the class can never
be instantiated from outside the class.

The public static operation can be accessed easily by using the class name
and operation name (Singleton . getInstance ()).

Prof. Michele Loreti Design Patterns 418 / 443

Singleton Pattern

p u b l i c f i n a l c l a s s S i n g l e t o n {
p r i v a t e s t a t i c f i n a l S i n g l e t o n INSTANCE = new S i n g l e t o n ()
;

p r i v a t e S i n g l e t o n () {
// I f needed , pa ramete r s can be read from l o c a l c on t e x t !

}

p u b l i c s t a t i c S i n g l e t o n g e t I n s t a n c e () {
r e t u r n INSTANCE ;

}

. . . .
}

Prof. Michele Loreti Design Patterns 419 / 443

Composite pattern

What problems can the Composite design pattern solve?

� A part-whole hierarchy should be represented so that clients can treat
part and whole objects uniformly.

� A part-whole hierarchy should be represented as tree structure.

What solution does the Composite design pattern describe?

� Define a unified Component interface for both part (Leaf) objects and
whole (Composite) objects.

� Individual Leaf objects implement the Component interface directly

� Composite objects forward requests to their child components.

Prof. Michele Loreti Design Patterns 420 / 443

Composite pattern

What problems can the Composite design pattern solve?

� A part-whole hierarchy should be represented so that clients can treat
part and whole objects uniformly.

� A part-whole hierarchy should be represented as tree structure.

What solution does the Composite design pattern describe?

� Define a unified Component interface for both part (Leaf) objects and
whole (Composite) objects.

� Individual Leaf objects implement the Component interface directly

� Composite objects forward requests to their child components.

Prof. Michele Loreti Design Patterns 420 / 443

Composite Pattern

Composite enables clients to work through the Component interface to treat
Leaf and Composite objects uniformly:

� Leaf objects perform a request directly;

� Composite objects forward the request to their child components
recursively downwards the tree structure.

This makes client classes easier to implement, change, test, and
reuse.

Prof. Michele Loreti Design Patterns 421 / 443

Composite Pattern

Composite enables clients to work through the Component interface to treat
Leaf and Composite objects uniformly:

� Leaf objects perform a request directly;

� Composite objects forward the request to their child components
recursively downwards the tree structure.

This makes client classes easier to implement, change, test, and
reuse.

Prof. Michele Loreti Design Patterns 421 / 443

Composite Pattern

Prof. Michele Loreti Design Patterns 422 / 443

Composite Pattern
Two variants. . .

Prof. Michele Loreti Design Patterns 423 / 443

Composite Pattern
Example. . .

We can consider a set of classes modelling a figure.

Each figure can be:

� a basic figure: Rectangle, Ellipse , Triangle .

� a group of figures: Group.

Operation is:

� draw(Graphics g , int x , int y)

Prof. Michele Loreti Design Patterns 424 / 443

Composite Pattern
Example. . .

We can consider a set of classes modelling a figure.

Each figure can be:

� a basic figure: Rectangle, Ellipse , Triangle .

� a group of figures: Group.

Operation is:

� draw(Graphics g , int x , int y)

Prof. Michele Loreti Design Patterns 424 / 443

Composite Pattern
Example. . .

We can consider a set of classes modelling a figure.

Each figure can be:

� a basic figure: Rectangle, Ellipse , Triangle .

� a group of figures: Group.

Operation is:

� draw(Graphics g , int x , int y)

Prof. Michele Loreti Design Patterns 424 / 443

Composite Pattern
Java code. . .

Prof. Michele Loreti Design Patterns 425 / 443

Decorator Pattern

What problems can the Decorator design pattern solve?

� Responsibilities should be added to (and removed from) an object
dynamically at run-time.

� A flexible alternative to subclassing for extending functionality should
be provided.

� When using subclassing, different subclasses extend a class in
different ways. But an extension is bound to the class at compile-time
and can’t be changed at run-time.

Prof. Michele Loreti Design Patterns 426 / 443

Decorator Pattern

What problems can the Decorator design pattern solve?

� Responsibilities should be added to (and removed from) an object
dynamically at run-time.

� A flexible alternative to subclassing for extending functionality should
be provided.

� When using subclassing, different subclasses extend a class in
different ways. But an extension is bound to the class at compile-time
and can’t be changed at run-time.

Prof. Michele Loreti Design Patterns 426 / 443

Decorator Pattern

What problems can the Decorator design pattern solve?

� Responsibilities should be added to (and removed from) an object
dynamically at run-time.

� A flexible alternative to subclassing for extending functionality should
be provided.

� When using subclassing, different subclasses extend a class in
different ways. But an extension is bound to the class at compile-time
and can’t be changed at run-time.

Prof. Michele Loreti Design Patterns 426 / 443

Decorator Pattern

What problems can the Decorator design pattern solve?

� Responsibilities should be added to (and removed from) an object
dynamically at run-time.

� A flexible alternative to subclassing for extending functionality should
be provided.

� When using subclassing, different subclasses extend a class in
different ways. But an extension is bound to the class at compile-time
and can’t be changed at run-time.

Prof. Michele Loreti Design Patterns 426 / 443

Decorator Pattern

What solution does the Decorator design pattern describe?

Define
Decorator objects that:

� implement the interface of the extended (decorated) object
(Component) transparently by forwarding all requests to it and perform
additional functionality before/after forwarding a request.

� This enables to work through different Decorator objects to extend
the functionality of an object dynamically at run-time.

Prof. Michele Loreti Design Patterns 427 / 443

Decorator Pattern

What solution does the Decorator design pattern describe? Define
Decorator objects that:

� implement the interface of the extended (decorated) object
(Component) transparently by forwarding all requests to it and perform
additional functionality before/after forwarding a request.

� This enables to work through different Decorator objects to extend
the functionality of an object dynamically at run-time.

Prof. Michele Loreti Design Patterns 427 / 443

Decorator Pattern

Decorator Pattern is based on the following sequence of steps:

� Subclass the original Component class into a Decorator class;

� In the Decorator class, add a Component pointer as a field;

� In the Decorator class, pass a Component to the Decorator constructor to
initialise the Component pointer;

� In the Decorator class, forward all Component methods to the
Component pointer;

� and In the Decorator class, override any Component method(s) whose
behaviour needs to be modified.

Prof. Michele Loreti Design Patterns 428 / 443

Decorator Pattern

Decorator Pattern is based on the following sequence of steps:

� Subclass the original Component class into a Decorator class;

� In the Decorator class, add a Component pointer as a field;

� In the Decorator class, pass a Component to the Decorator constructor to
initialise the Component pointer;

� In the Decorator class, forward all Component methods to the
Component pointer;

� and In the Decorator class, override any Component method(s) whose
behaviour needs to be modified.

Prof. Michele Loreti Design Patterns 428 / 443

Decorator Pattern

Decorator Pattern is based on the following sequence of steps:

� Subclass the original Component class into a Decorator class;

� In the Decorator class, add a Component pointer as a field;

� In the Decorator class, pass a Component to the Decorator constructor to
initialise the Component pointer;

� In the Decorator class, forward all Component methods to the
Component pointer;

� and In the Decorator class, override any Component method(s) whose
behaviour needs to be modified.

Prof. Michele Loreti Design Patterns 428 / 443

Decorator Pattern

Decorator Pattern is based on the following sequence of steps:

� Subclass the original Component class into a Decorator class;

� In the Decorator class, add a Component pointer as a field;

� In the Decorator class, pass a Component to the Decorator constructor to
initialise the Component pointer;

� In the Decorator class, forward all Component methods to the
Component pointer;

� and In the Decorator class, override any Component method(s) whose
behaviour needs to be modified.

Prof. Michele Loreti Design Patterns 428 / 443

Decorator Pattern

Decorator Pattern is based on the following sequence of steps:

� Subclass the original Component class into a Decorator class;

� In the Decorator class, add a Component pointer as a field;

� In the Decorator class, pass a Component to the Decorator constructor to
initialise the Component pointer;

� In the Decorator class, forward all Component methods to the
Component pointer;

� and In the Decorator class, override any Component method(s) whose
behaviour needs to be modified.

Prof. Michele Loreti Design Patterns 428 / 443

Decorator Pattern

Decorator Pattern is based on the following sequence of steps:

� Subclass the original Component class into a Decorator class;

� In the Decorator class, add a Component pointer as a field;

� In the Decorator class, pass a Component to the Decorator constructor to
initialise the Component pointer;

� In the Decorator class, forward all Component methods to the
Component pointer;

� and In the Decorator class, override any Component method(s) whose
behaviour needs to be modified.

Prof. Michele Loreti Design Patterns 428 / 443

Decorator Pattern

Prof. Michele Loreti Design Patterns 429 / 443

Decorator Pattern

Prof. Michele Loreti Design Patterns 430 / 443

Command

What solution does the Command design pattern describe?

� Define separate (command) objects that encapsulate a request.

� A class delegates a request to a command object instead of
implementing a particular request directly.

This enables one to configure a class with a command object that is used
to perform a request. The class is no longer coupled to a particular request
and has no knowledge (is independent) of how the request is carried out.

Prof. Michele Loreti Design Patterns 431 / 443

Command

What solution does the Command design pattern describe?

� Define separate (command) objects that encapsulate a request.

� A class delegates a request to a command object instead of
implementing a particular request directly.

This enables one to configure a class with a command object that is used
to perform a request. The class is no longer coupled to a particular request
and has no knowledge (is independent) of how the request is carried out.

Prof. Michele Loreti Design Patterns 431 / 443

Command

Prof. Michele Loreti Design Patterns 432 / 443

Observer

What problems can the Observer design pattern solve?

� A one-to-many dependency between objects should be defined
without making the objects tightly coupled.

� It should be ensured that when one object changes state an
open-ended number of dependent objects are updated automatically.

� It should be possible that one object can notify an open-ended
number of other objects.

Prof. Michele Loreti Design Patterns 433 / 443

Observer

What problems can the Observer design pattern solve?

� A one-to-many dependency between objects should be defined
without making the objects tightly coupled.

� It should be ensured that when one object changes state an
open-ended number of dependent objects are updated automatically.

� It should be possible that one object can notify an open-ended
number of other objects.

Prof. Michele Loreti Design Patterns 433 / 443

Observer

What solution does the Observer design pattern describe?

� Define Observable and Observer objects.

� When a subject changes state, all registered observers are notified and
updated automatically.

Prof. Michele Loreti Design Patterns 434 / 443

Observer

What solution does the Observer design pattern describe?

� Define Observable and Observer objects.

� When a subject changes state, all registered observers are notified and
updated automatically.

Prof. Michele Loreti Design Patterns 434 / 443

Observable

This class represents an observable object, or ”data” in the model-view
paradigm. It can be subclassed to represent an object that the application
wants to have observed.

An observable object can have one or more observers. An observer may be
any object that implements interface Observer.

After an observable instance changes, an application calling the
Observable’s notifyObservers method causes all of its observers to be
notified of the change by a call to their update method.

Prof. Michele Loreti Design Patterns 435 / 443

Observable

This class represents an observable object, or ”data” in the model-view
paradigm. It can be subclassed to represent an object that the application
wants to have observed.

An observable object can have one or more observers. An observer may be
any object that implements interface Observer.

After an observable instance changes, an application calling the
Observable’s notifyObservers method causes all of its observers to be
notified of the change by a call to their update method.

Prof. Michele Loreti Design Patterns 435 / 443

Observable

This class represents an observable object, or ”data” in the model-view
paradigm. It can be subclassed to represent an object that the application
wants to have observed.

An observable object can have one or more observers. An observer may be
any object that implements interface Observer.

After an observable instance changes, an application calling the
Observable’s notifyObservers method causes all of its observers to be
notified of the change by a call to their update method.

Prof. Michele Loreti Design Patterns 435 / 443

Observable

This class represents an observable object, or ”data” in the model-view
paradigm. It can be subclassed to represent an object that the application
wants to have observed.

An observable object can have one or more observers. An observer may be
any object that implements interface Observer.

After an observable instance changes, an application calling the
Observable’s notifyObservers method causes all of its observers to be
notified of the change by a call to their update method.

Prof. Michele Loreti Design Patterns 435 / 443

Observable
Methods. . .

v o i d addObserve r (Obse rve r o)

p r o t e c t e d vo i d c l ea rChanged ()

i n t coun tObse r v e r s ()

vo i d d e l e t eOb s e r v e r (Obse rve r o)

vo i d d e l e t eOb s e r v e r s ()

boo l ean hasChanged ()

vo i d n o t i f yOb s e r v e r s ()

vo i d n o t i f yOb s e r v e r s (Object a rg)

p r o t e c t e d vo i d setChanged ()

Prof. Michele Loreti Design Patterns 436 / 443

Observer

A class can implement the Observer interface when it wants to be
informed of changes in observable objects.

This interface provides a single method:

vo i d update (Obse r vab l e o , Object a rg)

This method is called whenever the observed object is changed. An
application calls an Observable object’s notifyObservers method to have all
the object’s observers notified of the change.

Prof. Michele Loreti Design Patterns 437 / 443

Observer

A class can implement the Observer interface when it wants to be
informed of changes in observable objects.

This interface provides a single method:

vo i d update (Obse r vab l e o , Object a rg)

This method is called whenever the observed object is changed. An
application calls an Observable object’s notifyObservers method to have all
the object’s observers notified of the change.

Prof. Michele Loreti Design Patterns 437 / 443

Observer

A class can implement the Observer interface when it wants to be
informed of changes in observable objects.

This interface provides a single method:

vo i d update (Obse r vab l e o , Object a rg)

This method is called whenever the observed object is changed. An
application calls an Observable object’s notifyObservers method to have all
the object’s observers notified of the change.

Prof. Michele Loreti Design Patterns 437 / 443

MVC: Model View Controller

Model-view-controller is commonly used for developing software that
divides an application into three interconnected parts:

� Model;

� View;

� Controller.

This is done to separate internal representations of information from the
ways information is presented to and accepted from the user.

The MVC design pattern decouples these major components allowing for
efficient code reuse and parallel development.

Prof. Michele Loreti Design Patterns 438 / 443

MVC: Model View Controller

Model-view-controller is commonly used for developing software that
divides an application into three interconnected parts:

� Model;

� View;

� Controller.

This is done to separate internal representations of information from the
ways information is presented to and accepted from the user.

The MVC design pattern decouples these major components allowing for
efficient code reuse and parallel development.

Prof. Michele Loreti Design Patterns 438 / 443

MVC: Model View Controller

Model-view-controller is commonly used for developing software that
divides an application into three interconnected parts:

� Model;

� View;

� Controller.

This is done to separate internal representations of information from the
ways information is presented to and accepted from the user.

The MVC design pattern decouples these major components allowing for
efficient code reuse and parallel development.

Prof. Michele Loreti Design Patterns 438 / 443

MVC: Model View Controller

Components:

� The model, is the central component of the pattern. It directly
manages the data, logic and rules of the application.

� A view can be any output representation of information, such as a
chart or a diagram. Multiple views of the same information are
possible.

� The controller that accepts input (from the view) and converts it to
commands for the model.

Interactions:

� The model is responsible for managing the data of the application. It
receives user input from the controller.

� The view means presentation of the model in a particular format.

� The controller responds to the user input and performs interactions
on the data model objects.

Prof. Michele Loreti Design Patterns 439 / 443

MVC: Model View Controller

Components:

� The model, is the central component of the pattern. It directly
manages the data, logic and rules of the application.

� A view can be any output representation of information, such as a
chart or a diagram. Multiple views of the same information are
possible.

� The controller that accepts input (from the view) and converts it to
commands for the model.

Interactions:

� The model is responsible for managing the data of the application. It
receives user input from the controller.

� The view means presentation of the model in a particular format.

� The controller responds to the user input and performs interactions
on the data model objects.

Prof. Michele Loreti Design Patterns 439 / 443

MVC: Model View Controller

Prof. Michele Loreti Design Patterns 440 / 443

MVC: Model View Controller

Advantages:

� Simultaneous development, Multiple developers can work
simultaneously on the model, controller and views.

� High cohesion, MVC enables logical grouping of related actions on a
controller together. The views for a specific model are also grouped
together.

� Low coupling, The very nature of the MVC framework is such that
there is low coupling among models, views or controllers.

� Ease of modification, Because of the separation of responsibilities,
future development or modification is easier

� Multiple views for a model, Models can have multiple views

Prof. Michele Loreti Design Patterns 441 / 443

MVC: Model View Controller

Advantages:

� Simultaneous development, Multiple developers can work
simultaneously on the model, controller and views.

� High cohesion, MVC enables logical grouping of related actions on a
controller together. The views for a specific model are also grouped
together.

� Low coupling, The very nature of the MVC framework is such that
there is low coupling among models, views or controllers.

� Ease of modification, Because of the separation of responsibilities,
future development or modification is easier

� Multiple views for a model, Models can have multiple views

Prof. Michele Loreti Design Patterns 441 / 443

MVC: Model View Controller

Advantages:

� Simultaneous development, Multiple developers can work
simultaneously on the model, controller and views.

� High cohesion, MVC enables logical grouping of related actions on a
controller together. The views for a specific model are also grouped
together.

� Low coupling, The very nature of the MVC framework is such that
there is low coupling among models, views or controllers.

� Ease of modification, Because of the separation of responsibilities,
future development or modification is easier

� Multiple views for a model, Models can have multiple views

Prof. Michele Loreti Design Patterns 441 / 443

MVC: Model View Controller

Advantages:

� Simultaneous development, Multiple developers can work
simultaneously on the model, controller and views.

� High cohesion, MVC enables logical grouping of related actions on a
controller together. The views for a specific model are also grouped
together.

� Low coupling, The very nature of the MVC framework is such that
there is low coupling among models, views or controllers.

� Ease of modification, Because of the separation of responsibilities,
future development or modification is easier

� Multiple views for a model, Models can have multiple views

Prof. Michele Loreti Design Patterns 441 / 443

MVC: Model View Controller

Advantages:

� Simultaneous development, Multiple developers can work
simultaneously on the model, controller and views.

� High cohesion, MVC enables logical grouping of related actions on a
controller together. The views for a specific model are also grouped
together.

� Low coupling, The very nature of the MVC framework is such that
there is low coupling among models, views or controllers.

� Ease of modification, Because of the separation of responsibilities,
future development or modification is easier

� Multiple views for a model, Models can have multiple views

Prof. Michele Loreti Design Patterns 441 / 443

MVC: Model View Controller

Advantages:

� Simultaneous development, Multiple developers can work
simultaneously on the model, controller and views.

� High cohesion, MVC enables logical grouping of related actions on a
controller together. The views for a specific model are also grouped
together.

� Low coupling, The very nature of the MVC framework is such that
there is low coupling among models, views or controllers.

� Ease of modification, Because of the separation of responsibilities,
future development or modification is easier

� Multiple views for a model, Models can have multiple views

Prof. Michele Loreti Design Patterns 441 / 443

MVC: Model View Controller

Disadvantages:

� Code navigability, The framework navigation can be complex because
it introduces new layers of abstraction and requires users to adapt to
the decomposition criteria of MVC.

� Multi-artifact consistency, Decomposing a feature into three artifacts
causes scattering. Thus, requiring developers to maintain the
consistency of multiple representations at once.

� Pronounced learning curve, Knowledge on multiple technologies
becomes the norm. Developers using MVC need to be skilled in
multiple technologies.

Prof. Michele Loreti Design Patterns 442 / 443

MVC: Model View Controller

Disadvantages:

� Code navigability, The framework navigation can be complex because
it introduces new layers of abstraction and requires users to adapt to
the decomposition criteria of MVC.

� Multi-artifact consistency, Decomposing a feature into three artifacts
causes scattering. Thus, requiring developers to maintain the
consistency of multiple representations at once.

� Pronounced learning curve, Knowledge on multiple technologies
becomes the norm. Developers using MVC need to be skilled in
multiple technologies.

Prof. Michele Loreti Design Patterns 442 / 443

MVC: Model View Controller

Disadvantages:

� Code navigability, The framework navigation can be complex because
it introduces new layers of abstraction and requires users to adapt to
the decomposition criteria of MVC.

� Multi-artifact consistency, Decomposing a feature into three artifacts
causes scattering. Thus, requiring developers to maintain the
consistency of multiple representations at once.

� Pronounced learning curve, Knowledge on multiple technologies
becomes the norm. Developers using MVC need to be skilled in
multiple technologies.

Prof. Michele Loreti Design Patterns 442 / 443

MVC: Model View Controller

Disadvantages:

� Code navigability, The framework navigation can be complex because
it introduces new layers of abstraction and requires users to adapt to
the decomposition criteria of MVC.

� Multi-artifact consistency, Decomposing a feature into three artifacts
causes scattering. Thus, requiring developers to maintain the
consistency of multiple representations at once.

� Pronounced learning curve, Knowledge on multiple technologies
becomes the norm. Developers using MVC need to be skilled in
multiple technologies.

Prof. Michele Loreti Design Patterns 442 / 443

To be continued. . .

Prof. Michele Loreti Design Patterns 443 / 443

